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ABSTRACT
We present a characterization of empirical price data from
sponsored search auctions. We show that simple models
drawing bid values independently from a fixed distribution
can be tuned to match empirical data on average, but still
fail to account for deviations observed in individual auctions.
Hypothesizing that these deviations are due to strategic bid-
ding, we define measures of “jamming” behavior and show
that actual auctions exhibit significantly more jamming than
predicted by such models. Correspondingly, removing the
jamming bids from observed auction data yields a much
closer fit. We demonstrate that this characterization is a
revealing tool for analysis, using model parameter values
and measures of jamming to summarize the effects of query
modifers on a set of keyword auctions.

1. INTRODUCTION
Much of the academic literature on sponsored search to

date has been theoretical in nature [7, 4, 5, 6], characteriz-
ing behavior or payoffs under strong assumptions that may
fail in practice—especially when the markets in question
are young, bidders are inexperienced, and relevant pieces
of information (such as the exact rules of the game) are fre-
quently kept secret. To our knowledge there has been no
exploratory study of actual bidding data on a large scale
to determine how real-world auctions can best be analyzed
and understood. This paper provides a simple but needed
first look at such questions. We utilize sponsored search
data drawn from a wide array of Overture/Yahoo! auctions
and examine how bids are distributed, what kinds of mod-
els of advertiser value can reasonably be proposed, and the
evidence for strategic behavior.

Our analysis serves two immediate purposes. First, a bet-
ter understanding of empricial bidding behavior improves
the quality of data that can be synthetically generated for
further study. We show that simple models used in prac-
tice fail to account for significant strategic effects, and sug-
gest improvements that meaningfully enhance the “realism”
of such models. Second, our characterization of sponsored
search auctions includes measurable quantities and model
parameters that can be used to summarize important fea-
tures of an auction for further analysis. To demonstrate the
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insight provided by such summaries, we show how groups of
query modifiers can influence bidding on a wide array of key-
word auctions. We find, for example, that adding modifiers
like “cheap” or “deal” to automobile brand names tends to
increase the amount of bid jamming at the first slot of the
corresponing sponsored search auctions.

The paper is structured as follows. Section 2 describes
the methodology used to collect actual bids from the Over-
ture bidview tool, and Section 3 presents a high-level, aggre-
gate analysis using a subset of the resulting data. Section 4
demonstrates that the aggregate analysis fails to completely
describe the character of individual auctions, and Section 5
proposes a measure of strategic behavior to explain the ob-
served deviations. Section 6 examines an application of our
analysis.

2. METHODOLOGY
Our data was obtained from the Overture bidview tool

from approximately November 28 to December 2, 20061.
We collected bid data for two sets of queries. The first,

smaller set includes the keywords used by Rusmevichientong
et al [6] and comprises 859 queries related to travel. It is used
for aggregate analysis in Section 3. The second set, used in
the latter sections of the paper, comprises a wide array of
36,900 queries. For the purposes of further analysis (such as
that carried out in Section 6), the second set is structured
as a cross product of 450 base keywords—e.g., “lawyer”—
intended to reflect basic searches that would generate ad-
vertiser interest, and 81 modifiers—e.g., “Philadelphia”—
intended to capture the ways in which users might fur-
ther specify searches. The base keywords and modifiers are
further structured by placement in groups; there are nine
groups of base keywords and six groups of modifiers. Ta-
ble 1 and Table 2 give some summaries and examples for
the groups of keywords in this data set. A complete query
in the second set pairs one base keyword with zero or one
modifiers (e.g., “lawyer” and “Philadelphia lawyer”).

Although the complete cross-product of base keywords
and modifiers results in a huge number of keyword phrases, a
considerable portion of the phrases are not meaningful and
thus have empty auctions or auctions with very few bids.
We primarily focus on the auctions of significant size in this
work.

1http://www.overture.com/; the bidview tool was discon-
tinued shortly after we collected our data.



group # examples
cars 41 BMW, Toyota
drugs 62 Xenical, Prozac
electronics 36 laptop, cell phone, camcorder
local-service 55 carpet cleaning, hair dresser
medical 50 anxiety, plastic surgery
non-local-service 27 car insurance, mortgage
software 67 Microsoft Windows, MySQL
subscription 91 cable, magazine
travel 21 cruise, hotel, vacation
total 450

Table 1: Summary of the base keyword groups

group # examples
action 6 buy, purchase
info 11 information, review
location 40 New York, Ohio, Philadelphia
post 6 support, parts, repair
price 10 cheap, expensive, free, discount
quality 8 best, luxury, new, used
total 81

Table 2: Summary of the modifier keyword groups

Due to resource constraints, we ran each query only once;
our data provides no information on dynamic bidding be-
havior. The data returned by the bidview tool include up
to 40 bids, ranked in order from highest to lowest. Adver-
tiser names and ad text are provided, but not used for our
analysis. Furthermore, we throw out the first bid in every
auction. This is due to the method by which prices are de-
termined: an advertiser pays a price equal to the bid of the
next advertiser in bid order, so that the first bid is not rele-
vant to money changing hands except insofar as it is higher
than all other bids. For the remainder of the paper we use
the term “price” assuming the convention that the kth price
is equal to the (k + 1)th bid.

3. INITIAL LOOK AT THE DATA
Visualizing the bid books, it is apparent that the data are

generally quite noisy. Consequently, we begin by examin-
ing the data in aggregate. A potential problem with this
approach is the risk of observing artifacts of the mixing pro-
cess; for example, if we have one market where only a small
number of advertisers compete selling a very lucrative prod-
uct, we might conclude that small auctions are likely to have
a high prices. By contrast, we observe the opposite trend
when we look at just one market (Figure 1). To limit such
artifacts, we use only data from our smaller, travel domain
query set in this section.

Previous research has looked at individual auctions over
time [4] and at median prices [6], but never with the aim of
modeling all the prices for a set of auctions. Because of this,
we start by visualizing the data.

Figure 1 shows how the price paid by the top bidder is
correlated with the total number of bidders in the auction.
As can be seen in the figure, there is an almost linear rela-
tionship between the number of bidders and the mean price
of the first position. An increasing trend is not surprising,
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Figure 1: The correlation between first prices and
the number of bids. The smoothed bids are a Bezier
curve generated from the means.

but perhaps the (noisy) linearity in the mean is somewhat
unexpected.

Figure 2 shows the correspondence between bid position
and mean prices. Because prices increase as the number of
bidders increases, all the auctions used in computing Fig-
ure 2 have at least 19 bids (i.e., 18 prices). We normalize
the prices so that the first price is 1.0, and we have an equal
contribution from all auctions. We find that an exponential
decay fits the means surprisingly well (pink curve), and as
a result an exponential decay model seems a natural choice
for fitting individual auctions. We will see, however, that in-
dividual auctions show significantly different behavior than
the aggregate.

Figure 3 shows the correspondence between bid position
and median prices. Interestingly, the median prices are not
as well explained by an exponential decay, especially in the
top few slots (which are arguably most interesting).

Figure 4 shows the distribution of the first few prices for
auctions where there are at least 19 bidders. As we can see,
in most cases the first few prices are relatively low, with a
few auctions where the first price is high. The histogram
looks approximately like a binomial distribution.

Figure 5 shows the differences between the first and second
price, the second and third price and the third and fourth
price for auctions with at least 19 bids. We will see in Sec-
tion 5 that the peak in the small price difference ranges may
be due to “jamming” strategies used by bidding agents.

4. PARAMETRIC MODELS OF A SINGLE
AUCTION

Section 3 motivates a simple approach to modeling indi-
vidual auctions under the assumption of independence—i.e.,
that each bidder bids independently of every other bidder. If
bid averages follow an exponential decay, independent bid-
ders must be drawing from the distribution that yields this
curve. In particular, let continuous function p( k−1

N−1
) be the

expected price of a bidder who is at position k out of N . (For
example, p(·) might be an exponential decay.) Then we can
sample prices p(u) where u is drawn from the uniform dis-
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Figure 2: The correlation between prices and bid
position, showing the mean price, the mean above
the median, and the mean below the median. The
curve is an exponential fit to the means.
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Figure 3: The correlation between prices and bid
position, showing the median prices as well as the
top and bottom quartiles. The curve is an exponen-
tial fit to the medians.

  

0.1 0.49 15 34 62
0.49 0.88 119 144 144
0.88 1.27 137 130 116
1.27 1.66 40 34 28
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Figure 4: A profile of the first three prices. The
horizontal axis is the value in dollars, the vertical is
a count of the number of bidders with a price in the
range up to that value.

  

0.1 230 284 290
0.2 59 47 44
0.3 31 24 30
0.4 12 6 5
0.5 6 7 6
0.6 3 2 0
0.7 8 3 2
0.8 4 2 0
0.9 2 1 0

1 22 1 0
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Figure 5: Bid differences corresponding to differ-
ences in price. The distribution looks smooth with
the exception of the peak at small differences. See
Section 5 for more on this peak.



tribution on [0, 1]. If the aggregate analysis is representative
of individual auctions, data sampled in this manner should
appear “similar” to real auction data. In fact, we show that
this is not the case, motivating a more careful characteriza-
tion of individual auctions in Section 5.

In order to measure the “similarity” of synthetic prices to
real prices, we compare the abilities of various parametric
models to fit the two types of data; i.e., we estimate p(·)
from single auctions using both real data and synthetic data.
If the synthetic generation procedure is accurate, then the
data it produces should be fit equally as well as the empirical
data. If there is some consistent difference in the quality of
fits, then we can conclude that the synthetic data is somehow
different.

We fit several different kinds of parametric models to the
auctions. In all cases, the fits are performed to minimize
the mean squared error (MSE) of the fit to the observed
prices. MSE is computed as follows: for each price point,
calculate the squared difference between the fit curve and
the observed price. For each auction compute the mean of
this value. Now compute the mean over all auctions of these
per-auction averages. In this way each auction is given equal
weight regardless of the number of bids it attracts.

To evaluate the quality of the fits, we examine not only
MSE but also two other measures. The first, refered to as
normalized MSE, involves normalizing the auctions so that
the highest price point is always 1.0 and then computing
MSE on the normalized prices. Due to the squaring op-
eration, MSE of any kind can be difficult to interpret, so
our third measure is mean absolute error (MAE). MAE is
computed in the same manner as MSE but taking absolute
values rather than sqaring the differences. The mean abso-
lute error can be interpreted as the expected value of the
difference (in cents) between the fit and the observed price
if we choose an auction uniformly at random.

4.1 Exponential Models
Motivated by the exponential decay seen in Figure 3, our

first model is an exponential curve. This model has two
parameters a and b and is given by

price[i] = abi, (1)

where i is an index of the price positions. An important
possibility not considered by this model is that prices may
converge to something other than 0. For example, we know
that there is a reserve price in the auctions and that bids
below the reserve price are not possible. This suggests a
three parameter model where prices are given by

price[i] = abi + c. (2)

Note that the second exponential model is more powerful
than the first and always has a (weakly) better fit.

4.2 Linear Models
For the sake of a more robust similarity metric, we include

a second model family that may capture different charac-
teristics of the data: piecewise linear models. An n piece
piecewise linear model has the form

price[i] =

8>>><>>>:
a1i + b1 if i < l1
a2i + b2 if l1 ≤ i < l2
...
ani + bn if ln−1 ≤ i < ln

. (3)

Model Real Gaussian Uniform Exponential

abi 3.8 1.9 3.7 1.7
abi + c 2.9 1.2 1.3 1.0
linear 14.2 3.2 1.5 7.8

2-linear 1.2 0.6 0.5 0.6

Table 3: The MSE values of different model fits on
real and synthetic data. All error values have been
multiplied by 100 for ease of reading.

Model Real Gaussian Uniform Exponential

abi 9.5 5.7 8.0 7.4
abi + c 5.9 4.3 3.2 3.0
linear 36.8 15.2 4.2 34.1

2-linear 2.1 1.8 0.9 1.6

Table 4: The normalized MSE values of different
model fits on real and synthetic data. All error val-
ues have been multiplied by 1000 for ease of reading.

Fitting such a model requires figuring out where to place
the breaks li in 3 as well as fitting the line to the prices
between breaks. This can be done using dynamic program-
ming in a straightforward manner. We used up to 5 pieces
for all auctions of size between 10 and 40. However, MSE
consistently decreases by a factor of 10 when moving from
1-piece to 2-piece model, and again by a factor of 3 when
moving to a 3-piece model. Since the MSE virtually van-
ishes at this point, we only give results for 1 and 2-piece
models.

4.3 Results
For each auction in our second query set we generated

parallel synthetic price data using the sampling technique
described above, where p(·) was chosen to be the best expo-
nential fit for the auction in question (Eq. (2)). Note that
the synthetic data is sampled from the induced distribution
and not generated directly from p(·), thus it is in no way
guaranteed a better fit than the real auction data. We also
generated two other types of synthetic prices correspond-
ing to methods sometimes used in practice. Gaussian prices
were generated by sampling from a Gaussian using the mean
and variance of the empirical prices, and uniform prices were
generated by sampling from a uniform distribution over the
range of empirical prices.

Each of the four data sets (real, exponential, Gaussian,
and uniform) was fit by each of the four models (exponential,
exponential with offset, linear, and two-piece linear). The
results are presented in Table 3, Table 4, and Table 5.

It is apparent that none of the synthetic methods for

Model Real Gaussian Uniform Exponential

abi 0.10 0.08 0.10 0.07
abi + c 0.06 0.06 0.06 0.05
linear 0.18 0.09 0.07 0.14

2-linear 0.05 0.04 0.04 0.04

Table 5: The MAE values of different model fits on
real and synthetic data.



  

0.01 92 107 153
0.02 24 20 15
0.03 10 22 16
0.04 15 17 19
0.05 20 18 17
0.06 11 1 8
0.07 4 6 9
0.08 8 6 10
0.09 6 8 13
0.1 187 172 117
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Figure 6: Bid differences in $0.01 increments. We
see that the peak in Figure 5 is due mostly to dif-
ferences of $0.01 or less. The bars marked “0.1”
include all bid differences of $0.10 or greater.

generating data displays fit error rates similar to those of
real auction data. We conclude that these models are not
fully capturing the relevant qualities of empirical auction
data. This point is addressed further in the following sec-
tion. However, it seems clear that the fits for exponential
synthetic data vary across models in the way most similar
to those of true auction data, though in magnitude the er-
ror measures are much smaller. In contrast, the linear fits
for uniform and Gaussian data are much too accurate, and
the exponential with offset fit for Gaussian data appears
to give a reduced improvement over the plain exponential
as compared with empirical data. We conclude, therefore,
that the exponential model is the most accurate (this is
also supported by the aggregate analysis), but that simple,
independent-bidder models miss some key characteristic of
sponsored search auctions.

5. JAMMING
Since our exponential model utilizes the only distribution

that, sampled independently, gives rise to the exponential in-
verse cumulative density curve seen in our aggregate analysis
(in particular, adding independent noise to each sample does
not maintain the curve), there must be significant dependen-
cies between bids in sponsored search auctions. While there
are many possible reasons for such dependencies, we show
here that one cause may be strategic behvaior on the part
of advertisers.

Figure 6 is a zoom of the zero to ten cents region of Figure
5. It is clear that the unexpectedly large number of bid
differences below ten cents is due to a peak at differences of
one cent or less. We propose that the sharp peak around
one cent in the price differences may be due, in part, to the
use of a bidding tactic known as “jamming.”

Jamming is defined as increasing one’s bid, without in-
creasing the price paid, in order to increase the price of the
next highest bidder. This may be an attempt to deplete a
competitor’s budget or simply to increase their advertising

costs in general. For example, if an auction contains three
bidders A, B, and C, and they initially bid 1.00, .75, and .60,
respectively, then B may jam A by changing its bid to 0.99.
B will still pay .61, and so incurs no cost, but A’s price will
jump from .76 to 1.00. This tactic appears to be widely used
and is indeed done automatically by many bidding packages
[3, 2].

Of course, jamming is not the only possible explanation
for the unusual number of one cent bid gaps. It is possi-
ble that bidders choose to play a strategy in which bids are
set to one cent above the next lowest bidder in an effort
to avoid being jammed, or to be “kind” to the the bidder
above. It is also possible that other bidding strategies create
the observed effects indirectly, or that collusion in somehow
encouraging clumped bidding. Going forward we will con-
tinue to use the term “jamming,” but we will define it as
a purely statistical measure of bid closeness, with the un-
derstanding that further experiments, especially those using
time series data for a dynamic analysis, will be necessary to
draw conclusions about the true causes.

This inherent uncertainty also discourages us from at-
tempting to directly evaluate generative bidding models in
this section. Instead, we turn from modeling the bids di-
rectly to proposing some measures of the amount of jam-
ming in an auction. We will then compare these measures
on the real data as compared to uniformly, normally, and
exponentially distributed synthetic price data.

First, we put forth a formal definition of jamming. There
are a variety of options, but Figure 6 suggests one which is
the simplest and most restrictive available: we will call a
bid a jamming bid if it is one cent or less below the next
highest bid. We will call a series of consecutive bids each
of which (except the first) jams the previous one a jamming
region. To reduce the influence of compression effects due to
the reserve price, we do not consider bids within two cents
of the reserve.

From this definition we propose various measures of jam-
ming in an auction. In all of these, we seek to tease apart
true jamming (jamming that results from dependencies be-
tween bidders) and apparent jamming due merely to the
chance clustering of bids, which may be significant in a mar-
ket with dozens of bids all less than a dollar.
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The first measure we propose is the size of the jamming re-
gion starting at the second bid. Intuitively, this corresponds
to he number of people jamming the first price point. The
results for this measure are shown in Figure 7. Note that
since the counts fall off very sharply, the graph has been
logarithmically scaled. Here we see that for the real data,
the length of the first jamming region is very close to be-
ing exponentially distributed and that it falls off far more
slowly than for the simulated data.2 This slower drop–off is
not unexpected: there is considerable motivation for multi-
ple bidders to attempt to compete with each other for the
top spot, whereas there is of course no such extra pressure
for randomly distributed data.

The next measure is how frequently each price position
is jammed, shown in Figure 8. There is a general upward
trend for all distributions, probably due to the increasing
compression of the range of possible bid values at lower po-
sitions creating more chance clusters. However, across a
range of price points that there is a strong and statistically
significant jamming effect in the real data over and above
that seen in the independent-bidder models.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1  2  3  4  5  6  7  8  9  10

P
er

ce
n

ta
g

e 
Ja

m
m

ed

Price Point

Jamming Frequency by Price Point

Real
Exponential

Uniform
Normal

Figure 8: Frequency of jamming by price position.

The last measure we define is the jamming compression
measure. This is defined to be the ratio of the number of
jamming bids to the total number of bids and represents how
much an auction would shrink if all the jamming bids were
removed. In Figure 9 this measure is plotted against auction
size. We can see that, as expected, it increases gradually for
all distributions (though not much for the uniform), prob-
ably due again to more chance clusters occurring as more
bids are crammed into a small space of possible bids. Al-
though this data is noisy due to the relatively small number
of auctions for some auction sizes, the jamming ratio is sig-
nificantly higher over all auction sizes less than 27 except
size 20.

Finally, Figure 10 shows how the jamming compression
measure changes as we vary the jamming threshold (the
maximum bid difference considered to be an instance of jam-
ming). Of course, there is a general upward trend across all
the distributions as the threshold is increased. Note that
there is a sharp jump in jamming ratio for the real data

2All differences between the real and simulated data here
are significant at 95% confidence.
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Figure 9: Jamming ratios by auction length.

when the threshold goes from zero cents to one cent, while
the other curves are smooth. This is in line with our ex-
pectations since there is little motive to jam a competitor
at a lower price than necessary since this just decreases the
price they pay. Also interesting is that as the threshold in-
creases the curve is actually slightly flatter for the real data
compared to the reference distributions.
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Figure 10: Jamming ratio averages by threshold.

5.1 Improvement of Fits by Unjamming
Having identified a characteristic of empirical sponsored

search auctions that distinguishes them from simple, independent-
bidder synthetic models, we recompute parametric model
fits after removing jamming from the real auction data. To
“unjam” an auction, we identify all jamming bids and re-
move them, as though the bidders never existed. The MSE
results are presented in Table 6.

Though the gap between synthetic and real data still ex-
ists, it has been closed considerably. We hypothesize that
further improvements might be obtained by considering other
common strategies employed by advertisers. Using similar
techniques, it should be possible to formalize and measure
the prevalence of such strategies in real-world auction data.



Model Real Unjam Exp

abi 3.8 2.8 1.7
abi + c 2.9 1.9 1.0
linear 14.2 13.1 7.8

2-linear 1.2 0.8 0.6

Table 6: The MSE values of different model fits on
real, unjammed, and synthetic data. All error values
have been multiplied by 100 for ease of reading.

6. MEASURING THE EFFECTS OF MOD-
IFIERS

Since the queries in our second data set are structured
as cross products of keyword/modifier groups, we can visu-
alize some interesting trends using the characterization we
have developed. In this section we examine the effects of
adding modifiers to keyword auctions on the parameters of
our model fits and our measures of jamming.

We first pre-process the data by removing auctions with
fewer than ten price points. Including auctions with a small
number of bidders greatly increases the variance of parame-
ter values because it mixes the effects of the modifiers on the
underlying valuations with effects that can be attributed to
auction size. In general, as we increase the minimum num-
ber of price points we get more significant results and more
dramatic differences.

We present a separate table for each quantity of interest.
Each row in a table corresponds to a base group of keywords,
each column corresponds to a modifier group or an empty
(“null”) modifier group, and each cell shows the mean of
the parameter under the cross product of the correspond-
ing groups. For example, the cell corresponding to “loca-
tion” and “local services” contains the mean over queries
consisting of keywords referring to local services combined
with modifiers describing locations. If a cell is shaded, the
number is statistically different from the “null” entry in the
same row; red shading indicates an increase, and green shad-
ing indicates a decrease.3 Significance levels were computed
using a t-test4 with confidence level 0.05. Abbreviations are
defined in Table 7.

Figure 11 shows the effect of keyword modifiers on the
first price parameter for the exponential model (the a in
pricei = abi + c).

As we can see, the modifier group “location” significantly
increases the highest price paid for the four base groups of
“local service”, “medical”, “subscription,” and “cars.” This
seems very natural, as all of these groups involve products
that frequently depend on local providers, for example, “cos-
metic surgery” and “hair implants” in “medical”, and “gym
membership” and “cable” in “subscription.” Conversely,
“non-local service” keywords have their prices reduced by
the addition of a location, as expected. Perhaps surpris-
ingly, the group of travel keywords did not see an increase
in price (on average) with the addition of a location. This
may be because the major travel bidders provide services to
many destinations and are thus indifferent to whether a user
is already interested in a specific one. Finally, we note that

3the red squares also have a border
4http://www.nmr.mgh.harvard.edu/Neural_Systems_
Group/gary/python.html

Abbreviation long name
act action modifiers
info info modifiers
loc location modifiers
post post purchase modifiers
price price modifiers
quality quality modifiers
cars cars keywords
drugs drugs keywords
electr electronics keywords
local local keywords
med medical keywords
n-loc non-local keywords
soft software keywords
subscr subscription keywords
travel travel keywords

Table 7: Abbreviated row and column headings.

null act info loc post price quality

cars 0.97 1.09 0.88 1.19 1.55 0.9 0.88
drugs 1.31 1.22 1.11 - - 0.78 -

electr 1.04 0.85 0.39 1.9 0.7 0.78 0.8

local 1.45 0.94 0.99 3.05 1.36 1.18 1.32

med 1.93 - 2.03 3.66 2.19 0.65 -

n-loc 4.76 2.47 1.98 3.58 1.48 2.67 2.65
soft 0.86 0.48 0.42 - - - 0.48

subscr 0.87 0.97 0.59 1.47 1.05 0.9 0.83

travel 0.92 0.54 0.53 0.92 - 0.95 1.3

Figure 11: The means of the first parameter of the
exponential model if we group keywords and mod-
ifiers. The figure shows auctions with at least 10
price points.



null act info loc post price quality

cars 0.93 0.9 0.87 0.89 0.83 0.88 0.9

drugs 0.86 0.84 0.76 - - 0.8 -

electr 0.91 0.87 0.88 0.8 0.86 0.88 0.86

local 0.9 0.83 0.82 0.8 0.83 0.86 0.82

med 0.84 - 0.75 0.73 0.81 0.84 -

n-loc 0.9 0.83 0.83 0.89 0.77 0.84 0.86
soft 0.87 0.84 0.88 - - - 0.87

subscr 0.88 0.85 0.85 0.8 0.81 0.86 0.86

travel 0.92 0.88 0.9 0.88 - 0.89 0.86

Figure 12: The means of the decay rate parameter
of the exponential model if we group keywords and
modifiers. The figure shows auctions with at least
10 price points.

null act info loc post price quality

cars 32.4 21.1 17.3 21.1 21.1 18.8 21.2

drugs 17.8 14.5 14.0 - - 12.3 -

electr 34.3 22.3 16.1 12.2 16.2 22.7 20.7

local 30.2 19.6 17.1 19.5 19.4 17.8 16.8

med 28.7 - 14.7 15.2 15.3 13.4 -

n-loc 35.5 21.3 22.9 32.1 17.7 25.3 26.5
soft 22.0 12.8 14.8 - - - 12.7

subscr 26.1 19.6 14.3 14.8 13.5 21.3 17.6

travel 34.3 15.1 22.0 24.5 - 28.0 23.8

Figure 13: The means of the number of bidders
grouped by keyword and modifier groups. The fig-
ure shows auctions with at least 10 price points.

the conjunction of “car” and “post purchase modifiers” re-
sults in higher starting bids than car keywords alone. This is
not surprising, since cars frequently require expensive post-
purchase care (repairs, parts, etc.).

Figure 12 shows the decay rates for the exponential model
(the b in pricei = abi + c). We see that the decay rates are
always lowered (falloff speed increases) with the addition
of modifiers. This is not surprising, given that the mean
number of bidders decreases with the addition of modifiers
as shown in Figure 13.

We can also visualize some other interesting trends. For
example, we see in Figure 14 that while adding modifiers
in general reduces jamming, adding a location or an action
word like “buy” or “lease” actually increases the amount of
jamming significantly for bids of at least $0.40. Figure 15
shows that adding modifiers such as “cheap” to the name of
an automobile manufacturer increases the expected length
of the jamming region at bid 2.

7. CONCLUSIONS
We collected a large set of empirical sponsored search data

and performed an exploratory analysis, attempting to char-
acterize and understand real-world search auction data. We
found an aggregate exponential decay of prices across many
auctions, but showed that this model does not fully describe
bidding behavior on a per-auction basis. We showed that
jamming is more prevalent in real data than would be pre-
dicted by a model of independent bidders, and that remov-
ing jamming from empirical data (or, convesely, adding jam-
ming to synthetic data) improves the similarity significantly.
Future work will include studying effects other than jam-
ming that contribute to this disparity. Finally, we demon-

null act info loc post price quality

cars 0.19 0.25 0.2 0.26 0.08 0.23 0.2

drugs 0.16 0.16 0.09 - - 0.08 -

electr 0.11 0.06 0.01 0.09 0.04 0.06 0.05

local 0.15 0.05 0.06 0.11 0.06 0.09 0.07
med 0.09 - 0.07 0.08 0.08 0.07 -

n-loc 0.27 0.12 0.14 0.23 0.04 0.17 0.19
soft 0.03 0.05 0.02 - - - 0.0

subscr 0.08 0.08 0.05 0.12 0.03 0.08 0.09

travel 0.11 0.02 0.05 0.12 - 0.11 0.13

Figure 14: Fraction of jammed bids over 40 cents
grouped by keyword and modifier groups. The fig-
ure shows auctions with at least 10 price points.

null act info loc post price quality

cars 1.98 2.49 2.34 2.47 1.85 2.65 2.11
drugs 2.23 2.1 1.94 - - 2.04 -
electr 1.47 1.22 1.56 1.78 1.69 1.41 1.38

local 1.69 1.37 1.37 1.6 1.5 1.83 1.53
med 1.29 - 1.26 1.34 1.83 1.2 -
n-loc 1.52 1.39 1.57 1.61 1.0 1.35 1.43
soft 1.33 2.0 1.4 - - - 1.0
subscr 1.65 1.3 1.79 1.68 1.17 1.63 1.64
travel 1.68 1.8 2.06 1.57 - 1.5 1.47

Figure 15: The expected length of the jamming re-
gion starting t the first price grouped by keyword
and modifier groups. The figure shows auctions with
at least 10 price points.

strated that our model parameters and measures of jamming
provide useful summaries of important auction features, re-
vealing trends in the ways modifiers influence the bids for
search keywords.
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