
C-ODO: an OWL meta-model
for collaborative ontology design

Aldo Gangemi
Laboratory for Applied Ontology

National Research Council

(ISTC-CNR)

Roma, Italy

aldo.gangemi@istc.cnr.it

Valentina Presutti
Laboratory for Applied Ontology

National Research Council

(ISTC-CNR)

Roma, Italy

valentina.presutti@istc.cnr.it

Carola Catenacci
Laboratory for Applied Ontology

National Research Council

(ISTC-CNR)

Roma, Italy

carola.catenacci@istc.cnr.it

Jos Lehmann
Laboratory for Applied Ontology

National Research Council

(ISTC-CNR)

Roma, Italy

jos.lehmann@istc.cnr.it

Malvina Nissim
Laboratory for Applied Ontology

National Research Council

(ISTC-CNR)

Roma, Italy

nissim@loa-cnr.it

ABSTRACT
The design and maintenance of ontologies is a complex so-
cial collaborative activity, and this is true especially for
semantic-web ontologies. On the one hand, such activity
calls for the availability of tools providing support to typical
operations such as the reuse of existing ontologies and de-
sign patterns, the re-engineering of thesauri, lexicons, folk-
sonomies, database schemas, and knowledge from corpora,
or to the appropriate evaluation and selection processes which
are needed in order to make an ontology functional to a given
task. On the other hand, tools able to support the collab-
orative performance of all these operations, aiding e.g. the
discussion and consensus-reaching processes on an ontology
element and its rationale, should be provided too. Current
tools substantially fail to address both types of need. In our
opinion, this is partly due to the lack of both an adequate re-
quirement analysis, which describes the actual processes and
data that are usually managed during ontology-design activ-
ities, and a unifying conceptual framework, which puts to-
gether the several interrelated aspects of (collaborative) on-
tology design. In this paper we present a formal framework
that represents the notions needed to express requirements
for the development of collaborative ontology engineering
tools. The framework is formalized as an OWL(DL) ontol-
ogy named C-ODO (Collaborative Ontology-Design Ontol-
ogy), and is being used within the EU NeOn project.

1. INTRODUCTION
Collaborative ontology design cannot be specified unequiv-

ocally, e.g. as an OWL class, because the entities that
are typically referred to by the term ‘design’ can be mul-
tifaceted. Usually, the talk about ontology design addresses
several aspects that are highly interrelated: how the ontol-
ogy does look like; its conceptualization; which principles
have been used to build it; the process model that has been
used to create it; and so on. In the context of the EU NeOn
integrated project, collaborative design of networked ontolo-

Copyright is held by the author/owner(s).
WWW2007, May 8–12, 2007, Banff, Canada.
.

gies in heterogeneous social contexts is a major issue. The
work presented in this paper is the result of a preliminary
requirements analysis for collaborative design that has been
conducted in NeOn, and is extensively reported in [3].

The main focus of the paper is a formal framework to be
used as a requirement language for the ‘social level’ aspects
of ontology design. We assume that the specification at the
computational level should mirror the social requirements
of ontology design, and that this can be done in one of two
ways: i) by substituting social-level tasks with computa-
tional tasks, or ii) by assisting social-level tasks specified as
proxies within a workflow of computational tasks. For exam-
ple, a method for ontology evaluation can be described for-
mally at the social level, and, when the evaluation is limited
to the structural aspects of an ontology, most tasks can be
accomplished by an implemented algorithm. On the other
hand, if evaluation at some point requires an active decision
role from a human agent, that role is proxied by the tool.
Being clear about which (and how) social-level methods or
tasks are substituted, and which methods, roles or tasks are
proxied may improve the semantic interoperability between
tools and social practices.

In the remainder of section 1, we introduce the basic or-
ganization of the framework and the notions treated. A
unifying framework for describing ontology design should
be general enough to express all the possible approaches to
this activity, and should also be practical enough to be im-
plemented without creating unnecessary complexity in local
solutions, models, and tools. Moreover, it should not con-
sist of a single particular methodology, but rather it should
provide expressivity enough to describe different methods
or aggregations of methods. We consider ontology design in
terms of its objective, scope, components, and supporting
functionalities.

The objective of ontology design is to help solving the
problem of making choices from the (potentially infi-
nite) choice space offered by the used logical language
and available vocabulary. Formulating an objective
helps getting started with the design of an ontology.
In analogy with the blank page effect experienced by



writers, there exists a blank model effect, which needs
to be dealt with in terms of the objective of the model.

The scope of (networked) ontology design is related to
establishing what we want to describe the design of.
In principle, we could describe the design of any kind
of data, process, or resource which is used or gener-
ated during the lifecycle of ontologies over the seman-
tic web: classes, individuals, annotations, email dis-
cussions, handbooks, etc. Although our proposal is in
principle general and robust enough to support the de-
sign of all these kinds of data, the focus of this paper is
on ontology design proper 1. Please note that because
of the networked perspective we take here, design is
not to be intended as limited to creation time, i.e. to
an initial phase of an ontology lifecycle, but rather as
an aspect of the entire ontology lifecycle.

The components of ontology design are supposed to
characterize the objective and the scope of ontology
design. Such components need to be considered from
two perspectives. On the one hand, we should be able
to determine what entities should such components be.
On the other hand, we should be able to determine how
to represent such entities. Listed below are the main
types of entities selected so far, which are depicted in
figure 1:

Figure 1: Ontology Design Components

• Ontology project: a project having the goal of influ-
encing the lifecycle of a networked ontology

• Collaborative workflow: a special case of epistemic
workflow, i.e. a relationship between rational agents
that influences the knowledge of one or more agents
in the relationship, according to a workflow shared by
one, more or even all the agents. A collaborative epis-
temic workflow is characterized by the ultimate goal
of designing networked ontologies and by specific rela-
tions among designers, ontology elements, and collab-
orative tasks

1The design of e.g. a workflow or a project can be treated
similarly, but goes beyond the scope of this paper, which
is to characterize the choices made about ontologies and
ontology elements.

• Argumentation: a structure for discussing possible de-
sign solutions, based on rationales and dialectic rules

• Ontology design rationale: the motivations according
to which an ontology is designed the way it is

• Functionality description: a description of a task to
be accomplished by a design operation according to a
method

• Design Pattern: a configuration of ontology elements
that is relevant from the logical, architectural, or con-
ceptual viewpoint.

As mentioned above, a choice is also required on how to
represent these components. To this end, we distinguish
between two levels of representation:

• Social level: a social view on an ontology development
project. At this level, components are characterized in
terms of what happens in the real world when a person,
a group of people, or a community decide to build
an ontology or an ontology network in a collaborative
fashion. The social level allows to describe the domain
of research through the components, and to provide
platform developers with a requirement analysis.

• System level: a system view on an ontology devel-
opment project. At this level components are rep-
resented in terms of the methods and the techniques
that provide (possible) solutions for supporting what
is described at the social level. Such methods and
techniques are the base models for the design and im-
plementation of a platform.

Finally, we consider the functionalities that (are needed
to) support collaborative ontology design. The list of func-
tionalities from the NeOn project includes evaluation, selec-
tion, re-engineering, learning, upgrading database content,
mapping, collaborative workflow, argumentation, provenance,
data annotation, social network analysis, lexical domains,
ontology localization, and multilingual ontology integration.
Each of these functionalities is represented in two ways in
C-ODO. On the one hand, these are all ‘rich’ functionality
descriptions, in which roles, goals, parameters and complex
tasks are put together to compose a ’method’: e.g., a method
to execute ontology selection, argumentation, or concept se-
lection by means of lexical domain filtering and linking to
other ontologies. On the other hand, these functionalities
are also (complex) tasks, defined in the related function-
ality descriptions, to be be performed within an ontology
project.

The rest of the paper is organized as follows: section 2
provides a brief overview of the existing work on require-
ments and tools for collaboration in cooperative knowledge
communities. Section 3 describes the foundations of our
conceptual framework, which is the main contribution of
this paper and is encoded in the Collaborative Ontology-
Design Ontology (C-ODO). Section 4 presents C-ODO with
the help of a simple example. In section 5, a further example
illustrates the way C-ODO can be used to model a collab-
orative ontology-design methodology. Finally, in section 6
some conclusions are drawn and lines for future work are
sketched.



2. RELATED WORK
A huge amount of work has been conducted on require-

ments and tools for collaboration in cooperative knowledge
communities. For an extended discussion of the state-of-art,
the reader can refer to [3]. For space reasons, here we only
cite some of the most relevant contributions.
Some works address social aspects to be considered when
building tools [1], [15]. [1] clearly states the problems com-
ing from the social-technical divide. [13] is a brief survey of
the main studies on principles that seem to underline suc-
cessful cooperative communities. The DILIGENT method-
ology provides several requirements for supporting collab-
orative workflows [31], [26], and deals with argumentation
[25]. In [18], further requirements for collaborative ontology
development are identified. Available tools include: On-
tology Builder and Ontology Server (OBOS) [6], Hypertext-
Augmented Collaborative Modelling (HACM) [24], Claimspot-
ter [22], ClaiMaker [15], which is based on [16], and Co-OPR
[23], which presents the integration of two existing tools (i.e.,
Compendium, and I-X). Furthermore, [14] is a source of in-
teresting points with respect to requirements and tool sup-
port, while [21], and [4] analyze aspects of human-computer
interaction (HCI). Finally, as far as coordination in collabo-
rative environments is concerned, interesting suggestions are
provided by the coordination models and workflow patterns
presented, resp., in [19] and [28].

3. THE COLLABORATIVE ONTOLOGY DE-
SIGN ONTOLOGY (C-ODO)

As pointed out in Section 1, the notions of collaboration
and ontology design are not univocal. Moreover, none of
the existing treatments of these notions provides a suffi-
ciently general definition for them. This makes it impos-
sible to adopt any of the existing proposals on either col-
laboration or ontology design as a basis for the definition
of a language to talk about collaborative ontology design.
In order to fill this gap in the literature, we introduce here
the Collaborative Ontology-Design Ontology (C-ODO). C-
ODO formally specifies the components of collaborative on-
tology design. It allows formal expression of either social or
computational requirements for tools that support ontology
design. C-ODOs main components - as already informally
presented in Section 1 - capture the epistemological nature
of designing knowledge in general and, in particular, of de-
signing ontologies, i.e. reusable knowledge. C-ODO is based
on a relatively large number of assumptions and ontological
commitments, which are briefly summarized in the following
subsection.

3.1 Assumptions and reused ontologies in
C-ODO

C-ODO’s design has pivoted on three rationales: i) basing
the whole framework on a reification mechanism, which is
founded on the distinction between descriptions and situa-
tions; ii) breaking down the conceptualization modeled in
the framework into six main layers (ontology project, col-
laborative workflow, argumentation, design rationale, func-
tionality description, ontology design pattern); iii) reusing
as many as possible existing ontologies as foundations for
C-ODO.

Reification through Descriptions and Situations We
have based C-ODO on a reification mechanism. The

form of reification adopted in our framework makes it
possible to talk in the same language of both a generic
method and the elementary or complex entities that
allow to perform that method, since both the method
and its component entities are in the same domain of
interpretation This allows, for instance, to design a set
of operations like the composition of: {elicit knowledge
from a colleague or an expert, find and specialize de-
sign patterns for that knowledge, validate the adapted
patterns against competence questions}. This makes
the language more expressive without making it com-
putationally more complex as usual with reification.
The form of reification adopted in C-ODO is based on
the distinction between descriptions (e.g. a method)
and the situations that satisfy a description (e.g. the
configuration of operations that allow to perform that
method). This architectural pattern is called DnS [10].
Descriptions ‘use’ concepts, e.g. the role of ‘being an
expert during elicitation’, while situations are ‘setting
for’ entities, e.g. an individual expert or an operation.
Concepts are used to ‘classify’ entities within a situa-
tion.
For the purpose of intuition, the distinction between
descriptions and situations can be understood as a
generalization of the UPML (Unified Problem-solving
Method Development Language) paradigm [17], in which
“classification can be seen as the problem of finding
the solution (class) which best explains a certain set
of known facts (observables) according to some crite-
rion”. Descriptions (as ontological entities) are the
counterpart of a set of criteria in UPML, while situa-
tions are the counterpart of a solution in UPML. Fur-
thermore, situations are settings for a set of entities
and their relations, which satisfy the concepts devised
in the description. Therefore, related entities in the
setting of a situation may be considered the counter-
part of UPML observables.

Plans, tasks and goals Extensions of DnS have been used
to model several types of conceptualizations, such as:
social agents like organizations, communities of agents
[2], the information objects by which a description is
expressed [7], the time-spans characterizing the situa-
tions, etc.
An important extension to DnS is the Plan ontology
[7], which models plans as descriptions that represent
sequences of tasks that lead from a given situation to
a new, expected one. These descriptions are abstract
and independent from computational system design:
they are reusable and easy-to-customize representa-
tions of the objects and activities involved in multiple
action domains. The main components of plans are:
task, goal and agent-driven role. Tasks and agent-
driven roles are types of concepts, while goals are de-
scriptions, proper parts of plans. Control constructs
(e.g. choose between the following alternatives) from
traditional planning and workflows are represented as
control tasks, also defined within plans. Tasks may be
connected to roles by a ‘target’ relation. Plans may
also have situations as pre- or post-conditions. Plans
as descriptions are different from plan executions: the
latter are situations. Goal situations are situations
that satisfy a goal.



Other reused ontologies Other reused ontologies include
the Open Systems Ontology [7], which includes the
object transformation pattern, involving roles for per-
formers, resources, working items, and products; the
oQual ontology [9, 8], which models ontology evalu-
ation and selection as a diagnostic tasks over ontol-
ogy elements, processes, and attributes; the Ontology
Metadata Vocabulary (OMV) [12], which captures sev-
eral notions conveying key-information on an ontol-
ogy (ontology task, ontology engineering tool, loca-
tion, party, ontology engineering methodology, ontol-
ogy language, person, etc.); the notions of Network of
Ontologies and Networked Ontology [12], i.e.: “a Net-
work of Ontologies is a collection of ontologies related
together via a variety of different relationships such
as mapping, modularization, version, and dependency
relationships. We call the elements of this collection
Networked Ontologies.”

3.2 Six layers of ontology-design representa-
tion

As shown in Fig. 1 we have distinguished six layers that
fraction the scope of design into ordered components, or
modules: ontology project, collaborative workflow, argu-
mentation, design rationale, functionality description, and
ontology design pattern. The six layers are a componential
structure, and do not imply a given direction in ontology de-
sign, i.e. they do not tattempt to prescribe a methodology
that starts from project planning and ends with practical
implementation, or the other way around. The six-layering
is simply agnostic with respect to sequence of execution.
Each of these six layers are modeled in terms of the distinc-
tion between descriptions and situations. For instance, if we
take ontology design pattern as a starting point, we have to
distinguish between its descriptions and situations. Design-
pattern descriptions, or schemas, include roles, tasks, and
parameters for encoding part of an ontology in a certain
logical language. The situational counterpart of ontology
design patterns are design solutions, i.e. the states of part
of an ontology at some versioning point.
On their turn, design-pattern schemas and choices are mo-
tivated by a design rationale, and are applied by perform-
ing some functionality. Design rationales and functionality
methods are descriptions, whose counterpart are actual de-
sign making situations.
Rationales and functionalities are made explicit during an
argumentation situation, the latter being the situational coun-
terpart of an argumentation structure. Argumentation situ-
ations typically occur during collaborative workflow enact-
ments (situations) that follow some collaborative workflow
(description).
Such workflows are part of an ontology project (description),
whose counterpart is an ontology project execution (situa-
tion).
C-ODO ontology is an OWL(DL) ontology, way too large
(127 classes and 58 properties) to be completely presented
in a conference paper. From [5] C-ODO can be downloaded
for extensive browsing. Here we use a guiding example to
provide an intuition of what C-ODO is and how it can be
used. We also provide some sample formal definition for the
main C-ODO’s components. For a full textual presentation
of C-ODO, the reader can refer to [3].

4. DESCRIBING ONTOLOGY DESIGN WITH
C-ODO

As an example, consider a team of designers that are col-
laboratively designing an ontology from a flat list of ten
classes, including {Dog, Canine, ...}, and that are willing to
apply the subsumption logical pattern to Dog. The implicit
choice space is made of ten choices (nine possible super-
classes, or being a top class). How to decide what class
subsumes Dog? Reusing existing artifacts is a practice that
advantages designers of any field (e.g., software, business,
etc.) in undertaking their tasks. The same applies to on-
tology designers that can reuse previously produced ontolo-
gies, parts of them, or best practices in ontology represen-
tation. In our example, the decision on subsumption should
be based on an explicit rationale suitable to subsumption.
For example, the most typical one is ‘extensional seman-
tics’. In practice, it consists in assuming that choosing e.g.
Canine subsumes Dog, depends on the fact that Dog’s in-
stances are all Canine’s instances. Of course, the very same
design solution can be motivated by a different rationale, for
example, assuming dictionaries like WordNet (where Canine
is a hypernym of Dog) to be a good motivation for making
subsumption relations. In other words, the design pattern
(in the example, the subsumption logical pattern) represents
the ‘quality’ of a certain solution, whose rationale is ‘exten-
sional semantics’, which leads to the design solution Ca-
nine subsumes Dog, on the basis that all Dog’s instances are
also Canine’s instances. One aim of our work is to provide
people involved in the design of ontologies with a way to
represent the rationales that characterize their design deci-
sions (e.g., design patterns chosen for a certain version of
an ontology), and how these rationales are discussed within
an argumentation session. We distinguish between solutions
adopted and reasons behind such choices, and assume that
design rationales represent reasons while design patterns are
the solutions adopted. In C-ODO, the subsumption pat-
tern can be represented by instantiating the class design-
pattern schema. Design-pattern schemas are special cases
of ‘qoods’, i.e. quality-oriented ontology descriptions which
describe what is needed in an ontology and its use case(s)
to be appropriate to some criterion. An ontology design-
pattern schema is satisfied only by a situation that is the
setting for some ontology element and their axioms (e.g.,
stating the axiom Dog subClassOf Canine using the OWL
language). The design-pattern schema formalization and its
situation counterpart are expressed by axioms 1, and 2.

DesignPatternSchema v oqual :qood u
∀ edns :satisfiedBy(edns ::Situation u
∃ edns :settingFor OntologyElement) (1)

DesignSolution v edns :Situation u
∃ edns :satisfies DesignPatternSchema u
∃ edns :settingFor FormalExpression u

∃ edns :settingFor OntologyElement (2)

In general, design patterns [11] can be of several kinds:
macro of logical languages, in the sense of [30]; architec-
tural design patterns, which are formal expressions for solv-
ing structural issues (macros are simple examples of ar-
chitectural patterns); content design patterns, which are
typed (i.e., they refer to a non-logical vocabulary), and al-



low designers to solve domain specific issues; ontology anti-
patterns, which identify wrong solutions to recurrent design
issues. Design pattern schemas are used in order to guide
designers in using ontology design patterns. As a matter
of fact, the choice can be motivated by different rationales,
e.g. the axiom Canine subsumes Dog can be supported by
a ‘lexical semantics’ rationale, which could take WordNet
hyponymy relation as evidence. Another rationale is the
‘expertise semantics’ rationale, which could use a poll sys-
tem against a sample of domain experts voting on the best
candidate as Dog’s superclass. Still another rationale is ‘best
approximation semantics’ to a repository of content design
patterns, so that the best candidate as a superclass may be
chosen from an existing content pattern that includes Dog
and Canine, with a best similarity match. One of C-ODO’s
main layers is design rationale, which contains the classes: i)
ontology design rationale, and ii) design making. According
to [20], design rationales should include all the background
knowledge of a creation process, such as deliberating, rea-
soning, trade-off and decision-making in the design process
of an artifact i.e., all the information that can be crucially
valuable to various people who have to deal with the ar-
tifact. Design rationales are then explicit statements (or
sets of statements) which represent the reasons why an ob-
ject (product) has been (or is being) designed the way it
is. When a rationale is applied to one or more ontology ele-
ments, a configuration of possible design solutions emerges.
Hence, an ontology design rationale can be seen both as a
description of the motivations behind specific ontology de-
sign solutions, and as the principle according to which those
choices have been made available. Axioms 3 and 4 formalize
the concepts of ontology design rationale and design making,
respectively.

OntologyDesignRationale v DesignRationale u
∀ edns :satisfiedBy DesignMaking u

∃ edns :usesConcept sys :PerformerRole u
∃ edns :usesConcept edns :AgentDrivenRole u

∃ edns :usesConcept sys :KnowledgeRole u
∃ edns :usesConcept Functionality (3)

DesignMaking v edns :Situation u
∃ edns :satisfies DesignRationale u

∃ edns :satisfies FunctionalityDescription u
∃ edns :component DesignSolution u

∃ edns :settingFor edns :RationalAgent u
∃ edns :settingFor DesignOperation u

∃ edns :settingFor inf :InformationObject (4)

Design makings are realized by means of the implementa-
tion of some functionality. C-ODO defines the notion of
functionality as a description which can either be a generic
description of a goal, or an actual plan describing a cog-
nitive or computational method to achieve that goal. A
functionality, however, is also a (complex) desired task to
be performed (e.g., ontology evaluation). Such task is ac-
complished through a design operation (i.e., an action in
the context of a design making). Consider as an example
the task of evaluating the goodness of two given ontologies
against a set of competency questions. Such functionality
can be performed by following different approaches, such

as quantitative measures e.g., the number of terms in the
questions that match the vocabulary of the two ontologies,
or qualitative evaluations (see [9] for a comprehensive frame-
work on ontology evaluation types), etc. Both approaches
can be represented as functionality descriptions that define a
method to accomplish the evaluation functionality. Axioms
5 and 6 formalize the notion of functionality.

FunctionalityDescription
.
= edns :Plan u

∃ edns :defines Functionality (5)

functionality v plan :Task u
∃ edns :definedIn (FunctionalityDescription u

∀ accomplishedThrough DesignOperation) (6)

Going back to our simple example, let us now consider the
case when a team of designers actually agrees on how to
apply the subsumption pattern between Dog and Canine.
This agreement must be the result of a discussion between
the designers from the team, based on argumentation ac-
tivities. There are several ways of implementing an argu-
mentation workflow. A scenario using argumentation the-
ory for ontological support might follow the characteriza-
tion proposed e.g. in [29]. In the framework proposed by
these authors, an argumentation session (which is a kind
of collaborative workflow in C-ODO) is a compound of: i) a
confrontation, where the problem is presented (expression of
design-solution divergences); ii) an opening, where argumen-
tation rules are established, including the closing conditions
of the session (the decision of acceptable ontology design
rationales coming from a community best principles); iii)
the argumentation itself, where the dialectical rules (from a
given argumentation structure) are applied; iv) a conclusion,
where the closing conditions are met. C-ODO represents
these notions by introducing the following classes: i) argu-
mentation structure (made up of dialectical rules: claiming,
agreeing, disagreeing, refusing, etc.); ii) argumentation situ-
ation (any situation including designers arguing on ontology
design solutions); iii) argumentation role (any role played by
knowledge resources and ontology elements involved in the
argumentation, e.g. preferred choice, debated choice, re-
fused rationale, etc.); and iv) argumentation task (any task
to be accomplished within an argumentation situation). As
an example, the generic framework in [29] is represented in
the class: argumentation session schema, which is a kind of
collaborative workflow, and can be enacted as an argumen-
tation session within an argumentation situation. Argument
sessions include four tasks corresponding to the components
of the framework: i) choice confrontation; ii) rationale decla-
ration; iii) dialectic rule (application); and iv) argument res-
olution. Axioms 7 and 8 formalize the notions of argumen-
tation structure and argumentation situation, respectively.
Regardless to the method applied for achieving an agree-
ment on a design solution, and what rationales have been
provided to argument such choice, all the tasks described
above are performed by means of some functionality in the
context of some collaborative workflow, e.g. an ontology de-
sign methodology. Consider an example in which the team
we are talking about is organized as a set of peers, working
in a collaborative fashion with a non-hierarchical policy. All
decisions have to be taken together by means of a given set
of rules (e.g., the argumentation structure described above),



upon which peers must agree.

ArgumentationStructure v edns :Description u
∃ edns :component DesignRationale u

∃ edns :usesConcept sys :PerformerRole u
∃ edns :usesConcept ArgumentationRole (7)

ArgumentationSituation v edns :Situation u
∀ edns :satisfies ArgumentationStructure u

∃ edns :component DesignMaking u
∃ edns :settingFor (∃ isArguedBy) (8)

This behavior can be described as, and corresponds to, a
kind of collaborative workflow. C-ODO does not prescribe
a specific methodology, since it aims to provide the prim-
itives needed in order to express any methodology for col-
laborative ontology design, and the requirements for devel-
oping supporting tools. To this end, C-ODO defines the
classes: epistemic workflow and epistemic workflow enact-
ment. Bear in mind that a collaborative workflow and a col-
laboration situation are special cases of epistemic workflow
and epistemic workflow enactment, respectively. Any epis-
temic workflow includes at least one argumentation struc-
ture, and is conceived in order to achieving the goal of pro-
ducing some knowledge (i.e., a knowledge production goal).
At least two rational agents (which can be also collectives
e.g., teams) have to participate as accountable perform-
ers (i.e., being classified by an accountable performer role).
Furthermore, at least two knowledge resources are involved
which are respectively, the knowledge resource which the
two agents start working on, and the artifact resulting from
their collaboration.

Epistemic workflow enactment is the situation counter-
part of epistemic workflow. Axioms 9 and 10 formally define
them.

EpistemicWorkflow v edns :Plan u
∃ edns :component ArgumentationStructure u

∃ plan :hasMainGoal KnowledgeProductionGoal u
∃ edns :usesConcept AccountablePerformerRole u

∃ edns :usesConcept KnowledgeProductRole u
∃ edns :usesConcept KnowledgeResourceRole u

∃ edns :usesConcept WorkingKnowledgeItemRole (9)

EpistemicWorkflowEnactment v
edns :PlanExecution u

∃ edns :satisfies EpistemicWorkflow u
∃ edns :component

edns :AgentCoParticipationSituation u
∃ edns :component ArgumentationSituation u

∃ edns :settingFor (edns :RationalAgent u
∃ edns :classifiedBy accountablePerformerRole) u

∃ edns :settingFor dol :TimeInterval u
∃ edns :settingFor (edns :InformationObject u

∃ edns :classifiedBy {ontologyLifecycleProduct}) u
∃ plan :directSuccessor

KnowledgeProductionGoalSituation (10)

Finally, the collaborative design of an ontology, say that
of canine kinds, is the goal of a dedicated ontology project
composed of a collaborative workflow supported by certain
functionalities that allows designers to argument their de-
sign decisions by means of design rationales. The ontol-
ogy project can be executed one or more time according to
its description. C-ODO represents the notion of ontology
project by defining the classes: ontology project, and on-
tology project execution. Axioms 11 and 12 formalize this
notions.

OntologyProject v edns :Plan u
∃ edns :component EpistemicWorkflow u

∃ edns :usesConcept PerformerRole u
∃ edns :usesConcept KnowledgeProductRole u

∃ edns :usesConcept WorkingKnowledgeItemRole u
∃ edns :usesConcept KnowledgeResourceRole u

∃ edns :usesConcept Functionality (11)

OntologyProjectExecution v edns :Situation u
∃ edns :satisfies OntologyProject u

∃ edns :component EpistemicWorkflowEnactment u
∃ edns :settingFor edns :RationalAgent u

∃ edns :settingFor DesignOperation u
∃ edns :settingFor KnowledgeCollective u
∃ edns :settingFor edns :InformationObject (12)

According to this axiomatization and the definitions given
above, we define an ontology project as a plan that is com-
posed of some epistemic workflow and uses some working
knowledge object, functionality, performer role, knowledge
resource role, and knowledge product role. These concepts
are meant to convey the epistemic nature of an ontology
project, i.e. the idea that an ontology project enables the
production of knowledge from knowledge. Figure 2 summa-

Figure 2: Maximal functionalities in collaborative
ontology design

rizes the maximal functionalities (use cases) of collaborative
ontology design, and how they relate to C-ODO layers.

5. AN EXAMPLE OF C-ODO-BASED MOD-
ELING



In this section we show an example of C-ODO-based mod-
eling. We model the DILIGENT [27] argumentation method.
The model we show is represented by OWL-DL triples that
instantiate classes and relations of C-ODO, and it formalizes
the implicit ontology of the mentioned approach. However,
we do not intend to provide here a complete modeling of its
algebraic features.

The DILIGENT methodology is conceived for supporting
distributed teams of domain experts that are involved in the
process of creation and evolution of ontologies. DILIGENT
also contains primitives for performing argumentation ses-
sions. DILIGENT argumentation model has already been
defined in a simple OWL ontology. Here we model it in
terms of C-ODO. The DILIGENT argumentation model in-
cludes two actors, i.e. argumentation roles in C-ODO: par-
ticipant and moderator. It also includes some C-ODO ra-
tionales, called arguments, that can be expressed on either
issues or ideas. Arguments can be of two types: justifica-
tions, which in turn can be either evaluations or examples,
and challenges, which in turn can be either alternatives or
counter-examples.

Figures 3 and 4 depict the DILIGENT argumentation
model in terms of C-ODO. The former focuses on argumen-
tation tasks, while the latter on ontology design rationale
aspects. Both tasks and rationales are modeled as instances
of C-ODO classes, because C-ODO is based on DnS theory
(see section 3.1), which provides a unique domain of dis-
corse for projects, methodologies, argumentation protocols,
design rationales, design patterns, and functionalities.

Figure 3 shows the definition of diligent-argumentation,
which is an instance of argumentation-session-schema (i.e.,
a plan). In the context of diligent-argumentation, two
performerRoles are used, which are participant and
moderator. Furthermore, two complex argumentation-task

are defined: decision, which includes the voting task as
a component, and position, composed of the agree and
disagree tasks. Diligent-argumentation uses also the con-
cepts idea and issue, which are argumentationRoles played
by either a design-solution or an information-object.
Decision and position roles are targeted to solutions or
information.

Figure 4 shows another view of the diligent-argumentation
session. Here, the focus is on the design rationales that
can be provided during a diligent-argumentation session.
In DILIGENT terminology, Argument is synonym to the
C-ODO concept of ontology-design-rationale, hence we
have defined Argument as a subclass of it. Arguments can be
of two kinds, justification and challenge: example and
evaluation specialize (through the specializes relation)
justification, while alternative and counter-example

specialize challenge. An ontology-design-rationale is
a component of some argumentation-structure. Notice
that a diligent-argumentation can be composed only by
ontology-design-rationales of type Argument. In order
to express this constraint, an OWL hasValue restriction
is introduced on the component-of relation for the class
Argument, where the value is diligent-argumentation.

6. CONCLUSIONS
We have briefly discussed the state of art for collaborative

work within cooperative knowledge communities and have
shown that there is a lack of generality in this literature.
This is due both to the lack of an adequate social require-

Figure 3: C-ODO-based model of DILIGENT argu-
mentation (focus on tasks)

ment analysis, and to the social-technical gap between social
requirements and technical feasibility. In particular, none
of existing approaches attempts at providing a conceptual
framework of the collaborative use of existing or forthcoming
technology. The gap is even sharper when collaborative de-
sign is applied to ontologies. In order to fill that gap, we have
introduced C-ODO (Collaborative Ontology-Design Ontol-
ogy), the presentation of which is the main contribution of
this paper. C-ODO is a framework that represents the no-
tions needed to express requirements for the development
of collaborative ontology engineering tools. The framework
is formally described as an OWL(DL) ontology. Through
a simple example, we have shown C-ODO’s main compo-
nents, their usage and relations, and some of the axioms
which formalize the notions it contains. C-ODO can be fac-
torized into six main layers: ontology projects, collaborative
workflows, argumentation schemas, design rationales, func-
tionality descriptions, and design patterns. Each layer is
represented by assuming a distinction between descriptions
(or schemas), and situations, and then adding roles and en-
tity types that describe the world of ontology design. The
context of C-ODO is the NeOn project, where a novel ap-
proach to ontology design is being defined, with reference to
the networked and contextualized dimension of ontologies.
The future NeOn platform for ontology design will include
tools that allow a rich and highly customizable configura-
tion of components, on the basis of the specific needs of a
designer, a team of designers, or distributed teams that work
together in an ontology project or in a part of it. In that
generic perspective, ontology lifecycles can be much more
complex and open-ended than it is usually perceived, and a
precise modeling of requirements, at development time or at
run time, will be a must. The early application of C-ODO
has been realized for the modeling of NeOn functionalities
and requirements.

7. ACKNOWLEDGEMENTS
We are grateful to the members of the NeOn consortium

who contributed to the NeOn vision being funded by the Eu-



Figure 4: C-ODO-based model of DILIGENT argu-
mentation (focus on ontology design rationale)

ropean Commission 6th IST Framework Programme. Fur-
ther information on NeOn is available on http://www.neon-
project.org.

8. REFERENCES
[1] M.S. Ackerman. . In John Carroll, editor, HCI in the

New Millennium, 2001.

[2] E. Bottazzi, C. Catenacci, A. Gangemi, and
J. Lehmann. From collective intentionality to
intentional collectives: an ontological perspective.
Cognitive System Research - Special Issue on
Cognition and Collective Intentionality, 7(2-3), 2006.

[3] Carola Catenacci, Aldo Gangemi, Jos Lehmann,
Malvina Nissim, and Valentina Presutti. Design
rationales for collaborative development of networked
ontologies state of the art and the collaborative
ontology design ontology. Deliverable d2.1.1 of the
neon project, NeOn project, 2006.

[4] H.E. Chandler. The complexity of online groups: a
case study of asynchronous collaboration. ACM
Journal of Computer Documentation, 25(1):17–24,
2001.

[5] The collaborative ontology design ontology.
http://www.loa-
cnr.it/ontologies/OD/OntologyDesign.owl.

[6] A. Das, W. Wand, and D.L. McGuinness. Industrial
Strength Ontology Management. In Proceedings of the
International Semantic Web Working Symposium,
2001.

[7] A. Gangemi, S. Borgo, C. Catenacci, and J. Lehmann.
Task taxonomies for knowledge content. Deliverable
D07 of the Metokis Project, Laboratory for Applied

Ontology ISTC CNR, 2005.
http://www.loa-cnr.it/Papers/D07 v21a.pdf.

[8] A. Gangemi, C. Catenacci, M. Ciaramita, and
J. Lehmann. Modelling Ontology Evaluation and
Validation. In Proceedings of the Third European
Semantic Web Conference. Springer, 2006.

[9] A. Gangemi, C. Catenacci, M. Ciaramita, and
J. Lehmann. Qood grid. A metaontology-based
framework for ontology evaluation and selection. In
Proceedings of the EON’2006 Workshop, 2006.
http://km.aifb.uni-karlsruhe.de/-

ws/eon2006/eon2006gangemietal.pdf.

[10] A. Gangemi and P. Mika. Understanding the semantic
web through descriptions and situations. In
CoopIS/DOA/ODBASE, pages 689–706, 2003.

[11] Aldo Gangemi. Ontology Design Patterns for
Semantic Web Content. In M. Musen et al. (eds.):
Proceedings of the Fourth International Semantic Web
Conference, Galway, Ireland, 2005. Springer.

[12] P. Haase, S. Rudolph, Y. Wang, and S. Brockmans.
Networked ontology model. Technical report,
Universität Karlsruhe, 2006.

[13] P. Kollock. . In Proceedings of the Harvard Conference
on Internet and Society, 1996.

[14] Y. Lu. Roadmap for tool support for collaborative
ontology engineering. Master thesis, XiAn
Transportation University, Department of Computer
Science, 1994 (2003).
http://www.cs.uvic.ca/ chisel/thesis/YilingLu.pdf.

[15] C. Mancini and S.B. Shum. Modelling discourse in
contested domains: A semiotic and cognitive
framework. technical report kmi-06-14. Technical
report, Open University, 2006. Final version submitted
to International Journal of Human-Computer Studies.

[16] W.C. Mann and S.A. Thompson. Rhetorical structure
theory: Toward a functional theory of text
organisation. Text, 8(3):243–281, 1988.

[17] E. Motta and W. Lu. A library of components for
classification problem solving. Ibrow project
ist-1999-19005: An intelligent brokering service for
knowledge-component reuse on the world-wide web,
deliverable 1, KMi, The Open University, UK, 2000.

[18] N.F. Noy, A. Chugh, W. Liu, and M.A. Musen. A
Framework for Ontology Evolution in Collaborative
Environments. In Proceedings of The Semantic Web -
ISWC 2006, volume 4273, pages 544–558.
Springer-LNCS, 2006.

[19] D.E. Perry and G.E. Kaiser. Models of software
development environments. IEEE Transactions On
Software Engineering, 17(3):283–295, 1991.

[20] W.C. Regli, X. Hu, M. Atwood, and W. Sun. A survey
of design rationale systems: Approaches,
representation, capture and retrieval. Engineering with
Computers, 16:209–235, 2000.

[21] T.J.M. Sanders, W.P.M. Spooren, and L.G.M.
Noordman. Coherence relations in a cognitive theory
of discourse representation. Cognitive Linguistics,
4(2):93–133, 1993.

[22] B. Sereno, S.B. Shum, and E. Motta. Claimspotter:
An Environment to support Sensemaking with
Knowledge Triples. In Proceedings of the Intelligent
User Interfaces Conference, IUI2005, San Diego, CA,



USA, 2004.

[23] S.B. Shum and et al. Co-opr: Design and evaluation
collaborative sensemaking and planning tools for
personnel recovery. Technical report kmi-06-07, Open
University, UK, 2006.

[24] S.B. Shum, E. Motta, and J. Domingue. Augmenting
Design Deliberation with Compendium: The Case of
Collaborative Ontology Design. In Proceedings of the
Workshop on Facilitating Hypertext Collaborative
Modelling in conjunction with ACM Hypertext
Conference, Maryland, 2002.

[25] Y. Sure, C. Tempich, D. Vrandecic, S. Pinto,
E. Paslaru Bontas, and M. Hefke. Sekt methodology:
Initial framework and evaluation of guidelines. Sekt
deliverable d7.1.2, Institut AIFB, Universitaet
Karlsruhe (TH), Germany, 2006.
http://www.sekt-project.org.

[26] C. Tempich. Ontology Engineering and Routing in
Distributed Knowledge Management Applications.
PhD thesis, University of Karlsruhe, 2006.

[27] C. Tempich, S. Pinto, Y. Sure, and S. Staab.
Argumentation Ontology for DIstributed,
Loosely-controlled and evolvIng Engineering processes
of oNTologies (DILIGENT). In Proc. of ESWC-2005 -
European Semantic Web Conference, Heraklion, Crete,
2005. Springer.

[28] W.M.P. van der Aalst, A.H.M. ter Hofstede,
B. Kiepuszewski, and A.P. Barros. Workflow patterns.
Distributed and Parallel Databases, 14:5–51, 2003.

[29] F.H. van Eemeren and R. Grootendorst. A Systematic
Theory of Argumentation: The Pragma-Dialectical
Approach. Cambridge University Press, Cambridge,
2003.

[30] D. Vrandecic. Explicit knowledge engineering patterns
with macros. In C. Welty and A. Gangemi, editors,
Proceedings of the Ontology Patterns for the Semantic
Web Workshop at the ISWC 2005, Galway, Ireland,
2005.

[31] D. Vrandecic and et al. Sekt methodology: Initial
lessons learned and tool design. Deliverable d7.2.1 of
the sekt project, Institut AIFB, Universitaet
Karlsruhe (TH), Germany, 2006.


