
User 4XXXXX9: Anonymizing Query Logs
Eytan Adar

University of Washington,
Computer Science and Engineering

eadar@cs.washington.edu

ABSTRACT
The recent release of the American Online (AOL) Query Logs
highlighted the remarkable amount of private and identifying
information that users are willing to reveal to a search engine.
The release of these types of log files therefore represents a
significant liability and compromise of user privacy. However,
without such data the academic community greatly suffers in their
ability to conduct research on real search engines. This paper
proposes two specific solutions (rather than an overly general
framework) that attempts to balance the needs of certain types of
research while individual privacy. The first solution, based on a
threshold cryptography system, eliminates highly identifying
queries, in real time, without preserving history or statistics about
previous behavior. The second solution attempts to deal with sets
of queries, that when taken in aggregate, are overly identifying.
Both are novel and represent additional options for data
anonymization.

1. INTRODUCTION
In August of 2006, American Online (AOL), in a move designed
to help researchers in the Information Retrieval (IR) community,
provided an extremely large query log extracted over 3 months
from their search engine [3]. Though the release of query logs is
nothing new, the sheer size of this collection and the lack of any
significant anonymization was unprecedented. The data
represented ~650k users issuing 20 million queries which were
recorded in the “clear.” The result of this release was the
disclosure of private information for a number of AOL users,
major damage to AOL [1], and a significant damage to the
research efforts of academics who depend on such data.

The most troubling aspect of the data was the ease by which
single unique individuals could be pinpointed in the logs. Even
ignoring the existence of social security numbers, drive license
numbers, and credit card numbers, the New York Times (NYT)
[5] demonstrated the ability to determine the identity of a real
user. In this case, the user corresponding to ID 4417749 was
found to be Thelma Arnold, a 62 year old woman living in
Georgia. Ms. Arnold narrowed down her location by making
multiple queries for businesses and services in Lilburn, GA.
While Lilburn, GA has over 11k citizens, Ms. Arnold further
helped the NYT by making a number of queries for a Jarrett
Arnold (and other members of the Arnold clan). From here, the
NYT could contact all citizens of Lilburn with the last name
Arnold (of which there are only 14 according to the Yahoo
whitepages). Though it is difficult to quantify the exact number
of users that could be identified in this way, the mere possibility
has led to fear in the user community.

Already, various class actions suits and complaints have been
leveraged against AOL[2][4]. Some have demanded that search
logs not be retained at all by the service providers. For various

reasons, this is likely not practical for search engine vendors. The
need to improve their service both for users and advertisers
requires certain information be kept. Furthermore, recent trends
in personalized search illustrate the practical application of prior
knowledge about users.

This work is based on the following assumptions: a) user search
logs are retained for at least some period by the search vendor, b)
those logs may be disclosed or leaked, and c) the vendor would
like to ensure that whatever data is leaked or released does not
have significantly identifying information. Additionally, we
would like to recognize that there is a tradeoff between the
potential usefulness of a log and how much anonymization it
undergoes. For our purposes, identifying information is the set of
queries that a user issues that can be used to identify the
individual uniquely or at the very least reduce the search space to
a manageable level. Note that we are not explicitly concerned
with recovering traces for law-enforcement or other officials and
do not consider this a design goal. However, the search vendor
may retain information that could make this possible (at a
potential privacy risk to their users).

The results presented here illustrate how by simply removing
infrequent queries, identifying queries are also removed. We also
describe a cryptographic technique based on secret shares that
allows the search vendor to “set it and forget it.” By applying this
technique to the data, a person who has obtained the log is
constrained to reading only those queries that have been used by
at least t other individuals (where t can be fixed by the log
creator). While masking infrequent queries goes a long way to
mask identity, we must also worry about the combination of more
common facts can be considering identifying. Obviously, the
longer the search history for a user, the more potential there is for
finding these kinds of intersections. To eliminate this form of
attack, we propose a number of mechanisms for breaking apart
sessions into less identifiable chunks.

We briefly consider the “power” of data sanitized in this way
relative to the needs of the data miner.

1.1 The Privacy/Utility Tradeoff
The Privacy-Utility tradeoff is based on the understanding that the
more data we eliminate from a log through anonymization, the
more privacy we convey to users but the less that data is useful to
those seeking to mine the data. The difficulty in making a precise
claim about how much privacy or how much utility we are trading
off has much to do with the imprecision in defining the two
concepts themselves.

While it may be more clear-cut that a search engine should not
publicly disclose credit-card numbers that appear in their logs,
there is a sizeable gray area. For example, some users may
consider it OK for the search engine to have access to the queries
for personalization purposes but not for advertising. At one

extreme, some users would like none of their searches logged and
consider it a violation for any information retained, let alone
revealed to third parties. At the other extreme, there are users
who are happy, for whatever reason, to share their query history.
However, as publishers and consumers of logs we must consider
the fact that some users do not understand the privacy
implications of certain queries or sets of queries, which when
revealed, would cause them harm. Finally, we must also
acknowledge the impact of the adversarial model in this analysis.
Asking who is the adversary “violating” privacy safeguards, in
what ways they would do it, and what their capabilities are, is an
art in itself and may not be something the community is capable
of doing correctly.

Utility is generally analyzed with a specific task in mind. If we
are simply seeking to measure the time between queries, we do
not require any identifying information from the query logs.
However, the more complex the task the more privacy we must
take away from users (e.g. infering the demographic
characteristics such as zip-code and salary based on the query
terms a user searches for). Furthermore, we must understand what
inferences can be made and with what confidence on any log data.
For example, while a user’s gender may be known by the search
engine, the log may not contain this information. However, some
inference of gender may be possible based on search behavior and
key phrases and while absolute certainty will not be possible, the
results will still have some high accuracy (e.g. [12]).

In this work we introduce two point solutions in the space of
possible anonymization techniques. We have selected a specific
privacy objective and a specific utility objective. In particular,
we have attempted to remove information which may be used to
uniquely identify a user while still providing un-encrypted access
to a portion of the search logs that may be sufficient for certain
personalization tasks. While we can not perform linguistic
analysis on every query with the mechanisms we describe or
extensively analyze the so-called “long tail,” we still know the
distribution of queries for a user, query timing, and also the
content of many queries. Furthermore, it should still be possible
to cluster users and to some extent augment search engine
responses with user behavior. More significantly, if only the first
of our techniques is used (that of masking unique queries) we can
also correlate queries (e.g. those who query for X also query for
Y). This is possible even without knowing the specific terms that
the hashed queries that X and Y represent.

This type of correlation is, unfortunately, not possible when
masking users that have unique sets of queries as we propose in
our second technique. The more aggressive the masking, the
fewer the correlations we can draw. This anonymization is a
move in the privacy direction and potentially away from utility.
However, by clearly defining the types and quantity of
information that is masked using the techniques we describe, we
believe that both users and miners will have a clearer
understanding of potential privacy and utility implications.

2. RELATED WORK
Although there is not a great deal of work on anonymizing search
logs, it is also worth considering how others have approached this
problem and the various tradeoffs they have made.

The bulk of previous work in data anonymization has been
concentrated in two distinct communities. The database
community has applied techniques such as statistical databases [8]
and k-anonymity [22] to attempt to provide certain levels of
measurable privacy (a more complete list of papers is available at

[17]). The difficulty with applying such approaches is they are
frequently costly (providing non-approximated k-anonymity is
NP-hard) and are not intended to deal with data that is changing
rapidly. Search logs are produced at a very fast rate and are likely
to require a different mechanism. This makes the anonymization
techniques from the database literature, which are primarily
intended to work on static data sources, difficult to apply.

The other major research thrust on anonymization has been in the
network community ([7][14][20][21]). Here, the design objective
has traditionally been pseudonymity. Generally, the belief is that
most behavior, such as standard network traffic, should be
anonymized but that aberrant/illegal behavior should be detected,
tracked, and reported. Thus, most pseudonymity schemes involve
mechanisms for recovering the masked information, frequently
through third-party or communal agreement. It is also worth
noting that work in this area has generated server based solutions
that allow searching on encrypted log files [24] as well as
solutions whereby log files are retained at the server and analysis
code, which only emits aggregate statistics, is shipped to the
client [14]. While laudable in that it addresses the needs of third-
party data miners, a general approach of this type is not currently
available, and requires so many safeguards that it may not be
practical without restricting users to the most basic operations.

The most similar system to our own is [9]. The system proposes
to anonymize Unix log files by a secret sharing scheme.
Interestingly, however, the system is designed with nearly an
opposite motivation to our own. While we have tried to reveal
log entries that are common to many users and mask those that
are unique or “aberrant,” the goal of [9] is to expose those users
while keeping the average user hidden.

In the context of anonymized search logs, we are aware of a
single recent study ([10]) that demonstrates how token based
hashing is ineffective for log anonymization. The work illustrates
that a statistical attack on hashed tokens may lead to privacy
violations. We avoid this problem by explicitly not hashing
tokens but rather encrypting entire queries, making decoding
attacks much more challenging.

3. DATASET PROPERTIES
The AOL dataset consists of 10 files containing nearly 37M lines
of data representing 657k users over 3 months (March 1, 2006 to
May 31, 2006). Though AOL is unique in that users log into the
system and are more readily tracked we note that other search
engines achieve similar tracking through the use of cookies and
features that incentivize users to log in (e.g. email, instant
messaging, etc.). Full descriptive characteristics of the data are
available in [15]. The data is of the format:

{AnonID, Query, QueryTime, ItemRank, ClickURL}

Where AnonID is the anonymous user ID, Query is the query
string, and QueryTime is the time of the query. If the user clicked
on a result, this is recorded in the next two fields. ItemRank is the
rank of the clicked result in the search list and ClickURL is, in
theory, the URL of the clicked result truncated to the domain
name (e.g. www.mit.edu/alumni/ becomes www.mit.edu). This
one minor attempt at anonymization appears more targeted at
potential business implications (search engine optimizers would
like to know which pages get clicked on for which results).
However, as we will describe below, even this redaction failed for
a number of reasons.

For some of the analysis below we will made use of the entire
search population. However, to experiment with a number of
techniques we collected a sample of users that made between 100
and 300 queries with clickthroughs (5546 users sampled at
random). While this limit is somewhat arbitrary, it captures users
that make about 1 query a day while eliminating robots or other
extreme search behavior. From the time of their first query to the
time of their last, users were logged for an average of 87.8 days,
with a minimum of 12.33 days and a max of 91.9 days (median
90.1). The average user in this dataset had 571 log entries (494
median), representing 252 unique queries (229 median) and 252
unique clickthroughs (252 median). The distribution of these
unique queries and unique clickthroughs is represented in Figures
1 and 2 respectively.

4. IDENTIFYING INFORMATION
It is reasonable to start by asking what kind of identifying
information exists in query logs. There are easily 651 numbers
that conform to the format of social security numbers. While
some of these could be mistyped phone numbers or other queries,
a number of them have the words “social” also in the query (22
unique instances). Using a credit card checksum algorithm we
find at least 92 numbers that satisfy the format of a credit card and
have a valid checksum (whether they are or ever were valid credit
card numbers is unknown). These are easily the most egregious
of the privacy problems in the logs and may have a significant
financial implication to their owners. In contrast to the AOL
dataset, we note that in anticipation of exactly this problem, the
MSN release of a similar log trace eliminated some of these issues
by removing all long numerical sequences from the logs.

Credit card, social security, or driver license numbers are likely
only known to their owner—or a small group of people with some
connection to the owner—and are thus useful in associating all
other queries with an individual users. However, there are other
pieces of information that can also be identifying. Queries for
phone numbers, addresses, and names of individuals are all useful
in narrowing down the population. Even if the names or
addresses do not belong to the user themselves, one could
conceivably approach the target of the query for further
information.

Given the massive privacy damage in releasing credit card
numbers and social security numbers, it is easy to overlook other
mistakes that AOL made in generating the dataset. Even in their
attempt to redact certain information such as full URLs, they
mistakenly left the complete URLs to all secure web servers (i.e.

HTTPS protocol
URLs). There are
84k such instances
in the logs. While
these are public—
the search engine
did index them after
all—they may in
fact be sensitive.
For example, it is
possible to
determine certain
items that were
searched for on
shopping sites.
These may be
revealing,
embarrassing, or

illegal and hence endanger the user in some way.

Finally, while redaction of URLs adds some challenges to our
analysis, it is fairly easy to recover the full URLs. This is
achieved by replaying the queries in the search logs against the
search engine, and comparing the results to the domains of the
clicked on URLs. AOL even assists us in this by noting the rank
of the clicked-on document. With the smaller user set of 5546
users we were able to recover 1.4 million (over 70%) of the URLs
that were clicked on. This was done by finding the top results by
replaying the queries against the Google and MSN search engines
(20 and 50 top results respectively). Though we can not
guarantee the accuracy of this recovery absolutely—as the search
engines may return new results from the same domain—it is
likely that the closer this recovery is done to the time of the log
disclosure, the more accurate it is. Additionally, more intelligent
searching could increase this recovery number further (i.e.
obtaining more results, isolating searches to certain domains, etc).

We do note, however, that we were able to perform this analysis
because Google and MSN both provided us with extended
querying ability for research purposes, on the order of 100 times
the amount allocated to a regular developer. Even with this
boosted query limit, reverse lookup of the queries from the 5k
users still took a week. Regardless, it is likely that with enough
ambition and resources someone else would be able to repeat this
step.

5. MASKING IDENTIFYING DATA
One of the simplest things one could do to improve the anonymity
of the data is eliminate those queries that are known to be
uniquely identifying. While we would prefer to only remove
queries that are truly identifying (rather than some very infrequent
query), any inference we make will inevitably lead to removal of
harmless data. We could imagine, for example, eliminating only
those queries that are generated by a small set of users.
Eliminated queries could simply be discarded or hashed with an
appropriate salt. We are relatively unconcerned about
cryptanalysis techniques as the hashed queries are generally “in
the noise.” That is, there are so many queries that only happen
once or twice, it would be impossible or very difficult to
determine which one a particular hashed value represents (though
as demonstrated by [10], token based hashing is not immune to
such analysis). Even making use of non-hashed queries in a
user’s session to narrow down the possible values of the hashed
ones does not help the adversary. An adversary would need to
have a significant un-hashed log sample to build a sufficient

Distribution of Unique Queries

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 200 400 600 800 1000 1200 1400

Number of Unique Queries

Pe
rc

en
t o

f U
se

rs
Distribution of Unique Clickthroughs

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 500 1000 1500 2000

Clickthroughs

%
 o

f U
se

rs

Figure 1: Unique Query Histogram Figure 2: Unique Clickthrough Histogram

%
 o

f U
se

rs

probability distribution. Or stated another way, the adversary
would need to have seen the actual query before, in the un-hashed
sample, to assign it to the hashed one. For example, if we hash a
credit card number that uniquely appears in the dataset, the
adversary would need to have previously seen the number to
reverse the hash, no matter how much other data they have.

The distribution of the data is such that most queries (90%) only
appear once. Figure 3 represents the Cumulative Distribution
Function (CDF) of queries. We see that the bulk of all unique
queries (90% or 9,138,762) are only issued once. In fact, 97% of
all queries are issued 3 times or fewer. However, this is not to say
that we have eliminated 97% of the logs be eliminating these
queries. Because there are nearly 17M queries in the log,
eliminating single instance queries leaves us with 46% of the logs.
Eliminating 3-instance (or fewer) queries leaves us with 31% of
the logs. Furthermore, for this analysis, we apply a fairly
conservative definition of equality for counting the number of
repeated queries. That is, the two queries must be exactly equal
(though the logs themselves are lower-case normalized). There
are other measures for equality that attempt to normalize queries
[23] (e.g. stemming the word, sort words, etc.) and may not hide
as much data.

While masking a large percentage of the queries may not make
certain analysis impossible, it is important to recognize that there
is some loss in the utility of the data. For example, it is still
possible to cluster users based on queries, but difficult to
understand how users differ in the specific phrasing of their
queries within these clusters.

5.1 Anecdotal Evidence of Effectiveness
While it is impossible for us to say with absolute certainty that
there is no single query that is uniquely identifying to some
individual we do see some anecdotal evidence that this is likely.
For example, eliminating single-instance queries masks all credit
card and social security numbers.

In the case of our Ms. Arnold, 224 queries shrink to 84 different
queries that were uniquely issued by her. We no longer see her
queries for other Arnolds. In fact, we no longer see her queries
for her home town. The best we can probably do is to see her
searches for the Gwinnett Humane Society. The Human Society
serves Gwinnett County, GA, a county with 588k residents. After
eliminating 2-instance queries even this clue is gone.

5.2 On-The-Fly Elimination, Secret Sharing
There are two primary issues with simply removing those queries
that appear infrequently. The first is the obvious issue that many
results that are not truly identifying are eliminated. As more and
more data is produced, we may discover that a specific query is in
fact not as uncommon as originally presumed, and it would be
difficult or impossible to recover data that has been removed.
This is especially true if we have a streaming scheme whereby the
log provider streams the log data to us and throws out those
results it believes are identifying. This belief is based on some
training experience but means that certain queries—those that are
emerging (i.e. there’s a new topic that is being queried about that
we hadn’t seen before)—are not available to the log analyst.
Even if the log provider relearns that a specific query is not
identifying, we will have potentially lost the first few instances of
those queries. To avoid this, the logging system can buffer the
queries for some period and anonymized them in less than real
time. However, this means that the logs are being held as
unencrypted data for some period which may be undesirable for
certain scenarios.

The second issue is that the log provider must keep track of
histogram of previously asked queries. For a search provider with
any significant amount of traffic this is a potentially expensive
proposition.

To solve both issues we propose an application of a secret
sharing, or threshold cryptography, scheme [12]. In a secret
sharing scheme a secret S, in our case a query, is split into a
number of shares. Each share is useless on its own, but in
combination the secret can be decoded. One version of this
scheme is a unanimous consent scheme using modular addition.
In this mechanism a secret is split into t shares and t shares are
required to decode the secret. The scheme works essentially by
generating t -1 random numbers (S1… St-1) in the range of 0 and m
– 1. A final secret, St, is generated as:

1

1
mod

t

t i
i

S S S m
−

=

= −∑

For our scheme we would like to make sure that a query must
appear t times before we can decode it. To achieve this we can
create t hash buckets and map the user ID to one of these buckets
(e.g. UserID mod t-1). The bucket indicates which secret share is
to be used, and the query is replaced with the appropriate share
and a query ID. So that we do not need to remember all the
previously generated shares for a given query we can seed the
random number generator deterministically, for example, using
H(Pk,<query,BucketID=UserID mod t – 1>) (where H is some
encryption function and Pk is a private key). Thus we replace the
string for any given query, qi, by user uj, with:

< uj, qi>= < uj,H(Pk qi), Sji >,

where Sji is the secret for user j for query i as described above.
The disadvantage of such as scheme is that it is possible that we
will initially need to see more than t unique users making the
query before we are able to decode this (i.e. the first t users hash
to fewer than t-1 buckets). While this is unfortunate, as it is
unpredictable, it may not be unreasonable especially with a low
threshold of 2 or 3 shares. For example, imagine the exponential
decay of the probability of repeatedly getting the same share with
t = 2 (i.e. .5k, with k being the number of users issuing the query).

An alternative scheme is a Threshold Scheme (TS) in which the
secret is split up into n pieces where any t of those pieces can be

Figure 3: Uniqueness of Queries

CDF of Queries

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

Times a query is repeated

%
 o

f q
ue

ri
es

 r
ep

ea
te

d
<

x
tim

es

combined to decode this secret. By choosing a sufficiently large
n we can ensure that the probability of getting any t distinct
secrets given k choices is high. The setup for such a scheme is as
follows ([12][18]):

• Select a prime p > max(S, n) and let a0 = S

• Select t – 1 random coefficients, a1 … at-1, where 0 ≤ ai
≤ p – 1, defining the polynomial:

1

0
()

−

=

=∑
t

j
j

j
f x a x

• Compute Si = f(i) mod p, 1 ≤ i ≤ n. The pair <i, Si > is
the share

To pool the shares, t distinct shares are collected, and are used to
compute the coefficients by Lagrange interpolation.

5.3 Performance
There are a number of freely implemented secret sharing schemes
such as SSSS1 and JSS2 (based on the algorithms described in
[19]). In order to test the feasibility of this method of on-the-fly
encryption we modified the JSS system to use deterministic
randomization (as described above) and processed 1M lines from
the AOL query log (ordered by time). The difference between the
first and last query in this trace is ~18000 minutes or 12 days. In
the experiment we opted for using 10 shares, with t = 3 (i.e. 3
distinct copies required to decode). Because the algorithm creates
all shares the first time the secret is encrypted, we cached the
results using a soft-pointer scheme that removed infrequently used
shares during garbage collection.

Once the cache was warmed up (within reading ~2000 lines from
the log) we find that each log entry consistently requires 50ms (on
average) to encrypt on a Dual-Processor, Dual-Core (3.2Ghz)

1 http://point-at-infinity.org/ssss/
2 http://www.das.ufsc.br/~neves/jitt/jss.html

system. The total encoding time was 821 minutes or
approximately 13 hours. Note that this time represents an upper
bound on performance as many improvements can be made to the
implementation (i.e. parallelization and pre-generating or caching
a large set of primes would speed things up greatly).

Decoding is done by sorting the encrypted log file based on the
query ID and finding sequences in which there are 3 or more
distinct shares. Once sorted, decoding is virtually instantaneous
(under a minute for the full file).

5.4 Attacks
Attacks on this type of anonymization mechanism are rather
limited. In order to decode the hashed query an adversary would
need to have the system generate a sufficient number of shares for
a specific query. That is, the adversary would need to, a priori,
know the text of the query. This would make finding things like
credit card numbers impossible, as the adversary would already
need to know the number.

While decoding specific messages is not possible, an attacker may
attempt to track a specific user. For example, if the attacker
knows that a user makes a query (or forces the user to make that
query), they can effectively mark the session. Upon obtaining the
logs, the adversary would find the uniquely identifying marker
and associate the session with a user. It is notable that this attack
is possible regardless of the way in which we hash. In fact the
hashing scheme requires the adversary to work harder as they
need to force the search provider to generate enough shares to
find the marked session.

It may also be necessary to pad queries with additional
information in order to retain consistently sized log lines. Since
share size or encrypted data (depending on the scheme) is
proportional in size to the original query certain information may
be leaked.

Finally, it is possible to change the private key, Pk, with some
regularity in order to limit the size of logs that can be decoded or
in the event that a previous private key is obtained in some way.

Q1

Q2

Q3

Small overlap

Q1

Q2

Q3

a)
b)

Figure 4: Two scenarios for a given user. In a) the user has queried for {Q1,Q2,Q3}, which have
some overlap. The user is uniquely contained in the intersection. In b) we choose {Q1,Q2,Q3}
to ensure a nesting relationship so that the user is as identifiable as the most unique query.

6. SPLIT PERSONALITY
While the technique described above goes a long way towards
eliminating identifying information, it does so for single queries
only. We must also be aware that the combination of queries that
are independently common, may in aggregate be highly
identifying. For example, there are at least 51 cities/towns named
Springfield in the US. Thus a query for “Springfield” is not
particularly identifying (there are easily 600k people living in one
Springfield or another). Similarly, the query “Louisiana” (which
has nearly 6 million residents) is also not particularly identifying.
However, a user issuing both queries has potentially narrowed
themselves down to 395 residents. So while we may be able to
mask the query “Springfield, Louisiana” and protect the user, if
they make the two queries separately, they are likely both
common enough to escape encryption, and with enough inference
power we would be able to greatly reduce the search space. This
relationship is illustrated in Figure 4a.

One trivial solution to this problem is to simply forget about user
identifiers in the anonymized logs. This unfortunately renders the
data nearly useless for many forms of analysis. An alternative is
to occasionally “forget” the user’s identifier. For example, once a
day (every 24 hours) we could assign a completely new ID to the
user. Alternatively, we could assume that continuous browser
sessions are fairly small and do not cover a wide range of topics.
Therefore an alternative mechanism is to approximate a search
session and forget the user ID after a period of inactivity (say 30-
60 minutes). Both techniques greatly reduce the size of the
queries in each “session” and increase the number of sessions.
For the 5546 user sample we move from 5546 traces to 250,858
sessions when splitting on a daily basis, and 581,459 when
splitting on hour long gaps (session lengths are an average of
12.64 and 5.45 queries respectively). However, as we will
demonstrate below, (and consistent with [16]) this is still
vulnerable to attack. Certain queries and query patterns are so
uniquely identifying that it is possible to recombine some smaller
sessions into the original trace.

An alternative solution to this problem relies on the observation
that users have multiple “interests.” Each interest has a
corresponding set of queries that are related to that interest. For
example, if a person is interested in football, they may query for
“Football,” “ESPN Football,” and “Seattle Seahawks.” If they are
interested in cooking they may query for, “Farmer’s market,
Seattle,” “recipe guide,” and “recipes with yams.” Users tend to
have many interests and so their queries become entwined.
Glancing at any contiguous section of their query log one may see
a range of the users interests. It is this characteristic that allows
us to reconstitute search logs that are split in the ways described
above. Instead, what we suggest is splitting the user’s identity
based on their interests. That is, a user with football and cooking
as two separate interests will be made to look like two distinct
users. Each version of the user shares nothing in common with
other versions.

What is important to recognize is that we are attempting to group
queries so that we can force the nesting relationship diagrammed
in Figure 4b. That is, there is some large query bubble
corresponding to the user’s general interest (the larger the bubble
the less unique the query). Each query within the user’s interest
is contained within this larger bubble. Therefore, a user is as
uniquely identifiable as the most identifying query (which can be
limited by the scrubbing techniques described previously).
Clearly, this is the idealized model. In reality, we still may have
instances of overlapping queries (e.g. “Springfield football” and

“Louisiana football”). The objective, however, is to select a
clustering criteria that is sufficiently specific to reduce the
number of such cases.

For the purposes of this analysis we apply a number of simple
techniques to determine the similarity of two queries.

• The similarity between two queries is judged by the
similarity of the result sets returned by each query form the search
engine. The more similar the results sets, the more related the
queries. While we have experimented with more sophisticated
notions of similarity (e.g. a TF-IDF scheme [6] that counts search
results as “terms”) we have found that any overlap in the top 50
results for two queries indicates a sufficient similarity to judge
two queries to be related. Though this will clearly change with
access to more search results, in our tests, the function
resultsim(qi,qj) returns a 1 if any results overlap and 0 otherwise.

• A second similarity metric is the Levenshtein distance
[11] which is simply a measure of the text edit distance between
two strings. This captures minor spelling mistakes (e.g. “helo”
and “hello”). We have found that a value of .2 or lower appears
to work, though a more rigorous analysis may help refine this.

• A final similarity metric is the word overlap given by
the Jaccard metric. Given two query with multiple words, we
calculate the Jaccard coefficient by dividing the number of words
the two queries have in common, with the number of words in the
union of the two queries (e.g. “walk me to the moon” and “walk
to moon”). Similarly to above, we have found that a value of .5
or more appears to work.

Using these similarity measures we can now build our profiles.
Let Q be an ordered list of queries issued by a user, and qi be the
ith query. Let D be an ordered list of numerical IDs assigned to
each query and let di be the ID assigned ith query. We then apply
a pseudo-hierarchical clustering technique which starts from the
first query and works its way down the list. A query that is
similar to one we’ve seen before gets the same ID of that previous
query. If a new query is too different it receives a new identifier.
The algorithm in pseudo-code corresponds to the following:

d0 0, k = 0

for i = 1… |Q| – 1

for j = 0… i – 1

 if qi = qj, let di dj

 else if resultsim(qi,qj) != 0, let di dj

 else if levenshtein(qi, qj) <= .2, let di dj

else if jaccard(qi, qj) >= .5, let di dj

else k = k + 1, let di k

The output of this process are 1,025,900 sessions (avg. 3.1 queries
per session).

In the example of our Ms. Arnold, we now find that she has 165
different personalities. The system correctly recognizes that
queries about “retirement in new zealand” and “new zealand” are
related. Unfortunately, given our thresholds it does not decide
that “retirement in australia” is related. However, the system does
know that “applachion trail” and “appalachian trail” are variants
of the same query. Hopefully, with some experimental tweaking
the system can maintain accuracy while reducing the false
negative count.

6.1 Evaluation
From the perspective of utility, this form of pre-processing limits
us to one specific facet of an individual. Thus, if a researcher is
interested in correlating completely different facets (e.g. a person
who queries for “football” also queries for the “food network”)
they will not be able to use a dataset encoded in this way.

Ideally, when we generate these sessions each session would
contain a set of queries that are vastly different from other
sessions generated for the same user. To test our different
splitting criteria we built a profile search engine. Each session, as
generated by the three techniques, was indexed by taking all the
query terms used in that session and combining them into one
larger text “document.” Each document was then indexed in a
standard text database. To query the system we would take a
given session, transform it into a document as described above,
and find the most similar document/sessions in the index. Ideally,
the top results returned by the profile search engine would not
correspond to any of the user’s other sessions.

To test this we built indices for each of the three session types
(daily splits, hour gap splits, and interest split). We then took
each session and queried it against the generated indices.
Obviously, the top result was always the session we submitted.
We recorded up to 100 matching sessions for each input session.

To evaluate the “fragmenting” effectiveness of the different split
techniques we looked at two things. The first was a count of how
many of the top 100 sessions returned for every query
corresponded to the original user. That is, if the input session
belonged to user 5, and it matched against the (user,session) pairs
((6,1),(5,2),(5,3),(7,10)) we would say that ½ of the top results
were from the same user. Ideally, the selectivity ratio of same-
user results to all-user results will be 0. If it is 1, that means all
similar sessions belong to the same user. Using this metric we
can find the average selectivity for the different splitting criteria.

We calculate that, on average, for daily-split sessions, 6.5% of the
top results returned for each session as a query belonged to the
same user (6 out of 100 of the results belong to the same user).
For the hour-gap split we see an average of 9.2% (1 out of 10). As
expected, for the profile-split we only have 2.3% in the top list.

One potential way in which an adversary can do better is by only
trying to find sessions from the same user when the number of
sessions returned is small. That is, if the adversary queries for a
session and gets 1M results, that indicates that the query session
has some similarity to pretty much all other sessions. On the
other hand if there are only 1000, 100, or even 10 responses it is
likely that the matches are more accurate. We find that this
actually happens in the data. In Table 1, we see that as the
number of responses decrease, the number of matches in the top
lists increase (up to 2 out of 10 for the daily and hour-gap splits).
However, the number of same-user matches remain at under 4%
for the profile-split.

Table 1: Reconstruction of split sessions. Number of other
sessions by the same user returned by the session search
engine depending on split type and the number of responses.

 Any # of
responses

≤ 1000
responses

≤ 100
responses

≤ 10
responses

Daily 6.4% 12.1% 20.9% 19.1%

Hour gap 9.2% 15.9% 22.8% 20.7%

Profile 2.3% 2.5% 3.6% 4%

The second mechanism for evaluation is trying to reconstruct the
original query log. We do this by assuming an adversary with an
oracle. Given an input query, the adversary gets a list of
matching sessions. Given two sessions, the oracle returns true if
the two sessions come from the same user and false otherwise.
Thus, the adversary may go through the returned results picking
out the ones that belong to the same user. This represents a worst
case scenario, but sets an upper bound on recoverability. To
reconstruct the logs we query all sessions for a given user against
the database. For every result in the top 100 that comes from the
same user we draw an edge between the query session and the
matching session. At the end, if all sessions for a given user are
connected in a graph we have perfectly recovered the user’s log.
In reality, what we end up with are a number of connected
components. If successful, a good splitting technique will mean
that for a given user we have as many connected components as
we have sessions.

To calculate the reconstruction ratios we begin by finding the
optimal “ratio” for any given user. If a user has been split into k
sessions, we have an optimal ratio of 1/k. Our recovery ratio is
the m/k where m is the number of connected components (as
determined above). The quantity of optimal-ratio / recovery-ratio
will approach 1 as we recover more and more sessions. What we
find is that for the daily-split this ratio is, on average, 20.6, for the
hour-ratio it is 56.2, and for the profile split it is 130. Recalling
that, on average, each of the 5546 users was split into 185
sessions, we have not recovered a significant piece of the trace.

The main issue with the approach proposed here is that we are no
longer able to claim real-time, memory-free encoding of the logs.
While with enough computation power we may be able to create
near real-time splits, we would need to keep around a list of
topics/interests that the user has previously queries around. A
possible fix for this issue is the use of a trained classifier (e.g.
LSA), which can be trained offline for many users at the same
time. Given any new query, the classifier will assign an interest
“id” without looking at previous URLs. The disadvantage of this
approach is that it may take lots of data to train, and may
incorrectly classify queries for interests it has never seen before.
This is the first of various tradeoffs we need to make for
anonymization. That is, we are willing to give up some memory
to create more anonymous traces.

7. CONCLUSIONS & FUTURE WORK
In this paper we have illustrated some of the identifying features
of search datasets. We have described two mechanisms for
anonymizing users. The first is a scheme for encrypting unique
queries with a hash that can be decrypted given sufficient
examples of the query being used by multiple users. The benefit
of the approach is that it allows the provider of the search logs to
generate the hashed values in real time and reduces concerns
about the privacy issues of any specific piece of the log file.
There are a number of possible future directions to explore. For
example, it may be worth considering a mechanism for
automatically choosing the algorithmic parameters (e.g. n and t)
or even predicting the eventual number of instances of a given
query. The latter, for example, may be potentially found by
considering the number of results returned for the query by the
search engines. It is likely that the number of results is a proxy
for how identifying a certain query is (i.e. the query for
“Springfield, MA” will return more hits than “Springfield, TN” in
much the same way that the population counts of the first are
much higher than the second). Although promising, we leave this
analysis to future work.

The second technique is one for splitting users into multiple
instances. By splitting based on “interests,” users become
dissimilar to themselves. This technique reduces the possibility
of reconstructing the full user trace and finding subsets of the data
that can be used to identify the user. There are also potentially
more sophisticated mechanisms for generating these instances
(other clustering techniques, e.g. k-means, and classification
schemes, e.g. Latent Semantic Analysis), we leave their
evaluation to future work. These may be able to infer the
relatedness of queries in a more general way.
In the future we would also hope to apply other techniques to
recover certain split features. For example, in an offline way, we
can compute things like “most people who like football also like
baseball.” Learning such a fact would also allow us to reconnect
two previously disconnected sessions.

We have discussed a number of tradeoff issues and difficulties
with the anonymization schemes we propose. We continue to
work on this topic and hope to develop additional anonymization
mechanisms that can be applied in different ways depending on
the requirements of users, corporations, and researchers. We are
also considering other evaluation techniques that may more
accurately determine how much information is being leaked.
We hope to provide our code for other researchers who wish to
test the impacts of the various anonymization techniques
described on their log analysis algorithms. It is our belief that a
classification of the techniques that we have described (as well as
others) in the context of real applications would provide a
concrete metric for the impact of these methods on query log
analysis.

8. ACKNOWLEDGEMENTS
The author would like to thank Yoshi Kohno for many useful
discussions and feedback (and for running the class that spawned
this project). Thanks also to Tanya Bragin for her comments and
Andrew Tomkins and Ravi Kumar for access to a draft of their
paper. Eytan Adar is funded by an ARCS Fellowship and a NSF
Graduate Fellowship.

9. REFERENCES
[1] Arrington, Michael, “AOL Proudly Releases Massive

Amounts of Private Data,” last retrieved on Feb. 9, 2007
from www.techcrunch.com/2006/08/06/aol-proudly-releases-
massive-amounts-of-user-search-data/

[2] “AOL Members Sue AOL LLC for Privacy Violations,”
Press Release, last retrieved on Feb. 9, 2007 from
biz.yahoo.com/iw/060925/0166422.html

[3] AOL Research website, research.aol.com, no longer online
[4] “AOL’s Massive Data Leak,” last retrieved on Feb. 9, 2007

from www.eff.org/Privacy/AOL/
[5] Barbaro, Michael and Tom Zeller Jr., “A Face Is Exposed for

AOL Searcher NO. 4417749,” New York Times, August 9,
2006.

[6] Baeza-Yates, R., and B. Ribeiro-Neto, Modern Information
Retrieval, Addison-Wesley, 1999.

[7] Bishop, M., B. Bhumiratana, R. Crawford and K. Levin,
“How to Sanitize Data,” WET ICE’04, Modena, Italy, June
14-16, 2004.

[8] Denning, Dorthy E., “Secure statistical databases with
random sample queries,” ACM Transactions on Database
Systems, 5(3), pp. 60-80, 1980.

[9] Flegel, U., “Pseudonymizing Unix Log Files,” InfraSec
2002, Bristol, UK, Oct. 1-3. 2002.

[10] Kumar, R., J. Novak, B. Pang, and A. Tomkins, “On
Anonymizing Query Logs via Token-based Hashing,” to
appear in WWW’07.

[11] Levenshtein, V. I., Binary codes capable of correcting
deletions, insertions, and reversals, Doklady Akademii Nauk
SSSR, 163(4):845-848, 1965

[12] Liu, Hugo and R. Mihalcea, “Of Men, Women, and
Computers: Data-Driven Gender Modeling for Improved
User Interfaces,” ICWSM’07, Boulder, CO, March 26-28,
2007.

[13] Menezes, A. J., P C. van Oorschot, and S. A. Vanstone,
Handbook of Applied Cryptography, CRC Press, 1997.

[14] Mogul, J. C. and M. Arlitt, “SC2D: An Alternative to Trace
Anonymization,” SIGCOMM 2006 Workshop on Mining
Network Data, Pisa, Italy, Sep. 15, 2006.

[15] Pass, G., A. Chowdhury, C. Torgeson, "A Picture of Search"
The First International Conference on Scalable Information
Systems, Hong Kong, June, 2006.

[16] Padmanabhan, B. and Y. Yang, “Clickprints on the Web:
Are there signatures in Web browsing data?”
knowledge.wharton.upenn.edu/papers/1323.pdf

[17] “Privacy-Preserving Data mining,”
www.adastral.ucl.ac.uk/~helger/crypto/link/data_mining/

[18] Shamir, Adi, “How to share a secret,” Communications of
the ACM, 22(1), pp. 612-613, 1978.

[19] Shoenmakers, B., “A Simple Publicly Verifiable Secret
Sharing Scheme and its Application to Electronic Voting,”
Lecture Notes in Computer Science, Vol. 1666, Springer, pp.
148-164, 1999.

[20] Slagell, A., K. Lakkaraju, and K. Luo, “FLAIM: A Multi-
level Anonymization Framework for Computer and Network
Logs,” LISA’06, Washington DC, Dec 3-8, 2006.

[21] Slagell, A., and W. Yurcik, "Sharing Computer Network
Logs for Security and Privacy: A Motivation for New
Methodologies of Anonymization," IEEE/CREATENET
SecureComm, 2005.

[22] Sweeny, Latanya, “k-anonymity: a model for protecting
privacy,” International Journal on Uncertainty, Fuzziness
and Knowledge-based Systems, 10(5), pp. 557-570, 2002.

[23] Teevan, J., E. Adar, R. Jones, and M. Potts, "History Repeats
Itself: Log Analysis of Repeat Queries,” submitted for
publication.

[24] Waters, B. R., D. Balfanz, G. Durfee, and D. K. Smetters,
“Building an Encrypted and Searchable Audit Log,”
NDSS’04, San Diego, CA, Feb. 5-6, 2004.

