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ABSTRACT 
The recent release of the American Online (AOL) Query Logs 
highlighted the remarkable amount of private and identifying 
information that users are willing to reveal to a search engine.  
The release of these types of log files therefore represents a 
significant liability and compromise of user privacy. However, 
without such data the academic community greatly suffers in their 
ability to conduct research on real search engines.  This paper 
proposes two specific solutions (rather than an overly general 
framework) that attempts to balance the needs of certain types of 
research while individual privacy.  The first solution, based on a 
threshold cryptography system, eliminates highly identifying 
queries, in real time, without preserving history or statistics about 
previous behavior.  The second solution attempts to deal with sets 
of queries, that when taken in aggregate, are overly identifying.  
Both are novel and represent additional options for data 
anonymization.  

1. INTRODUCTION 
In August of 2006, American Online (AOL), in a move designed 
to help researchers in the Information Retrieval (IR) community, 
provided an extremely large query log extracted over 3 months 
from their search engine [3].  Though the release of query logs is 
nothing new, the sheer size of this collection and the lack of any 
significant anonymization was unprecedented.  The data 
represented ~650k users issuing 20 million queries which were 
recorded in the “clear.”   The result of this release was the 
disclosure of private information for a number of AOL users, 
major damage to AOL [1], and a significant damage to the 
research efforts of academics who depend on such data.   

The most troubling aspect of the data was the ease by which 
single unique individuals could be pinpointed in the logs.  Even 
ignoring the existence of social security numbers, drive license 
numbers, and credit card numbers, the New York Times (NYT) 
[5] demonstrated the ability to determine the identity of a real 
user.   In this case, the user corresponding to ID 4417749 was 
found to be Thelma Arnold, a 62 year old woman living in 
Georgia.   Ms. Arnold narrowed down her location by making 
multiple queries for businesses and services in Lilburn, GA.  
While Lilburn, GA has over 11k citizens, Ms. Arnold further 
helped the NYT by making a number of queries for a Jarrett 
Arnold (and other members of the Arnold clan).  From here, the 
NYT could contact all citizens of Lilburn with the last name 
Arnold (of which there are only 14 according to the Yahoo 
whitepages).  Though it is difficult to quantify the exact number 
of users that could be identified in this way, the mere possibility 
has led to fear in the user community.  

Already, various class actions suits and complaints have been 
leveraged against AOL[2][4].  Some have demanded that search 
logs not be retained at all by the service providers.  For various 

reasons, this is likely not practical for search engine vendors.  The 
need to improve their service both for users and advertisers 
requires certain information be kept.  Furthermore, recent trends 
in personalized search illustrate the practical application of prior 
knowledge about users. 

This work is based on the following assumptions: a) user search 
logs are retained for at least some period by the search vendor, b) 
those logs may be disclosed or leaked, and c) the vendor would 
like to ensure that whatever data is leaked or released does not 
have significantly identifying information.  Additionally, we 
would like to recognize that there is a tradeoff between the 
potential usefulness of a log and how much anonymization it 
undergoes.  For our purposes, identifying information is the set of 
queries that a user issues that can be used to identify the 
individual uniquely or at the very least reduce the search space to 
a manageable level.  Note that we are not explicitly concerned 
with recovering traces for law-enforcement or other officials and 
do not consider this a design goal.  However, the search vendor 
may retain information that could make this possible (at a 
potential privacy risk to their users).   

The results presented here illustrate how by simply removing 
infrequent queries, identifying queries are also removed.  We also 
describe a cryptographic technique based on secret shares that 
allows the search vendor to “set it and forget it.”  By applying this 
technique to the data, a person who has obtained the log is 
constrained to reading only those queries that have been used by 
at least t other individuals (where t can be fixed by the log 
creator).  While masking infrequent queries goes a long way to 
mask identity, we must also worry about the combination of more 
common facts can be considering identifying.   Obviously, the 
longer the search history for a user, the more potential there is for 
finding these kinds of intersections.  To eliminate this form of 
attack, we propose a number of mechanisms for breaking apart 
sessions into less identifiable chunks.  

We briefly consider the “power” of data sanitized in this way 
relative to the needs of the data miner. 

1.1 The Privacy/Utility Tradeoff 
The Privacy-Utility tradeoff is based on the understanding that the 
more data we eliminate from a log through anonymization, the 
more privacy we convey to users but the less that data is useful to 
those seeking to mine the data. The difficulty in making a precise 
claim about how much privacy or how much utility we are trading 
off has much to do with the imprecision in defining the two 
concepts themselves.   

While it may be more clear-cut that a search engine should not 
publicly disclose credit-card numbers that appear in their logs, 
there is a sizeable gray area.  For example, some users may 
consider it OK for the search engine to have access to the queries 
for personalization purposes but not for advertising. At one 



extreme, some users would like none of their searches logged and 
consider it a violation for any information retained, let alone 
revealed to third parties.  At the other extreme, there are users 
who are happy, for whatever reason, to share their query history. 
However, as publishers and consumers of logs we must consider 
the fact that some users do not understand the privacy 
implications of certain queries or sets of queries, which when 
revealed, would cause them harm.  Finally, we must also 
acknowledge the impact of the adversarial model in this analysis.  
Asking who is the adversary “violating” privacy safeguards, in 
what ways they would do it, and what their capabilities are, is an 
art in itself and may not be something the community is capable 
of doing correctly.   

Utility is generally analyzed with a specific task in mind.  If we 
are simply seeking to measure the time between queries, we do 
not require any identifying information from the query logs.  
However, the more complex the task the more privacy we must 
take away from users (e.g. infering the demographic 
characteristics such as zip-code and salary based on the query 
terms a user searches for). Furthermore, we must understand what 
inferences can be made and with what confidence on any log data.  
For example, while a user’s gender may be known by the search 
engine, the log may not contain this information.  However, some 
inference of gender may be possible based on search behavior and 
key phrases and while absolute certainty will not be possible, the 
results will still have some high accuracy (e.g. [12]). 

In this work we introduce two point solutions in the space of 
possible anonymization techniques.  We have selected a specific 
privacy objective and a specific utility objective.  In particular, 
we have attempted to remove information which may be used to 
uniquely identify a user while still providing un-encrypted access 
to a portion of the search logs that may be sufficient for certain 
personalization tasks. While we can not perform linguistic 
analysis on every query with the mechanisms we describe or 
extensively analyze the so-called “long tail,” we still know the 
distribution of queries for a user, query timing, and also the 
content of many queries.  Furthermore, it should still be possible 
to cluster users and to some extent augment search engine 
responses with user behavior.  More significantly, if only the first 
of our techniques is used (that of masking unique queries) we can 
also correlate queries (e.g. those who query for X also query for 
Y).  This is possible even without knowing the specific terms that 
the hashed queries that X and Y represent.  

This type of correlation is, unfortunately, not possible when 
masking users that have unique sets of queries as we propose in 
our second technique.  The more aggressive the masking, the 
fewer the correlations we can draw.  This anonymization is a 
move in the privacy direction and potentially away from utility.  
However, by clearly defining the types and quantity of 
information that is masked using the techniques we describe, we 
believe that both users and miners will have a clearer 
understanding of potential privacy and utility implications.  

2. RELATED WORK 
Although there is not a great deal of work on anonymizing search 
logs, it is also worth considering how others have approached this 
problem and the various tradeoffs they have made.   

The bulk of previous work in data anonymization has been 
concentrated in two distinct communities.  The database 
community has applied techniques such as statistical databases [8] 
and k-anonymity [22] to attempt to provide certain levels of 
measurable privacy (a more complete list of papers is available at 

[17]).  The difficulty with applying such approaches is they are 
frequently costly (providing non-approximated k-anonymity is 
NP-hard) and are not intended to deal with data that is changing 
rapidly.  Search logs are produced at a very fast rate and are likely 
to require a different mechanism.  This makes the anonymization 
techniques from the database literature, which are primarily 
intended to work on static data sources, difficult to apply. 

The other major research thrust on anonymization has been in the 
network community ([7][14][20][21]).   Here, the design objective 
has traditionally been pseudonymity.  Generally, the belief is that 
most behavior, such as standard network traffic, should be 
anonymized but that aberrant/illegal behavior should be detected, 
tracked, and reported.  Thus, most pseudonymity schemes involve 
mechanisms for recovering the masked information, frequently 
through third-party or communal agreement. It is also worth 
noting that work in this area has generated server based solutions 
that allow searching on encrypted log files [24] as well as 
solutions whereby log files are retained at the server and analysis 
code, which only emits aggregate statistics, is shipped to the 
client [14].  While laudable in that it addresses the needs of third-
party data miners, a general approach of this type is not currently 
available, and requires so many safeguards that it may not be 
practical without restricting users to the most basic operations.   

The most similar system to our own is [9].  The system proposes 
to anonymize Unix log files by a secret sharing scheme.  
Interestingly, however, the system is designed with nearly an 
opposite motivation to our own.   While we have tried to reveal 
log entries that are common to many users and mask those that 
are unique or “aberrant,” the goal of [9] is to expose those users 
while keeping the average user hidden. 

In the context of anonymized search logs, we are aware of a 
single recent study ([10]) that demonstrates how token based 
hashing is ineffective for log anonymization.  The work illustrates 
that a statistical attack on hashed tokens may lead to privacy 
violations.  We avoid this problem by explicitly not hashing 
tokens but rather encrypting entire queries, making decoding 
attacks much more challenging. 

3. DATASET PROPERTIES 
The AOL dataset consists of 10 files containing nearly 37M lines 
of data representing 657k users over 3 months (March 1, 2006 to 
May 31, 2006).  Though AOL is unique in that users log into the 
system and are more readily tracked we note that other search 
engines achieve similar tracking through the use of cookies and 
features that incentivize users to log in (e.g. email, instant 
messaging, etc.).  Full descriptive characteristics of the data are 
available in [15].  The data is of the format: 

{AnonID, Query, QueryTime, ItemRank, ClickURL} 

Where AnonID is the anonymous user ID, Query is the query 
string, and QueryTime is the time of the query.  If the user clicked 
on a result, this is recorded in the next two fields.  ItemRank is the 
rank of the clicked result in the search list and ClickURL is, in 
theory, the URL of the clicked result truncated to the domain 
name (e.g. www.mit.edu/alumni/ becomes www.mit.edu).  This 
one minor attempt at anonymization appears more targeted at 
potential business implications (search engine optimizers would 
like to know which pages get clicked on for which results).  
However, as we will describe below, even this redaction failed for 
a number of reasons. 



For some of the analysis below we will made use of the entire 
search population.  However, to experiment with a number of 
techniques we collected a sample of users that made between 100 
and 300 queries with clickthroughs (5546 users sampled at 
random).  While this limit is somewhat arbitrary, it captures users 
that make about 1 query a day while eliminating robots or other 
extreme search behavior.  From the time of their first query to the 
time of their last, users were logged for an average of 87.8 days, 
with a minimum of 12.33 days and a max of 91.9 days (median 
90.1).  The average user in this dataset had 571 log entries (494 
median), representing 252 unique queries (229 median) and 252 
unique clickthroughs (252 median).  The distribution of these 
unique queries and unique clickthroughs is represented in Figures 
1 and 2 respectively. 

4.  IDENTIFYING INFORMATION 
It is reasonable to start by asking what kind of identifying 
information exists in query logs.  There are easily 651 numbers 
that conform to the format of social security numbers.  While 
some of these could be mistyped phone numbers or other queries, 
a number of them have the words “social” also in the query (22 
unique instances).  Using a credit card checksum algorithm we 
find at least 92 numbers that satisfy the format of a credit card and 
have a valid checksum (whether they are or ever were valid credit 
card numbers is unknown).  These are easily the most egregious 
of the privacy problems in the logs and may have a significant 
financial implication to their owners.  In contrast to the AOL 
dataset, we note that in anticipation of exactly this problem, the 
MSN release of a similar log trace eliminated some of these issues 
by removing all long numerical sequences from the logs.   

Credit card, social security, or driver license numbers are likely 
only known to their owner—or a small group of people with some 
connection to the owner—and are thus useful in associating all 
other queries with an individual users.  However, there are other 
pieces of information that can also be identifying.  Queries for 
phone numbers, addresses, and names of individuals are all useful 
in narrowing down the population.  Even if the names or 
addresses do not belong to the user themselves, one could 
conceivably approach the target of the query for further 
information.    

Given the massive privacy damage in releasing credit card 
numbers and social security numbers, it is easy to overlook other 
mistakes that AOL made in generating the dataset.  Even in their 
attempt to redact certain information such as full URLs, they 
mistakenly left the complete URLs to all secure web servers (i.e. 

HTTPS protocol 
URLs).  There are 
84k such instances 
in the logs. While 
these are public—
the search engine 
did index them after 
all—they may in 
fact be sensitive.  
For example, it is 
possible to 
determine certain 
items that were 
searched for on 
shopping sites.  
These may be 
revealing, 
embarrassing, or 

illegal and hence endanger the user in some way. 

Finally, while redaction of URLs adds some challenges to our 
analysis, it is fairly easy to recover the full URLs.  This is 
achieved by replaying the queries in the search logs against the 
search engine, and comparing the results to the domains of the 
clicked on URLs.  AOL even assists us in this by noting the rank 
of the clicked-on document.  With the smaller user set of 5546 
users we were able to recover 1.4 million (over 70%) of the URLs 
that were clicked on.  This was done by finding the top results by 
replaying the queries against the Google and MSN search engines 
(20 and 50 top results respectively).  Though we can not 
guarantee the accuracy of this recovery absolutely—as the search 
engines may return new results from the same domain—it is 
likely that the closer this recovery is done to the time of the log 
disclosure, the more accurate it is.  Additionally, more intelligent 
searching could increase this recovery number further (i.e. 
obtaining more results, isolating searches to certain domains, etc). 

We do note, however, that we were able to perform this analysis 
because Google and MSN both provided us with extended 
querying ability for research purposes, on the order of 100 times 
the amount allocated to a regular developer.  Even with this 
boosted query limit, reverse lookup of the queries from the 5k 
users still took a week.  Regardless, it is likely that with enough 
ambition and resources someone else would be able to repeat this 
step.  

5. MASKING IDENTIFYING DATA  
One of the simplest things one could do to improve the anonymity 
of the data is eliminate those queries that are known to be 
uniquely identifying.  While we would prefer to only remove 
queries that are truly identifying (rather than some very infrequent 
query), any inference we make will inevitably lead to removal of 
harmless data.  We could imagine, for example, eliminating only 
those queries that are generated by a small set of users.  
Eliminated queries could simply be discarded or hashed with an 
appropriate salt.  We are relatively unconcerned about 
cryptanalysis techniques as the hashed queries are generally “in 
the noise.”  That is, there are so many queries that only happen 
once or twice, it would be impossible or very difficult to 
determine which one a particular hashed value represents (though 
as demonstrated by [10], token based hashing is not immune to 
such analysis).   Even making use of non-hashed queries in a 
user’s session to narrow down the possible values of the hashed 
ones does not help the adversary.  An adversary would need to 
have a significant un-hashed log sample to build a sufficient 
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probability distribution. Or stated another way, the adversary 
would need to have seen the actual query before, in the un-hashed 
sample, to assign it to the hashed one.  For example, if we hash a 
credit card number that uniquely appears in the dataset, the 
adversary would need to have previously seen the number to 
reverse the hash, no matter how much other data they have. 

The distribution of the data is such that most queries (90%) only 
appear once.  Figure 3 represents the Cumulative Distribution 
Function (CDF) of queries.  We see that the bulk of all unique 
queries (90% or 9,138,762) are only issued once.  In fact, 97% of 
all queries are issued 3 times or fewer.  However, this is not to say 
that we have eliminated 97% of the logs be eliminating these 
queries.   Because there are nearly 17M queries in the log, 
eliminating single instance queries leaves us with 46% of the logs. 
Eliminating 3-instance (or fewer) queries leaves us with 31% of 
the logs.  Furthermore, for this analysis, we apply a fairly 
conservative definition of equality for counting the number of 
repeated queries.  That is, the two queries must be exactly equal 
(though the logs themselves are lower-case normalized).  There 
are other measures for equality that attempt to normalize queries 
[23] (e.g. stemming the word, sort words, etc.) and may not hide 
as much data.  

While masking a large percentage of the queries may not make 
certain analysis impossible, it is important to recognize that there 
is some loss in the utility of the data.  For example, it is still 
possible to cluster users based on queries, but difficult to 
understand how users differ in the specific phrasing of their 
queries within these clusters. 

5.1 Anecdotal Evidence of Effectiveness 
While it is impossible for us to say with absolute certainty that 
there is no single query that is uniquely identifying to some 
individual we do see some anecdotal evidence that this is likely.  
For example, eliminating single-instance queries masks all credit 
card and social security numbers. 

In the case of our Ms. Arnold, 224 queries shrink to 84 different 
queries that were uniquely issued by her.  We no longer see her 
queries for other Arnolds.  In fact, we no longer see her queries 
for her home town.  The best we can probably do is to see her 
searches for the Gwinnett Humane Society.  The Human Society 
serves Gwinnett County, GA, a county with 588k residents.  After 
eliminating 2-instance queries even this clue is gone. 

5.2 On-The-Fly Elimination, Secret Sharing 
There are two primary issues with simply removing those queries 
that appear infrequently.  The first is the obvious issue that many 
results that are not truly identifying are eliminated.  As more and 
more data is produced, we may discover that a specific query is in 
fact not as uncommon as originally presumed, and it would be 
difficult or impossible to recover data that has been removed.  
This is especially true if we have a streaming scheme whereby the 
log provider streams the log data to us and throws out those 
results it believes are identifying.   This belief is based on some 
training experience but means that certain queries—those that are 
emerging (i.e. there’s a new topic that is being queried about that 
we hadn’t seen before)—are not available to the log analyst.   
Even if the log provider relearns that a specific query is not 
identifying, we will have potentially lost the first few instances of 
those queries.  To avoid this, the logging system can buffer the 
queries for some period and anonymized them in less than real 
time.  However, this means that the logs are being held as 
unencrypted data for some period which may be undesirable for 
certain scenarios. 

The second issue is that the log provider must keep track of 
histogram of previously asked queries.  For a search provider with 
any significant amount of traffic this is a potentially expensive 
proposition.   

To solve both issues we propose an application of a secret 
sharing, or threshold cryptography, scheme [12].  In a secret 
sharing scheme a secret S, in our case a query, is split into a 
number of shares.  Each share is useless on its own, but in 
combination the secret can be decoded.  One version of this 
scheme is a unanimous consent scheme using modular addition.  
In this mechanism a secret is split into t shares and t shares are 
required to decode the secret.  The scheme works essentially by 
generating t -1 random numbers (S1… St-1) in the range of 0 and m 
– 1.  A final secret, St, is generated as: 

1
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For our scheme we would like to make sure that a query must 
appear t times before we can decode it.  To achieve this we can 
create t hash buckets and map the user ID to one of these buckets 
(e.g. UserID mod t-1).  The bucket indicates which secret share is 
to be used, and the query is replaced with the appropriate share 
and a query ID.  So that we do not need to remember all the 
previously generated shares for a given query we can seed the 
random number generator deterministically, for example, using 
H(Pk,<query,BucketID=UserID mod t – 1>) (where H is some 
encryption function and Pk is a private key).  Thus we replace the 
string for any given query, qi, by user uj, with:   

< uj, qi>= < uj,H(Pk qi), Sji >, 

where Sji is the secret for user j for query i as described above. 
The disadvantage of such as scheme is that it is possible that we 
will initially need to see more than t unique users making the 
query before we are able to decode this (i.e. the first t users hash 
to fewer than t-1 buckets).  While this is unfortunate, as it is 
unpredictable, it may not be unreasonable especially with a low 
threshold of 2 or 3 shares.  For example, imagine the exponential 
decay of the probability of repeatedly getting the same share with 
t = 2 (i.e. .5k, with k being the number of users issuing the query). 

An alternative scheme is a Threshold Scheme (TS) in which the 
secret is split up into n pieces where any t of those pieces can be 
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combined to decode this secret.  By choosing a sufficiently large 
n we can ensure that the probability of getting any t distinct 
secrets given k choices is high.  The setup for such a scheme is as 
follows ([12][18]): 

• Select a prime p > max(S, n) and let a0 = S 

• Select t – 1 random coefficients, a1 … at-1, where 0 ≤ ai 
≤ p – 1, defining the polynomial:    

1

0
( )

−

=

=∑
t

j
j

j
f x a x  

• Compute Si = f(i) mod p, 1 ≤ i ≤ n.  The pair <i, Si > is 
the share 

To pool the shares, t distinct shares are collected, and are used to 
compute the coefficients by Lagrange interpolation. 

5.3 Performance 
There are a number of freely implemented secret sharing schemes 
such as SSSS1 and JSS2 (based on the algorithms described in 
[19]).  In order to test the feasibility of this method of on-the-fly 
encryption we modified the JSS system to use deterministic 
randomization (as described above) and processed 1M lines from 
the AOL query log (ordered by time).  The difference between the 
first and last query in this trace is ~18000 minutes or 12 days.  In 
the experiment we opted for using 10 shares, with t = 3 (i.e. 3 
distinct copies required to decode).  Because the algorithm creates 
all shares the first time the secret is encrypted, we cached the 
results using a soft-pointer scheme that removed infrequently used 
shares during garbage collection. 

Once the cache was warmed up (within reading ~2000 lines from 
the log) we find that each log entry consistently requires 50ms (on 
average) to encrypt on a Dual-Processor, Dual-Core (3.2Ghz) 
                                                                 
1 http://point-at-infinity.org/ssss/ 
2 http://www.das.ufsc.br/~neves/jitt/jss.html 

system.  The total encoding time was 821 minutes or 
approximately 13 hours.  Note that this time represents an upper 
bound on performance as many improvements can be made to the 
implementation (i.e. parallelization and pre-generating or caching 
a large set of primes would speed things up greatly).  

Decoding is done by sorting the encrypted log file based on the 
query ID and finding sequences in which there are 3 or more 
distinct shares.  Once sorted, decoding is virtually instantaneous 
(under a minute for the full file). 

5.4 Attacks 
Attacks on this type of anonymization mechanism are rather 
limited.  In order to decode the hashed query an adversary would 
need to have the system generate a sufficient number of shares for 
a specific query.  That is, the adversary would need to, a priori, 
know the text of the query.  This would make finding things like 
credit card numbers impossible, as the adversary would already 
need to know the number. 

While decoding specific messages is not possible, an attacker may 
attempt to track a specific user.  For example, if the attacker 
knows that a user makes a query (or forces the user to make that 
query), they can effectively mark the session.  Upon obtaining the 
logs, the adversary would find the uniquely identifying marker 
and associate the session with a user.  It is notable that this attack 
is possible regardless of the way in which we hash.  In fact the 
hashing scheme requires the adversary to work harder as they 
need to force the search provider to generate enough shares to 
find the marked session.  

It may also be necessary to pad queries with additional 
information in order to retain consistently sized log lines.  Since 
share size or encrypted data (depending on the scheme) is 
proportional in size to the original query certain information may 
be leaked. 

Finally, it is possible to change the private key, Pk, with some 
regularity in order to limit the size of logs that can be decoded or 
in the event that a previous private key is obtained in some way. 

Q1 
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Q3 

Small overlap 

Q1 
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Q3 
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b)  

Figure 4: Two scenarios for a given user.  In a) the user has queried for {Q1,Q2,Q3}, which have 
some overlap.  The user is uniquely contained in the intersection.  In b) we choose {Q1,Q2,Q3} 
to ensure a nesting relationship so that the user is as identifiable as the most unique query. 



6. SPLIT PERSONALITY 
While the technique described above goes a long way towards 
eliminating identifying information, it does so for single queries 
only.  We must also be aware that the combination of queries that 
are independently common, may in aggregate be highly 
identifying.  For example, there are at least 51 cities/towns named 
Springfield in the US.   Thus a query for “Springfield” is not 
particularly identifying (there are easily 600k people living in one 
Springfield or another).  Similarly, the query “Louisiana” (which 
has nearly 6 million residents) is also not particularly identifying.  
However, a user issuing both queries has potentially narrowed 
themselves down to 395 residents.  So while we may be able to 
mask the query “Springfield, Louisiana” and protect the user, if 
they make the two queries separately, they are likely both 
common enough to escape encryption, and with enough inference 
power we would be able to greatly reduce the search space.  This 
relationship is illustrated in Figure 4a.   

One trivial solution to this problem is to simply forget about user 
identifiers in the anonymized logs.  This unfortunately renders the 
data nearly useless for many forms of analysis.  An alternative is 
to occasionally “forget” the user’s identifier.  For example, once a 
day (every 24 hours) we could assign a completely new ID to the 
user.  Alternatively, we could assume that continuous browser 
sessions are fairly small and do not cover a wide range of topics.  
Therefore an alternative mechanism is to approximate a search 
session and forget the user ID after a period of inactivity (say 30-
60 minutes).  Both techniques greatly reduce the size of the 
queries in each “session” and increase the number of sessions.  
For the 5546 user sample we move from 5546 traces to 250,858 
sessions when splitting on a daily basis, and 581,459 when 
splitting on hour long gaps (session lengths are an average of 
12.64 and 5.45 queries respectively).  However, as we will 
demonstrate below, (and consistent with [16]) this is still 
vulnerable to attack.  Certain queries and query patterns are so 
uniquely identifying that it is possible to recombine some smaller 
sessions into the original trace. 

An alternative solution to this problem relies on the observation 
that users have multiple “interests.”  Each interest has a 
corresponding set of queries that are related to that interest.  For 
example, if a person is interested in football, they may query for 
“Football,” “ESPN Football,” and “Seattle Seahawks.”  If they are 
interested in cooking they may query for, “Farmer’s market, 
Seattle,” “recipe guide,” and “recipes with yams.”  Users tend to 
have many interests and so their queries become entwined.  
Glancing at any contiguous section of their query log one may see 
a range of the users interests.  It is this characteristic that allows 
us to reconstitute search logs that are split in the ways described 
above.  Instead, what we suggest is splitting the user’s identity 
based on their interests.  That is, a user with football and cooking 
as two separate interests will be made to look like two distinct 
users.  Each version of the user shares nothing in common with 
other versions. 

What is important to recognize is that we are attempting to group 
queries so that we can force the nesting relationship diagrammed 
in Figure 4b.  That is, there is some large query bubble 
corresponding to the user’s general interest (the larger the bubble 
the less unique the query).  Each query within the user’s interest 
is contained within this larger bubble.  Therefore, a user is as 
uniquely identifiable as the most identifying query (which can be 
limited by the scrubbing techniques described previously).  
Clearly, this is the idealized model.  In reality, we still may have 
instances of overlapping queries (e.g. “Springfield football” and 

“Louisiana football”).  The objective, however, is to select a 
clustering criteria that is sufficiently specific to reduce the 
number of such cases. 

For the purposes of this analysis we apply a number of simple 
techniques to determine the similarity of two queries. 

• The similarity between two queries is judged by the 
similarity of the result sets returned by each query form the search 
engine.  The more similar the results sets, the more related the 
queries.  While we have experimented with more sophisticated 
notions of similarity (e.g. a TF-IDF scheme [6] that counts search 
results as “terms”) we have found that any overlap in the top 50 
results for two queries indicates a sufficient similarity to judge 
two queries to be related.  Though this will clearly change with 
access to more search results, in our tests, the function 
resultsim(qi,qj) returns a 1 if any results overlap and 0 otherwise.   

• A second similarity metric is the Levenshtein distance 
[11] which is simply a measure of the text edit distance between 
two strings.  This captures minor spelling mistakes (e.g. “helo” 
and “hello”).  We have found that a value of .2 or lower appears 
to work, though a more rigorous analysis may help refine this. 

• A final similarity metric is the word overlap given by 
the Jaccard metric.  Given two query with multiple words, we 
calculate the Jaccard coefficient by dividing the number of words 
the two queries have in common, with the number of words in the 
union of the two queries (e.g. “walk me to the moon” and “walk 
to moon”).  Similarly to above, we have found that a value of .5 
or more appears to work. 

Using these similarity measures we can now build our profiles. 
Let Q be an ordered list of queries issued by a user, and qi be the 
ith query.  Let D be an ordered list of numerical IDs assigned to 
each query and let di be the ID assigned  ith query.  We then apply 
a pseudo-hierarchical clustering technique which starts from the 
first query and works its way down the list.  A query that is 
similar to one we’ve seen before gets the same ID of that previous 
query.  If a new query is too different it receives a new identifier.  
The algorithm in pseudo-code corresponds to the following: 

d0  0, k = 0 

for i = 1… |Q| – 1 

for j = 0… i – 1 

 if  qi = qj, let di  dj 

 else if resultsim(qi,qj) != 0, let di  dj   

 else if levenshtein(qi, qj) <= .2, let di  dj 

else if jaccard(qi, qj) >= .5,  let di  dj 

else k = k + 1, let di  k   

The output of this process are 1,025,900 sessions (avg. 3.1 queries 
per session).  

In the example of our Ms. Arnold, we now find that she has 165 
different personalities.  The system correctly recognizes that 
queries about “retirement in new zealand” and “new zealand” are 
related.  Unfortunately, given our thresholds it does not decide 
that “retirement in australia” is related.  However, the system does 
know that “applachion trail” and “appalachian trail” are variants 
of the same query.  Hopefully, with some experimental tweaking 
the system can maintain accuracy while reducing the false 
negative count.  



6.1 Evaluation 
From the perspective of utility, this form of pre-processing limits 
us to one specific facet of an individual.  Thus, if a researcher is 
interested in correlating completely different facets (e.g. a person 
who queries for “football” also queries for the “food network”) 
they will not be able to use a dataset encoded in this way. 

Ideally, when we generate these sessions each session would 
contain a set of queries that are vastly different from other 
sessions generated for the same user.  To test our different 
splitting criteria we built a profile search engine.  Each session, as 
generated by the three techniques, was indexed by taking all the 
query terms used in that session and combining them into one 
larger text “document.”  Each document was then indexed in a 
standard text database.  To query the system we would take a 
given session, transform it into a document as described above, 
and find the most similar document/sessions in the index.  Ideally, 
the top results returned by the profile search engine would not 
correspond to any of the user’s other sessions. 

To test this we built indices for each of the three session types 
(daily splits, hour gap splits, and interest split).  We then took 
each session and queried it against the generated indices.  
Obviously, the top result was always the session we submitted.  
We recorded up to 100 matching sessions for each input session.  

To evaluate the “fragmenting” effectiveness of the different split 
techniques we looked at two things.  The first was a count of how 
many of the top 100 sessions returned for every query 
corresponded to the original user.  That is, if the input session 
belonged to user 5, and it matched against the (user,session) pairs 
((6,1),(5,2),(5,3),(7,10))  we would say that ½ of the top results 
were from the same user.  Ideally, the selectivity ratio of same-
user results to all-user results will be 0.  If it is 1, that means all 
similar sessions belong to the same user.  Using this metric we 
can find the average selectivity for the different splitting criteria. 

We calculate that, on average, for daily-split sessions, 6.5% of the 
top results returned for each session as a query belonged to the 
same user (6 out of 100 of the results belong to the same user).  
For the hour-gap split we see an average of 9.2% (1 out of 10). As 
expected, for the profile-split we only have 2.3% in the top list.   

One potential way in which an adversary can do better is by only 
trying to find sessions from the same user when the number of 
sessions returned is small.  That is, if the adversary queries for a 
session and gets 1M results, that indicates that the query session 
has some similarity to pretty much all other sessions.  On the 
other hand if there are only 1000, 100, or even 10 responses it is 
likely that the matches are more accurate.  We find that this 
actually happens in the data.  In Table 1, we see that as the 
number of responses decrease,  the number of matches in the top 
lists increase (up to 2 out of 10 for the daily and hour-gap splits).  
However, the number of same-user matches remain at under 4% 
for the profile-split. 

Table 1: Reconstruction of split sessions.  Number of other 
sessions by the same user returned by the session search 
engine depending on split type and the number of responses. 

 Any # of 
responses 

≤ 1000 
responses 

≤ 100 
responses 

≤ 10 
responses 

Daily 6.4% 12.1% 20.9% 19.1% 

Hour gap 9.2% 15.9% 22.8% 20.7% 

Profile 2.3% 2.5% 3.6% 4% 

The second mechanism for evaluation is trying to reconstruct the 
original query log.  We do this by assuming an adversary with an 
oracle.  Given an input query, the adversary gets a list of 
matching sessions.  Given two sessions, the oracle returns true if 
the two sessions come from the same user and false otherwise.  
Thus, the adversary may go through the returned results picking 
out the ones that belong to the same user.  This represents a worst 
case scenario, but sets an upper bound on recoverability.  To 
reconstruct the logs we query all sessions for a given user against 
the database.  For every result in the top 100 that comes from the 
same user we draw an edge between the query session and the 
matching session.  At the end, if all sessions for a given user are 
connected in a graph we have perfectly recovered the user’s log.  
In reality, what we end up with are a number of connected 
components.  If successful, a good splitting technique will mean 
that for a given user we have as many connected components as 
we have sessions. 

To calculate the reconstruction ratios we begin by finding the 
optimal “ratio” for any given user.  If a user has been split into k 
sessions, we have an optimal ratio of 1/k.  Our recovery ratio is 
the m/k where m is the number of connected components (as 
determined above).  The quantity of optimal-ratio / recovery-ratio 
will approach 1 as we recover more and more sessions.  What we 
find is that for the daily-split this ratio is, on average, 20.6, for the 
hour-ratio it is 56.2, and for the profile split it is 130.  Recalling 
that, on average, each of the 5546 users was split into 185 
sessions, we have not recovered a significant piece of the trace. 

The main issue with the approach proposed here is that we are no 
longer able to claim real-time, memory-free encoding of the logs.  
While with enough computation power we may be able to create 
near real-time splits, we would need to keep around a list of 
topics/interests that the user has previously queries around.  A 
possible fix for this issue is the use of a trained classifier (e.g. 
LSA), which can be trained offline for many users at the same 
time. Given any new query, the classifier will assign an interest 
“id” without looking at previous URLs.  The disadvantage of this 
approach is that it may take lots of data to train, and may 
incorrectly classify queries for interests it has never seen before.  
This is the first of various tradeoffs we need to make for 
anonymization.  That is, we are willing to give up some memory 
to create more anonymous traces.   

7. CONCLUSIONS & FUTURE WORK 
In this paper we have illustrated some of the identifying features 
of search datasets.  We have described two mechanisms for 
anonymizing users.  The first is a scheme for encrypting unique 
queries with a hash that can be decrypted given sufficient 
examples of the query being used by multiple users.  The benefit 
of the approach is that it allows the provider of the search logs to 
generate the hashed values in real time and reduces concerns 
about the privacy issues of any specific piece of the log file.   
There are a number of possible future directions to explore.  For 
example, it may be worth considering a mechanism for 
automatically choosing the algorithmic parameters (e.g. n and t) 
or even predicting the eventual number of instances of a given 
query.  The latter, for example, may be potentially found by 
considering the number of results returned for the query by the 
search engines.  It is likely that the number of results is a proxy 
for how identifying a certain query is (i.e. the query for 
“Springfield, MA” will return more hits than “Springfield, TN” in 
much the same way that the population counts of the first are 
much higher than the second).  Although promising, we leave this 
analysis to future work. 



The second technique is one for splitting users into multiple 
instances.  By splitting based on “interests,” users become 
dissimilar to themselves.  This technique reduces the possibility 
of reconstructing the full user trace and finding subsets of the data 
that can be used to identify the user.  There are also potentially 
more sophisticated mechanisms for generating these instances 
(other clustering techniques, e.g. k-means, and classification 
schemes, e.g. Latent Semantic Analysis), we leave their 
evaluation to future work.  These may be able to infer the 
relatedness of queries in a more general way. 
In the future we would also hope to apply other techniques to 
recover certain split features.  For example, in an offline way, we 
can compute things like “most people who like football also like 
baseball.”  Learning such a fact would also allow us to reconnect 
two previously disconnected sessions. 

We have discussed a number of tradeoff issues and difficulties 
with the anonymization schemes we propose.  We continue to 
work on this topic and hope to develop additional anonymization 
mechanisms that can be applied in different ways depending on 
the requirements of users, corporations, and researchers.  We are 
also considering other evaluation techniques that may more 
accurately determine how much information is being leaked. 
We hope to provide our code for other researchers who wish to 
test the impacts of the various anonymization techniques 
described on their log analysis algorithms.  It is our belief that a 
classification of the techniques that we have described (as well as 
others) in the context of real applications would provide a 
concrete metric for the impact of these methods on query log 
analysis. 
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