
Stochastic Models for Budget Optimization in
Search-Based Advertising

S. Muthukrishnan
Google, Inc.

New York, NY

muthu@google.com

Martin Pal
Google, Inc.

New York, NY

mpal@google.com

Zoya Svitkina
∗

Dept. of Computer Science
Cornell University

Ithaca, NY

zoya@cs.cornell.edu

ABSTRACT
Internet search companies sell advertisement slots based on
users’ search queries via an auction. Advertisers have to
solve a complex optimization problem of how to place bids
on the keywords of their interest so that they can maximize
their return (the number of user clicks on their ads) for a
given budget. This is the budget optimization problem.

In this paper, we model budget optimization as it arises in
Internet search companies and formulate stochastic versions
of the problem. The premise is that Internet search com-
panies can predict probability distributions associated with
queries in the future. We identify three natural stochastic
models. In the spirit of other stochastic optimization prob-
lems, two questions arise.

• (Evaluation Problem) Given a bid solution, can we
evaluate the expected value of the objective function
under different stochastic models?

• (Optimization Problem) Can we determine a bid solu-
tion that maximizes the objective function in expecta-
tion under different stochastic models?

Our main results are algorithmic and complexity results
for both these problems for our three stochastic models. In
particular, our algorithmic results show that simple prefix
strategies that bid on all cheap keywords up to some level
are either optimal or good approximations for many cases;
we show other cases to be NP-hard.

1. INTRODUCTION
Internet search companies use auctions to sell advertising

slots, in response to users’ search queries. To participate in
these auctions, the advertisers select a set of keywords that
are relevant or descriptive of their business, and submit bids
on each of them. Upon seeing a user’s query, the search
company runs an auction among the advertisers who have
placed bids for keywords matching the query and arranges
the winners in slots. The advertisers pay only if the user
clicks on their ad. Advertiser’s bid affects the position of
their ad, which in turn affects the number of clicks received
and the cost incurred. In addition to the bids, the advertiser

∗This work was done while visiting Google, Inc., New York,
NY.

Copyright is held by the author/owner(s).
WWW2007, May 8–12, 2007, Banff, Canada.
.

specifies a daily budget. When the cost charged for the clicks
reaches the budget, the advertiser’s ads stop participating
in the auctions. Thus the budget puts a cap on the amount
of money spent in a day.

In what follows, we describe the vantage of an advertiser
trying to optimize the return on their investment in such
an auction and abstract the budget optimization problem;
we also formulate models for predicting the future and de-
rive stochastic variants of the budget optimization problem;
finally, we state and prove our results.

1.1 Advertiser’s Budget Optimization prob-
lem

We adapt the viewpoint of an advertiser and study the
optimization problem she faces. The advertiser has to de-
termine the daily budget, a good set of keywords, and bids
for these keywords so as to maximize the effectiveness of her
campaign. The daily budget and the choice of keywords are
strategic and hard to model without specific knowledge. As
a result, they are assumed to be given in our problem for-
mulation. Effectiveness of a campaign is difficult to model
too since clicks resulting from some keywords may be more
desirable than others, and in some cases, just appearing on
the results page for a user’s query may have some utility.
For most of the paper, we adapt the common measure of
the effectiveness of the campaign, namely, the number of
clicks.1 Further, seen from an individual advertiser’s point
of view, the budgets and bids of other advertisers are fixed
for the day.

For most of the paper, we consider the single slot case.
Here, each keyword i has some threshold bid amount, bidi,
such that if the advertiser bids below bidi, then she loses
the auction and does not get any clicks. If she bids bidi or
above for keyword i, then she gets a number of clicks clicksi

for the queries that match keyword i, and has to pay cost-
per-click cpci for each click. Under this setting, the only
decision that has to be made about keyword i is whether to
bid on it above its threshold or not. As a result, the value of
bidi becomes immaterial from the point of view of the opti-
mization problem. Instead, we use decision variables bi that
represent whether or not to bid on keyword i. The decision
variables bi can be either integral or fractional. If they are
integral, then bi ∈ {0, 1}, indicating whether or not there

1Later we show how to extend our results to a more gen-
eral model in which clicks for different keywords may have
different values.

is a bid on keyword i. A fractional bid bi ∈ [0, 1] repre-
sents bidding for bi fraction of the queries that correspond
to keyword i, or equivalently bids on each such query with
probability bi. Then the advertiser gets bi · clicksi clicks
for keyword i. Integer bid solutions are slightly simpler to
implement than fractional bids and are more desirable when
they exist.

Finally, consider the effect of the future on an advertiser.
We abstract it using the function clicksi which is the num-
ber of clicks the advertiser gets for queries that correspond
to keyword i. Each such click entails a cost cpci for the
advertiser which is determined by the rules of the auction.2

There is a subtlety now because the advertiser is budget-
constrained. There are choices of bids for which the cost
will exceed the budget. One possibility would be to disallow
all solutions that may exceed the budget. But this is un-
reasonable if we imagine an advertiser with a small budget
who wants to bid on a popular or a highly varying keyword:
to get any clicks, she should bid on that keyword, even if
sometimes the budget runs out by the middle of the day. So
we allow solutions that may exceed the budget, but we scale
down the number of clicks obtained. Consider a solution b
that bids on some keywords. If the budget were unlimited,
then bidding on those keywords would bring clicks(b) clicks
and all of these clicks together would cost cost(b). But when
budget B is smaller than cost(b), this solution runs out of
money before the end of the day, and misses the clicks that
come after that point. If we assume that the queries and
clicks for all keywords are distributed uniformly throughout
the day and are well-mixed, then this solution reaches the
budget after B/cost(b) fraction of the day passes, missing
(1 − B/cost(b)) fraction of the possible clicks for each key-
word. As a result, the number of clicks collected before the

budget is exceeded is clicks(b)

cost(b)/B
in expectation.

Based on the discussion so far, we can now state the op-
timization problem an advertiser faces.

Definition 1 Budget Optimization Problem (BO). An
advertiser has a set T of keywords, with |T | = n, and a
budget B. For each keyword i ∈ T , we are given clicksi, the
number of clicks that correspond to i, and cpci, the cost per
click of these clicks. We define costi = cpci · clicksi. The
objective is to find a solution b = (b1, ..., bn) with a bid bi

for each i ∈ T to maximize

value(b) =

∑
i∈T biclicksi

max
(
1,
∑

i∈T bicosti/B
) . (1)

The numerator of the objective function is the number of
clicks available to b, and the denominator scales it down in
the case that the budget is exceeded. If we define clicks(b) =∑

i∈T biclicksi, cost(b) =
∑

i∈T bicosti, and the average

cost per click of solution b as cpc(b) = cost(b)

clicks(b)
, then

value(b) =

{
clicks(b) if cost(b) ≤ B

B/cpc(b) if cost(b) > B
(2)

So maximizing value(b) is equivalent to maximizing the
number of clicks in case that we are under budget, and min-
imizing the average cost per click if we are over budget.
2In Internet search, second price auctions are common.
Here, informally, the cost for the advertiser who wins the
slot is the highest bid of the others who lost the auction.

1.2 Stochastic versions
There are many variables that affect the number of clicks

that an advertiser receives in a day. Besides the factors such
as the advertiser’s choice of her own budget and keywords
which we take to be given, and the budgets of other advertis-
ers and their choices which remain fixed, the main variable
in our problem is the number of queries of relevance that
users issue on that day, and the frequency with which the
ads are clicked.3 These quantities are not known precisely
in advance. Our premise is that Internet search companies
can use statistical methods to analyze past data and predict
future with reasonable accuracy. They currently do provide
limited amount of information about the range of values
taken by these parameters.4 Therefore, they can provide
probability distributions for parameters of interest, thereby
giving useful information regarding what could happen or
what is likely to happen. This motivates us to study the
problem in the stochastic setting where the goal is to max-
imize the expected value of the objective under such proba-
bility distributions.

In our stochastic versions, the numbers of clicks clicksi

corresponding to different keywords are random variables
having some joint distribution. But general joint distribu-
tions are difficult to represent and to work with, so we for-
mulate the following natural stochastic models. (In contrast,
the problem in the previous section where clicksi are known
precisely for all i is called the fixed model from here on.)

• Proportional Model. Here the number of users, their
queries and clicks vary from day to day, but the pro-
portions of clicks for different keywords stay the same.
For example, people click on ads for shoes twice as
much as they click on ads for dresses, although the
actual number of clicks varies depending on the over-
all level of activity of online shoppers. This is modeled
by having one global random variable that represents
the total number of clicks in the day, as well as a fixed
known multiplier for each keyword that represents that
keyword’s share of the clicks.

• Independent Keywords Model. Each keyword comes
with its own probability distribution for the number of
clicks, and the samples are drawn from these distribu-
tions independently. This is perhaps more realistic for
keywords pertaining to different topics. For example,
the number of clicks for a keyword related to music
is independent of the number of clicks for a keyword
related to sports.

• Scenario Model. This model attempts to capture the
full generality, but without the large number of bits
needed to represent an arbitrary joint probability dis-
tribution. In this model, there is a number of sce-
narios, each of which specifies the exact number of
clicks for each keyword. One scenario is sampled from
a given probability distribution over scenarios, deter-
mining the numbers of clicks for the problem. For an

3The nature and number of queries vary significantly. An
example in Google Trends shows the spikes in searches
for shoes, flowers and chocolate: http://www.google.com/
trends?q=shoes,flowers,chocolate.
4See for example the information provided to any Ad-
Words advertiser. See also https://adwords.google.com/
support.

arbitrarily large number of scenarios, this is a fully
general model which can simulate any joint probabil-
ity distribution. However, we typically think of this
model with a limited (polynomial) number of scenar-
ios. For example, the scenarios can represent different
types of days with their unique click patterns, such as
“weekend”, “holiday” or “snowy day”. They can also
represent a set of samples from a more complex distri-
bution, with the hope that a solution that works well
for the majority of the samples would work well for the
whole distribution.

There are two issues that arise in these stochastic models.

• Stochastic Evaluation Problem (SE). Given a so-
lution b, can we evaluate E[value(b)] for any of the
three models above? Even this is nontrivial as is typ-
ical in stochastic optimization problems. It is also of
interest in solving the budget optimization problem
below.

• Stochastic Budget Optimization Problem (SBO).
This is the Budget Optimization problem with one of
the stochastic models above determining clicksi for
each i, with the objective to maximize

E[value(b)] = E

[∑
i∈T biclicksi

max
(
1,
∑

i∈T bicosti/B
)
]

. (3)

The expectation is taken over the joint distribution of
clicksi for all i ∈ T .

1.3 Our results
We present algorithmic and complexity-theoretic results

for the SE and SBO problems. We will state our results
in their generality and they will depend on the description
size of the probability distributions. Still, it should be clear
that in practice one expects the probability distributions to
be specified with a few points, and those are likely to be
interesting, applicable cases.

For SE problems, our results are as follows. The problem
is straight-forward to solve for the fixed and scenario models
since the expression for the expected value of the objective
can be explicitly written in polynomial time. For the pro-
portional model, we give an exact algorithm to evaluate a
solution in the case that the distribution for the total num-
ber of clicks does not have too many points in it, and we
give a polynomial-time approximation scheme (PTAS) for
the case that all points cannot be listed explicitly in poly-
nomial time. For the independent model, the number of
possibilities for different click quantities may be exponential
in the number of keywords, in which case a polynomial-time
algorithm is not able to enumerate all of them explicitly, and
the problem of evaluating a solution is likely to be #P -hard.
We give a PTAS for evaluating a solution in the independent
model. These results are used to derive algorithms for the
SBO problem, though they may be of independent interest.

Our main results are for the SBO problem. In fact, all
our algorithms produce a special kind of solutions called
prefix solutions. Say the keywords are numbered in order of
increasing cpci. A prefix solution bids on some prefix of the
list of keywords, i.e., on the cheap ones. Formally, an integer
prefix solution with bids bi has the property that there exists
some i∗ such that bi = 1 for all i ≤ i∗, and bi = 0 for i > i∗.

For a fractional prefix solution, there exists an i∗ such that
bi = 1 for i < i∗, bi = 0 for i > i∗, and bi∗ ∈ [0, 1]. We show:

• For the proportional model, we can find an optimal
fractional solution in polynomial time if the distribu-
tion of clicks can be described using polynomial num-
ber of points; else, we obtain a PTAS. We get this
result by showing that the optimal fractional solution
in this case is a prefix solution and using our evaluation
algorithm.

• For the independent model which is more complex
than the proportional case, we present an 2+ε approx-
imation algorithm in polynomial time. We get this by
showing the connection to integer prefix solution and
using our PTAS for the evaluation algorithm. We also
show that the best fractional prefix is not the optimal
fractional solution for the independent model.

• For the scenario model, we show a negative result that
finding the optimum, fractional or integer, is NP-hard.
In this case, the best prefix solution is arbitrarily far
from the optimum.

1.4 Related work
Together, our results represent a new theoretical study

of stochastic versions of budget optimization problems in
search-related advertising. The budget optimization prob-
lem was studied recently [4] in the fixed model, when clicksi’s
are known. On one hand, our study is more general, with the
emphasis on the uncertainty in modeling clicksi’s and the
stochastic models we have formulated. We do not know of
prior work in this area that formulates and uses our stochas-
tic models. On the other hand, our study is less general as
it does not consider the interaction between keywords that
occurs when a user’s search query matches two or more key-
words, which was studied in [4]. There is a lot of work on
stochastic versions of problems in optimization, such as fa-
cility location, Steiner trees, bin-packing and LP (see for
example the survey [8]). In search-related advertising, a
prior work [7] studied the keyword selection problem where
the goal is to select a subset of keywords from a large pool
for the advertiser to choose to bid. It is a special case of
our budget optimization problem with the large pool as the
input. The model used in [7] is similar to the proportional
model here, but the underlying optimization problem in [7]
is convex; in contrast, an intriguing and non-trivial aspect
of our work is that in all three models, our optimization
problem is non-convex: for three prefixes i < j < k, the ob-
jective function at j may be worse than the worst of i and
k because of the budget scaling. In [7], the proportions of
clicks for different keywords are unknown and an adaptive
algorithm is developed that learns the proportions by bid-
ding on different prefix solutions, and eventually converges
to near-optimal profits [7], assuming that various param-
eters are concentrated around their means. Our work is
different, as we consider algorithms that solve the problem
in advance, and not by adaptive learning, and work for pre-
specified probability distributions, however arbitrary. There
has been a lot of work on search-related auctions in the pres-
ence of budgets, but it has primarily focused on the game-
theoretic aspects [6, 1], strategy-proof mechanisms [2, 3],
and revenue maximization [5].

1.5 Map
We briefly discuss the fixed case first, and then discuss the

three stochastic models in the following sections; in each
case, we solve both evaluation and BO problems. In Sec-
tions 6 and 7, we present some extensions of our work, and
state a few open problems.

2. FIXED MODEL
We first discuss the BO problem in the fixed model. A

certain fractional prefix solution, which is easy to find, is
optimal for this case. The algorithm is analogous to that
for the fractional knapsack problem. We find the maximum
index i∗ such that

∑
i≤i∗ costi ≤ B. If i∗ is the last index in

T , we set bi = 1 for all keywords i. Otherwise find a fraction
α ∈ [0, 1) such that

∑
i≤i∗ costi +α · costi∗+1 = B, and set

bi = 1 for i ≤ i∗, bi∗+1 = α, and bi = 0 for i > i∗ + 1. Call
the resulting solution b.

The fact that the optimal solution is a prefix solution can
be shown by a simple interchange argument (we show this
in a more general setting in Section 3.2). It remains to show
that b is the best prefix solution. Notice that b is the max-
imal prefix solution whose cost does not exceed the budget.
A different solution b′ 6= b with cost(b′) < B can clearly be
improved by slightly increasing the bid on some keyword, as
that increases the number of clicks while remaining within
the budget. A prefix solution b′ with cost(b′) > B can be
improved by slightly decreasing the bid on its most expen-
sive keyword: this decreases the average cost per click of the
solution, thus increasing the value.

Theorem 2 In the fixed model, the optimal fractional so-
lution for the BO problem is the maximal prefix whose cost
does not exceed the budget, which can be found in linear time.

The integer version of this problem is NP-hard by reduc-
tion from knapsack. The full proof is omitted here, but the
idea is to construct an instance of the BO problem that has
one special keyword 0 with large clicks0 and cost0 = 0, and
the other keywords corresponding to the items in the knap-
sack instance, with clicksi being the value of the item, and
costi being the size. The budget is set to the knapsack size.
Then the optimal integer solution to this BO instance never
exceeds the budget, and places bids on the subset of key-
words corresponding to the optimal knapsack solution (in
addition to keyword 0).

3. PROPORTIONAL MODEL
In the proportional model of SBO, we are given qi, the

click frequency for each keyword i ∈ T , with
∑

i∈T qi = 1.
The total number of clicks is denoted by a random vari-
able C, and has a known probability distribution p. The
number of clicks for a keyword i is then determined as
clicksi = qi ·C. For a specific value c of C, let clicksc

i = qic
and costc

i = cpciclicksc
i . The objective is to maximize the

expected number of clicks, given by expression (3).
We show how to solve the evaluation problem efficiently in

the proportional model, and then use it to find the optimal
fractional solution to SBO, which, as we prove, is a prefix
solution.

3.1 Evaluating a solution
Assuming that the distribution for C is given in such a

way that it is easy to evaluate Pr[C > c∗] and
∑

c≤c∗ c p(c)

for any c∗, we show how to find E[value(b)] for any given so-
lution b without explicitly going through all possible values
of C and evaluating the objective function for each one.

The solution b may be under or over budget depending on
the value of C. Define a threshold c∗ = B/

∑
i∈T biqicpci,

so that for c ≤ c∗, costc(b) ≤ B, and for c > c∗, costc(b) >
B. Notice that in the proportional model, cpc(b) is indepen-
dent of C, as both clicks(b) and cost(b) are proportional
to C. Then using expression (2) for value(b), the objective
becomes easy to evaluate:

E[value(b)] =
∑

i∈T

biqi

∑

c≤c∗

c p(c)+
B

cpc(b)
Pr[C > c∗]. (4)

3.2 Prefix is the optimal solution

Theorem 3 The optimal fractional solution for the SBO
problem in the proportional model is a fractional prefix so-
lution.

Proof. We use an interchange argument to show that
any solution can be transformed into a prefix solution with-
out decreasing its value. Consider a solution b. If b is not
a prefix solution, then there exist keywords i and j with
i < j, bi < 1, and bj > 0. Choose the smallest such i and
the largest such j. If qicpci = 0, set bi = 1 and continue.
Otherwise pick the maximum δi, δj > 0 that satisfy

δi ≤ 1 − bi, δj ≤ bj , δi =
qjcpcj

qicpci

δj.

If we assign b′i = bi + δi, b′j = bj − δj, and b′k = bk for
k /∈ {i, j}, then we get a solution b′ such that for any c,
costc(b′) = costc(b) and clicksc(b′) ≥ clicksc(b):

costc(b′)− costc(b) = c · (qicpciδi − qjcpcjδj) = 0

clicksc(b′) − clicksc(b) = c · (qiδi − qjδj)

= c · qj(
cpcj

cpci

− 1)δj ≥ 0.

Since for any c, the value of the solution does not de-
crease, the expected value over C does not decrease either,
E[value(b′)] ≥ E[value(b)]. As a result of the transforma-
tion, either b′i = 1 or b′j = 0, so the process terminates after
a finite number of steps, resulting in a prefix solution with
expected value at least that of the original one.

3.3 Finding the optimal prefix
It is nontrivial to find the best fractional prefix solution for

the proportional case. First we mention two simple-minded
approaches to this problem and give examples to show that
they do not work. Then we show how to find the best pre-
fix by listing all the interesting ones and evaluating them
efficiently (notice that all the fractional prefixes cannot be
listed).

One simple way to find a prefix in the proportional model
is to convert it to a fixed case problem by setting the number
of clicks for a keyword to its expectation, i.e. set clicks∗i =
E(clicksi) = qiE(C), and then find the optimal prefix in
this new instance as in Section 2. But the following exam-
ple demonstrates that this is not optimal. There are two

keywords, cpc1 = 1, cpc2 = 5, q1 = 5
6 , q2 = 1

6 . C = 0 with
probability 90%, and C = 60 with probability 10%. So most
of the time no clicks come, and sometimes we get 50 cheap
clicks and 10 expensive ones. The best solution for budget
B = 10 is to bid only on keyword 1, which gets 10 cheap
clicks in the 10% case, or 1 click in expectation. However,
using expectations to find a prefix, we get clicks∗1 = 5 and
clicks∗2 = 1, and the best solution to that instance is to bid
on both keywords. But in the original stochastic instance,
this solution gets only 0.6 clicks in expectation.

Another possible approach is a greedy procedure that
starts with the empty prefix, and keeps lengthening it while
the solution improves. We show that this does not work ei-
ther, because the expected value of the solution as a function
of the length of the prefix can have multiple local maxima.
Let α ∈ (0, 1) be a fixed fraction, and let 0 < ε < α be a
quantity that approaches zero. There are three keywords,
with cpc1 = 0, cpc2 = cpc3 = 1, q1 = ε, q2 = α − ε,
q3 = 1 − α; B = 1. C = 1 with probability 1 − ε, and
C = 1/ε2 otherwise. If we compare the three integer pre-
fixes, it turns out that the value of bidding on keyword 1
approaches 1 as ε → 0, the value of bidding on {1, 2, 3} also
approaches 1, but the value of the intermediate solution,
bidding on keywords 1 and 2, approaches α, and therefore
is smaller than the other two.

Our solution is as follows. If we were only interested in
integer prefixes, we could evaluate all of them and find the
best one in polynomial time. However, the fractional pre-
fixes cannot be explicitly enumerated. But we show that
it is sufficient to evaluate only a finite number of different
prefixes in order to find the one with maximum value. The
number of such points is O(n + t), where t is the number of
possible values that C can take. In the case that t is poly-
nomial in n, the optimal prefix can be found in polynomial
time. If not, then for a constant ε > 0, the probability that
C falls between successive powers of (1+ε) can be combined
into buckets, resulting in a polynomial number of values for
C. Using this approximate distribution yields a PTAS for
finding the optimal prefix.

We mark some points in the space of possible prefixes.
First, we mark all the integer prefixes. Then, for each value
c of C that has non-zero probability, we mark the threshold
prefix b that exactly spends the budget for C = c, i.e. such
that costc(b) = B. This partitions the space of prefixes into
intervals. Notice that for any two prefix solutions b and b′

inside of the same interval I, the set of values of C that
cause these solutions to exceed the budget is the same, i.e.
{c | costc(b) > B} = {c | costc(b′) > B}. Call this set C>

I .
Now we show how to find the optimal prefix solution inside

an interval defined by the marked points. Consider such an
interval I, and suppose that all prefix solutions inside I bid
bj = 1 for j < i, bj = 0 for j > i, and bi ∈ (b1, b2) for some
0 ≤ b1 < b2 ≤ 1. Then the objective function for solutions
in this interval becomes (analogously to equation (4))

∑

c/∈C>
I

c p(c)

(∑

j<i

qj + biqi

)
+

+ B Pr[C ∈ C>
I] ·

∑
j<i qj + biqi∑

j<i qjcpcj + biqicpci

,

which we have to maximize over the possible values of the
variable bi. This can be done by taking the derivative of this

expression with respect to bi and setting it to zero, which has
at most one solution on the interval (b1, b2). If this solution
exists, we add it to a set of interesting points. To obtain
the overall optimal solution, the algorithm evaluates all the
prefixes defined by the marked and the interesting points.

Theorem 4 The optimal fractional solution to SBO prob-
lem in the proportional model can be found exactly in time
O(n + t), where t is the number of possible values of C, or
approximated by a PTAS.

4. INDEPENDENT MODEL
In the independent model of SBO, the number of clicks

for keyword i ∈ T , clicksi, has a probability distribution
pi (which can be different for different keywords). The key
distinguishing feature of this model is that for i 6= j, the
variables clicksi and clicksj are independent.

The independent model is more complex than the ones
discussed so far. Theorem 5 shows that prefix solution may
not be optimal even among fractional solutions in the in-
dependent model. However, in Section 4.1 we prove that
some prefix solution is a 2-approximate integer solution.
But finding this best prefix requires the ability to evaluate
a given solution, which in this model is likely to be #P -
hard. So in Section 4.2, we give a PTAS for evaluating
any proposed solution. Combined, these two results imply a
(2 + ε)-approximation algorithm for the BO problem in the
independent model.

Theorem 5 In the independent model of the SBO problem,
the optimal fractional solution may not be a prefix solution.

Proof. We give an example with three keywords in which
the optimal solution bids on the first and third keywords,
and gets more clicks than any (even fractional) prefix solu-
tion. The idea is that the second and third keywords cost
about the same, but the third one is better because it always
comes in the same quantity, whereas the second one has high
variance. Let cpc1 = 0, cpc2 = 1, cpc3 = 1; clicks1 = 1
with probability 1, clicks2 = (0 or 1) with probability 1

2
each, and clicks3 = 1 with probability 1; B = 1. The opti-
mal solution is b1 = b3 = 1 and b2 = 0, which always gets 2
clicks. The best prefix solution is b1 = b2 = 1 and b3 = 0,
which gets 1 or 2 clicks with probability 1

2 each, or only 1.5
clicks in expectation. The example can be modified so that
the third keyword is strictly more expensive than the second
one.

4.1 Prefix is a 2-approximation
In this section we show that for any instance of the SBO

problem in the independent model, there exists an integer
prefix solution whose expected value is at least half of the
optimum. In particular, we show that any integer solution b
can be transformed into a prefix solution bV without losing
more than half of its value. Let S = {i | bi = 1} be the set
of keywords that b bids on.

Let σ be the event that clicks for each keyword i ∈ T come
in quantity clicksσ(i). Then its probability is

p(σ) =
∏

i∈T

pi(clicksσ(i)).

Define clicksσ(b) =
∑

i∈S clicksσ(i), costσ(i) = cpci ·
clicksσ(i), and costσ(b) =

∑
i∈S costσ(i). The effective

number of clicks (after taking the budget into account) that
solution b gets from keyword i in the event σ is

clicks
σ
S(i) =

clicksσ(i)

max(1, costσ(b)/B)
,

and the total effective number of clicks is clicks
σ
(b) =∑

i∈S clicks
σ
S(i). Then E[value(b)] =

∑
σ p(σ)clicks

σ
(b).

Let i∗(b) be the minimum index i∗ such that

∑

σ

p(σ)
∑

i∈S,i≤i∗

clicks
σ
S(i) ≥ 1

2
E[value(b)].

Theorem 6 For any integer solution b to the SBO problem
with independent keywords, there exists an integer prefix so-
lution bV such that E[value(bV)] ≥ 1

2
E[value(b)]. In par-

ticular, the solution bV bidding on the set V = {i | i ≤ i∗(b)}
has this property.

The idea of the proof will be to think of the above prefix
solution as being obtained in two steps from the original
solution b. First, we truncate b by discarding all keywords
after i∗. Then we fill in the gaps in the resulting solution in
order to make it into a prefix. To analyze the result, we first
show that all keywords up to i∗ are relatively cheap, and
that the truncated solution (called bU) retains at least half
the value of the original one (Claim 7). Then we show that
filling in the gaps preserves this guarantee. Intuitively, two
good things may happen: either clicks for the new keywords
don’t come, in which case we get all the clicks we had before;
or they come in large quantity, spending the budget, which
is good because they are cheap. Lemma 8 analyzes what
happens if new clicks spend ασ fraction of the budget.

Let i∗ = i∗(b). To analyze our proposed prefix solution
bV , we break the set V into two disjoint sets U and N .
U = V ∩S = {i ≤ i∗ | i ∈ S} is the set of cheapest keywords
that get half the clicks of b. The new set N = V \ S =
{i ≤ i∗ | i /∈ S} fills in the gaps in U . Let bU and bN be
the solutions that bid on keywords in U and N respectively.

Define the average cost per click of solution b as

cpc∗ =

∑
σ p(σ)

∑
i∈S cpci clicks

σ
S(i)

∑
σ p(σ) clicks

σ
(b)

,

where the numerator is the average amount of money spent
by b, and the denominator is the average number of clicks
obtained. A useful fact to notice is that since the numer-
ator of this expression never exceeds the budget, and the
denominator is equal to E[value(b)], we have that

E[value(b)] ≤ B

cpc∗
. (5)

We make some observations about bU and i∗.

Claim 7 E[value(bU)] ≥ 1
2
E[value(b)] and cpci∗ ≤ 2cpc∗.

Proof. Since U ⊆ S, for all σ, costσ(bU) ≤ costσ(b),

which implies that clicks
σ
U (i) ≥ clicks

σ
S(i) for any i ∈ U . So

E[value(bU)] =
∑

σ

p(σ)
∑

i∈U

clicks
σ
U(i) ≥

∑

σ

p(σ)
∑

i∈U

clicks
σ
S(i)

≥ 1
2 E[value(b)] by definitions of U and i∗.

The second part follows by Markov’s inequality:

cpc∗ ≥
∑

σ p(σ)
∑

i∈S,i≥i∗ cpci∗ clicks
σ
S(i)

∑
σ p(σ) clicks

σ
(b)

≥ cpci∗ · 1

2
,

where the second inequality is by minimality of i∗.

Lemma 8 For any σ, let ασ = min(B, costσ(bN))
B . Then

clicks
σ
(bV) ≥ ασ B

2cpc∗ + (1 − ασ) clicks
σ
(bU).

Proof. If costσ(bN) ≥ B, then costσ(bV) ≥ B, so

clicks
σ
(bV) =

∑
i∈V clicksσ(i)

costσ(bV)/B
=

= B ·
∑

i∈V clicksσ(i)∑
i∈V cpciclicksσ(i)

≥ B

cpci∗
≥ B

2cpc∗
,

which proves the lemma for the case of ασ = 1. Intuitively,
in this case the whole budget is spent, and since all keywords
in V cost at most 2cpc∗ (by Claim 7), V gets at least B

2cpc∗

clicks. For the rest of the proof assume that costσ(bN) < B.

Then ασ = costσ(bN)
B < 1.

Another simple case is costσ(bV) ≤ B. Then the budget
is not reached and V collects all the clicks from U and N :

clicks
σ
(bV) = clicksσ(bN) + clicksσ(bU) ≥

costσ(bN)
2cpc∗ + clicks

σ
(bU) ≥ ασB

2cpc∗ + (1 − ασ) clicks
σ
(bU).

Now consider the case when costσ(bN) + costσ(bU) > B.
Here at most ασ fraction of the budget is used for the new
keywords from N , which cost at most 2cpc∗ per click, and
the remaining budget is able to buy (1−ασ) fraction of the
clicks that bU was getting.

Define cpcσ(bU) = costσ(bU)

clicksσ(bU)
, and similarly for N . Then

B

cpcσ(bU)
=

clicksσ(bU)

costσ(bU)/B
≥ clicks

σ
(bU). (6)

Now clicks
σ
(bV)

=
costσ(bU)

costσ(bV)
· B

cpcσ(bU)
+

costσ(bN)

costσ(bV)
· B

cpcσ(bN)

=
(1 − α)B

cpcσ(bU)
+

[
costσ(bU)

costσ(bV)
− (1 − α)

]
B

cpcσ(bU)

+
costσ(bN)

costσ(bV)
· B

cpcσ(bN)

≥ (1 − α)B

cpcσ(bU)
+

[
costσ(bU)

costσ(bV)
− (1 − α)

]
B

2cpc∗

+
costσ(bN)

costσ(bV)
· B

2cpc∗

≥ (1 − α)clicks
σ
(bU) + α

B

2cpc∗

where the first inequality follows because cpcσ(bU) ≤ 2cpc∗,
cpcσ(bN) ≤ 2cpc∗, and the quantity in square brackets is
non-negative. The second inequality follows from (6).

Proof of Theorem 6. We now use the above results
to prove the theorem. Let σU be the event that clicks for
each keyword i ∈ U come in quantity clicksσU (i). Then its
probability is

p(σU) =
∏

i∈U

pi(clicksσU (i)).

Here the independence of keywords becomes crucial. In par-
ticular, what we need is that the number of clicks that come
for keywords in U is independent of the number of clicks for
keywords in N . So the probability of σV is the product of
p(σU) and p(σN), where σV is the event that both σU and
σN happen. Notice that ασ of Lemma 8 depends only on
keywords in N , and is independent of what happens with
keywords in U . So here we call it ασN . We have

E[value(bV)] =
∑

σV

p(σV)clicks
σV (bV)

≥
∑

σN

∑

σU

p(σN)p(σU)

[
ασN B

2cpc∗
+ (1− ασN) clicks

σV (bU)

]

=
∑

σN

p(σN)


ασN B

2cpc∗
+ (1− ασN)

∑

σU

p(σU)clicks
σV (bU)




≥
∑

σN

p(σN)
1

2
E[value(b)] =

1

2
E[value(b)],

bounding both B
2cpc∗ and E[value(bU)] by 1

2E[value(b)]

using inequality (5) and Claim 7.

4.2 Evaluating a solution in independentmodel
In this section we present a PTAS for the SE problem

in the independent model. We are given an instance of the
SBO problem, and an (integer or fractional) solution b. For
a keyword i ∈ T , let Ci = {c | pi(c) > 0} be the set of values
that clicksi can take. For now we assume that

∑
i |Ci| is

polynomial in the size of the input, and later show how to re-
move this assumption. Let cost(b−i) =

∑
j 6=i bjcpcjclicksj

be the cost of clicks for all keywords except i. By some al-
gebraic manipulation, one can show the following.

Claim 9 E[value(b)] is equal to

∑

i∈T

∑

c∈Ci

pi(c) bic
∑

d≥0

1

fi(c, d)
Pr[cost(b−i) = d],

where fi(c, d) = max(1,
d+c·cpci

B).

In this expression, bic is the number of clicks from keyword i,
and the expression in the third sum is the amount by which
this number should be scaled because of the budget. The
variable d represents the cost of all keywords other than i.

As a result, the problem of finding E[value(b)] reduces to
evaluating, for any given i and c, the expression

s(i, c) =
∑

d≥0

1

fi(c, d)
Pr[cost(b−i) = d]. (7)

Lemma 10 For any given ε > 0, there is a polynomial-
time algorithm that finds a value s′ such that s(i, c) ≤ s′ ≤
(1 + ε) s(i, c).

Proof. We build a dynamic programming table that rep-
resents an estimate of Pr[cost(b−i) = d] as a function of d.
Fix an ordering of elements in T − {i} and construct a ta-
ble P indexed by j and d, where P (j, d) is the probability
that the total cost of the first j elements is d. To make sure
the table is of polynomial size, scale the costs so that the
minimum non-zero value of costj for any j is 1, and restrict
the possible values of d to 0 and (1 + ε

n
)k for non-negative

integers k. If we let M =
∑

i∈T max{c·cpci | c ∈ Ci} be the

maximum possible cost of all the clicks, then the number of
values of d in the table is at most log1+ε/n M = O(n

ε
log M),

which is polynomial in the size of the input.
The table is initialized with P (0, 0) = 1 and other entries

equal to zero. Then for each keyword j ∈ T − {i}, each
possible number of clicks c ∈ Cj, and each entry P (j − 1, d)
in the previous row, we update P (j, bd+c·cpcjc) = P (j,bd+
c ·cpcjc)+pj(c) ·P (j−1,d). Here the operator b c represents
rounding down to the next available value of d. After filling
the table, the algorithm outputs the value of expression (7)
as determined by probabilities in the last row of the table.

To bound the error incurred by rounding down the costs,
we consider an event σ that specifies a number of clicks
cj ∈ Cj for each j ∈ T − {i}, and has probability p(σ) =∏

j pj(cj). Expression (7) can be rewritten as

s(i, c) =
∑

σ

p(σ) · 1

fi(c, costσ(b−i))
(8)

As a result of a series of updates, the probability of σ con-
tributes to some entry of the last row of P , say to the one
with dσ = (1 + ε

n
)k. This dσ is an estimate of the value of

costσ(b−i) =
∑

j 6=i bjcpcjcj. Since we only rounded down,

we have dσ ≤ costσ(b−i). Now note that since the inter-
vals between successive powers of (1 + ε

n) are increasing,
the biggest amount that we could have lost during any one
rounding is (1 + ε

n)k+1 − (1 + ε
n)k = ε

n (1 + ε
n)k = ε

n · dσ.
Since we performed the rounding during at most n updates
relevant to σ, we have that the true value costσ(b−i) ≤
dσ + n · ε

n · dσ = (1 + ε)dσ. So we have that the estimated

cost dσ for the event σ is
costσ(b−i)

1+ε ≤ dσ ≤ costσ(b−i).
Now the only thing left to do in order to show that the

algorithm evaluates expression (7) accurately is to take into
account fi(c,d). By monotonicity of fi, we have

fi

(
c,

costσ(b−i)

1 + ε

)
≤ fi(c, d

σ) ≤ fi(c, cost
σ(b−i)).

But notice that

fi

(
c,

costσ(b−i)

1 + ε

)
≥ fi(c,cost

σ(b−i))

1 + ε
.

So we have that

fi(c,cost
σ(b−i))

1 + ε
≤ fi(c,d

σ) ≤ fi(c,cost
σ(b−i)),

and therefore

1

fi(c,dσ)
∈
[

1

fi(c,costσ(b−i))
,

(1 + ε)

fi(c, costσ(b−i))

]
.

So evaluating expression (8) using entries from the dynamic
programming table instead of the true costs and probabili-
ties incurs a multiplicative error of at most (1 + ε).

If the input distributions pi are represented implicitly,
such that

∑
i |Ci| is not polynomial in the input size, then we

first convert them into distributions with polynomial num-
ber of points by combining the probability mass between
successive powers of (1 + ε′) into buckets (rounding down).
Then we run the above algorithm for discrete distributions
so as to obtain a (1 + ε′)-approximation for the rounded in-
stance. This will be a (1+ε′)2-approximation for the original
instance, so if ε′ is chosen such that (1 + ε′)2 ≤ (1 + ε), we
obtain the desired (1 + ε)-approximation.

This result combined with Theorem 6 gives a simple al-
gorithm for finding a (2+ ε)-approximate solution: evaluate
each integer prefix using the PTAS and output the one with
maximum value.

Theorem 11 There is a (2 + ε)-approximation algorithm
for the SBO problem in the independent model, which runs
in time polynomial in n, 1

ε
, and log M .

5. SCENARIO MODEL
In the scenario model, we are given T , B and costs cpci

as usual. The numbers of clicks are determined by a set of
scenarios Σ and a probability distribution p over it, so that a
scenario σ ∈ Σ materializes with probability p(σ), in which
case each keyword i gets clicksσ

i clicks. The scenarios are
disjoint and

∑
σ∈Σ p(σ) = 1. The reason this model does not

capture the full generality of arbitrary distributions is that
we assume that the number of scenarios, |Σ|, is relatively
small, in the sense that algorithms are allowed to run in time
polynomial in |Σ|. On the other hand, if, for example, we
express the independent model in terms of scenarios, their
number would be exponential in the number of keywords.

The evaluation of a given solution in the scenario model
does not present a problem, as it can be done explicitly in
time polynomial in |Σ|, by evaluating each scenario and tak-
ing the expectation. Nevertheless, this is the most difficult
model for the SBO that we consider. We show two negative
results.

Theorem 12 The SBO problem is NP-hard in the scenario
model.

The proof shows, by reduction from clique, that it’s NP-
hard to find either an integer or a fractional solution to this
problem, and appears in the Appendix.

Theorem 13 The gap between the optimal fractional prefix
solution and the optimal (integer or fractional) solution to
the SBO problem in the scenario model can be arbitrarily
large.

Proof. We give an example in which the ratio between
the value of the optimal solution and the value of any pre-
fix solution can be arbitrarily large. The example con-
tains n scenarios and 2n keywords, numbered 1 through
2n. The cost per click of keywords increases exponentially,
with cpci = ci, for some constant c > 1. There is a bud-
get B > 0. Say that the n scenarios are numbered σ = 1
to n. In scenario σ, only keywords 2σ − 1 and 2σ receive
clicks, and they receive B/c2σ−1 clicks each. The probabil-
ities of scenarios increase exponentially, and they are equal
to αc2σ−1 for scenario σ (α is chosen to make the proba-
bilities sum to 1). The idea here is that in each scenario,
there are two types of clicks, cheap and expensive (clicks
for the even-numbered keywords are c times more expen-
sive than for their preceding odd-numbered keywords), and
there are enough cheap clicks to spend the whole budget.
So for a particular scenario σ, the best thing to do is to
bid only on the cheap keyword 2σ − 1, which gets B/c2σ−1

clicks. Bidding on both keywords exceeds the budget and
decreases the number of clicks to 2

c+1 (B/c2σ−1). Since the
sets of keywords that receive clicks in different scenarios are
disjoint, the optimal solution overall (which happens to be

integer) is to bid on all the odd-numbered keywords, but not
the even-numbered ones. This gets the maximum number of
clicks for each scenario individually, and therefore gets the
maximum number of clicks in expectation. The expected
number of clicks for the optimal solution is therefore

∑

σ

αc2σ−1 · B

c2σ−1
= nαB.

Now consider some prefix solution for this example, either
integer or fractional, and the keyword i∗ such that bi = 1
for i < i∗ and bi = 0 for i > i∗. Let σ∗ = di∗/2e be the
scenario containing clicks for keyword i∗. Intuitively, the
prefix solution ruins the scenarios numbered less than σ∗

because it bids for both keywords in them, and it ruins the
scenarios numbered greater than σ∗ because it does not bid
at all for the keywords in them. As a result, a prefix solution
can do well in at most one scenario. It gets the small number
of clicks, 2

c+1
(B/c2σ−1), for scenarios σ < σ∗, and it gets 0

clicks for scenarios σ > σ∗. It may get up to B/c2σ∗−1 clicks
for σ∗. So the value of a prefix solution is at most

∑

σ<σ∗

αc2σ−1 · 2

(c + 1)

B

c2σ−1
+ αc2σ∗−1 · B

c2σ∗−1

≤ nαB

(
2

c + 1
+

1

n

)
,

which can be arbitrarily far from OPT = nαB as c and n
increase.

6. EXTENSIONS
We briefly describe a few extensions of our work.

6.1 Click values
Here we show that our results easily generalize to the case

when the clicks from different keywords have different values
to the advertiser. For example, a weight associated with a
keyword might represent the probability that a user clicking
on the ad for that keyword will make a purchase.

For each keyword i, we are given a weight wi which is the
value of a click associated with this keyword, and we would
like to maximize the weighted number of clicks obtained:

E[value(b)] = E

[∑
i∈T biwiclicksi

max
(
1,
∑

i∈T bicpciclicksi/B
)
]

.

Obviously, the keywords with wi = 0 can be just discarded.
Now we make a substitution of variables, defining clicks′i =
wiclicksi and cpc′i = cpci/wi. Substituting them into the
objective function,

E[value(b)] = E

[∑
i∈T biclicks′i

max
(
1,
∑

i∈T bicpc′iclicks′i/B
)
]

,

we see that the problem reduces to the original unweighted
SBO instance, with different keyword parameters. The pro-
portional, independent, and scenario models of click arrival
maintain their properties under this transformation, only
some of the distributions for the numbers of clicks have to
be scaled.

6.2 Extension to multiple-slot auctions
We now extend our results to the case when there are

multiple slots, and in particular, we assume the Generalized

Second Price (GSP) auction currently used by search-related
advertising engines. When advertising slots are allocated by
a second-price auction with multiple slots, the bid amount
for a keyword determines the position of the corresponding
ads, which affects the number of clicks obtained for this
keyword and the cost per click of these clicks. When a user
clicks on the ad in slot i, the advertiser at slot i is charged
the bid amount of the advertiser at slot i + 1.5

Let us first focus on a particular keyword i and an auc-
tion in which it participates. If the auction has k available
slots, then there are k threshold bid amounts, bid1 ≥ bid2 ≥
... ≥ bidk, such that bidding any amount in the interval
[bidj , bidj−1) places the ad in slot j, which has a probabil-
ity of a click (clickthrough rate) ctrj

i and a cost per click

cpcj
i . Since we are considering the GSP auction, the cost

per click is not affected by the exact bid amount, as long
as it is in the specified interval. Both ctrj

i and cpcj
i are

monotone non-decreasing step functions of the bid amount.
To better represent the options for bidding on keyword i,
we visualize the k possible pairs of (cpcj

i ctr
j
i , ctrj

i) values
on a “plot” called a landscape. Notice that when both the
axes are scaled by the number of queries, then it becomes
a plot of clicksi vs. costi, with points for different options
of how to bid (a more detailed description of landscapes ap-
pears in [4]). Landscapes for multiple auctions for the same
keyword can be combined to obtain an aggregate landscape.

Some of our results extend to the model with such ag-
gregate landscapes. Roughly speaking, a keyword with a
landscape can be viewed as a list of several simple individ-
ual keywords with an additional constraint that a solution
has to bid on some prefix of this list. For the fixed and pro-
portional models, the optimal solutions without landscapes
are prefix solutions anyway (by Theorems 2 and 3), so if
we solve the problem as in the one-slot case, the solution
will automatically satisfy the prefix constraint for keywords
with landscapes, which means that it will also be optimal
for the multiple-slot problem. In the independent model,
however, the approximation ratio of 2 for the prefix solu-
tions (Theorem 6), that we prove for the one-slot case, does
not extend to the case of landscapes. This is because some
of the “keywords” are no longer independent, but are actu-
ally the different bidding options for the same keyword. In
fact, a prefix solution can be arbitrarily bad compared to
the optimal solution, by an example that is very similar to
one in Theorem 13. The only difference is that, instead of
keywords 2i − 1 and 2i being coupled by occurring in the
same scenario, they are coupled by representing the land-
scape of the same keyword. The negative results (Theorems
12 and 13) about the scenario model of course still hold for
the more general case of multiple-slot auctions.

7. CONCLUDING REMARKS
We have initiated the study of stochastic version of bud-

get optimization with the three models. We obtained upper
bounds via prefix bids and showed hardness results for other
cases. A lot remains to be done, both technically and con-
ceptually. Technically, we need to extend the results to the
case when there are interactions between keywords, that is,
two or more of them apply to a user query and some reso-
lution is needed. Also, we need to study online algorithms,

5There are some details, e.g. the cost is typically a small
amount more than the bid of the advertiser at slot i + 1.

including online budget optimization. Further, we would
like to obtain some positive approximation results on the
scenario model which seems quite intriguing from an appli-
cation point of view. The conceptual challenge is one of
modeling. Are there other suitable stochastic models for
search-related advertising, that are both expressive, physi-
cally realistic and computationally feasible?

8. REFERENCES
[1] G. Aggarwal, A. Goel, and R. Motwani. Truthful

auctions for pricing search keywords. ACM
Conference on Electronic Commerce (EC), 2006: 1-7.

[2] C. Borgs, J. Chayes, N. Immorlica, M. Mahdian, and
A. Saberi. Multi-Unit Auctions with
Budget-Constrained Bidders. ACM Conference on
Electronic Commerce (EC) 2005.

[3] C. Borgs, J. Chayes, O. Etesami, N. Immorlica, K.
Jain and M. Mahdian. Bid optimization in online
advertisement auctions. Manuscript, http://www.
bus.ualberta.ca/kasdemir/ssa2/borgsetal.pdf,
2006.

[4] J. Feldman, S. Muthukrishnan, M. Pal and C. Stein.
Budget optimization in search-based advertising
auctions. ACM Conference on Electronic Commerce
(EC) 2007.

[5] A. Mehta, A. Saberi, U. Vazirani and V. Vazirani.
AdWords and Generalized On-line Matching. IEEE
FOCS, 2005: 264-273

[6] M. Ostrovsky, B. Edelman and M. Schwarz. Internet
Advertising and the Generalized Second Price
Auction: Selling Billions of Dollars Worth of
Keywords. September 2005, Revised August 2006.
American Economic Review, forthcoming.

[7] P. Rusmevichientong and D. Williamson. An
adaptive algorithm for selecting profitable keywords
for search-based advertising services. ACM
Conference on Electronic Commerce (EC) 2006:
260-269.

[8] C. Swamy and D. Shmoys. Approximation
Algorithms for 2-Stage Stochastic Optimization
Problems. Survey article in ACM SIGACT News,
37(1):33-46, 2006.

9. APPENDIX

9.1 NP-hardness of scenario model:
Proof of Theorem 12

We show that finding the optimal solution, either integer
or fractional, to the SBO problem in the scenario model is
NP-hard.

The reduction is from clique. We are given an instance
of the clique problem with a graph G containing n nodes
and m edges, and a desired clique size k. We use G and k
to construct an instance I of SBO problem and a number V
such that there is a solution to I with expected value of at
least V if and only if G contains a clique of size k.

To specify I, let us construct a new bipartite graph H =
(L∪R, E′) whose right side R contains n nodes correspond-
ing to nodes of G, and whose left side L contains m nodes
corresponding to edges of G. A node in L corresponding to
an edge (u, v) is connected to nodes in R that correspond
to its endpoints u and v. We first describe the idea of the

construction, and later show how to set the parameters to
make it work. There will be three parameters, small positive
values ε and δ, and a large value t.

All nodes of H are keywords, expensive ones on the left,
with cpci = 1 for i ∈ L, and cheap ones on the right, with
cpci = ε for i ∈ R. The budget is K =

(
k
2

)
. The goal

will be to force a solution to select K nodes from L that
are incident to at most k nodes in R, which corresponds to
finding a set of k nodes with K edges in G, i.e. a k-clique.
The scenarios in the SBO problem are as follows. There is
a high-probability scenario σ0 in which one click comes for
each keyword in L. This scenario is sufficiently likely (occurs
with probability 1−δ) that any integer solution to SBO has
to bid for at least K of these keywords. Notice that since
K is the budget, it does not make sense to bid on any more
than K keywords. In addition to σ0, there are n scenarios
σ1 . . . σn, each occurring with probability δ/n. Scenario σi

contains K/ε clicks for keyword i ∈ R and a large number t
of clicks for each of i’s neighbors from L.

We now explain the intuition for why there is a good
integrally-bidding solution for our SBO instance if and only
if the graph G contains a k-clique. By the way we con-
structed the low-probability scenarios, if a solution does not
bid on any neighbors of i ∈ R, then in scenario σi it would
spend its whole budget on K/ε cheap clicks at cost ε each,
thus obtaining many clicks. However, if it bids on any neigh-
bors of i, then most of the budget will be spent on the
expensive clicks from L, resulting in few clicks overall. So
bidding on a keyword l from L effectively ruins the scenarios
containing l’s neighbors in R. Recall that the high proba-
bility of scenario σ0 forces any good integral solution to bid
on exactly K keywords from L. As a result, if G contains a
k-clique, then it is possible to select K keywords correspond-
ing to edges of G that ruin only k scenarios corresponding
to nodes of G. However, if there is no k-clique, then bidding
on any K keywords on the left ruins at least k+1 scenarios,
thus producing a solution with a lower value.

We now show how to set the parameters of the construc-
tion and prove that the reduction works even if fractional
bidding on keywords is allowed. First, assume that G con-
tains a k-clique. Then a solution b to I, with bi = 1 for all
i ∈ R and bi = 1 for the K keywords in L that correspond
to edges of the clique, achieves the expected value of at least

V = (1 − δ) · K +
δ(n − k)

n
· K

ε
,

where the first term is the value from scenario σ0, and the
second term is the value from scenarios σi such that node i
in G is not in the clique. Such scenarios are unaffected by
the selected nodes in L and therefore get K/ε clicks each.
There is additional value from scenarios σi for i in the clique,
but we disregard it for this lower bound. Thus we get the
following claim.

Claim 14 If G contains a k-clique, then there exists a so-
lution b to I such that E[value(b)] ≥ V .

To ensure that if there is no k-clique in G, then value V
cannot be achieved by any bids, we set the parameters as
follows.

1. Select ε such that 0 < ε < 1
k+1

.

2. Select δ > 0 small enough that 1−δ
2 − kδK

nε > 0. This is

possible because the limit of the expression on the left
as δ → 0 is 1

2
.

3. Let α = 1
2m

.

4. Choose t large enough that (k + 1)K/ε+αt
K+αt < 1

ε . This is

possible because limt→∞(k + 1)K/ε+αt
K+αt

= k + 1 < 1
ε

by
the choice of ε.

Claim 15 If E[value(b)] ≥ V for some fractional solution
b to the constructed instance I, then there must be at least
K keywords i ∈ L such that bi ≥ α.

Proof. Notice that
∑

i∈L bi ≥ (K−1+mα) implies that
|{i ∈ L | bi ≥ α}| ≥ K, because bi’s are always at most 1.

What remains to show is that if
∑

i∈L bi < (K − 1+mα),
then E[value(b)] < V . This follows from the way we defined
the parameters. Notice that δ K

ε
is an upper bound on the

value that any solution can obtain from scenarios σ1 . . . σn.
Then

E[value(b)] < (1 − δ)(K − 1 + mα) +
δK

ε

= (1 − δ)(K − 1

2
) +

δK

ε
= V − 1 − δ

2
+

k

n

δK

ε
< V,

where the first equality comes from the definition of α, and
the last inequality from the choice of δ.

Claim 16 Let X = {i ∈ L | bi ≥ α}. If H contains at
least (k + 1) nodes in R that have neighbors in X, then
E[value(b)] < V .

Proof. For a node i ∈ R, let αi =
∑

j∈Ni
bj , where

Ni ⊆ L is the set of neighbors of i. Assuming that there
are at least (k + 1) nodes i ∈ R such that αi ≥ α, we show
that E[value(b)] < V . Notice that the value of a solution is
always maximized by bidding on all keywords in R, because
that maximizes the number of cheap clicks. So without loss
of generality, we assume that bi = 1 for all i ∈ R.

In a given scenario σi, b gets clicksσi = K
ε

+ αit, where
K/ε clicks come from keyword i, and αit come from its
neighbors in L. The cost paid in this scenario is costσi =
K + αit, where K is spent for the cheap keywords and αit
is spent on keywords of cost 1. Using (1 − δ)K as an upper
bound on the value obtained from σ0, and remembering that
the budget is K, we have

E[value(b)] ≤ (1− δ)K +
δ

n

∑

i

clicksσi

costσi/K

= (1− δ)K +
Kδ

n

∑

i

K/ε + αit

K + αit

≤ (1− δ)K +
Kδ

n

[
(k + 1) ·

K/ε + αt

K + αt
+ (n − k − 1) ·

1

ε

]

< V

where we use the fact that the fraction in the sum increases
with decreasing αi, bound αi by α for (k + 1) of the terms
and by 0 for the others, and use the choice of t for the final
inequality.

Clearly, if there is no k-clique in G, then every K edges
in G will be incident on at least k + 1 nodes. So from the
preceding two claims, we may conclude that if G does not
contain a k-clique, then no solution to I has expected value
of V or more. Together with Claim 14, this proves that SBO
problem in the scenario model is NP-hard.

