
Distributed Construction of Ontologies Using Hozo
 Kouji Kozaki Eiichi Sunagawa Yoshinobu Kitamura Riichiro Mizoguchi

The Institute of Scientific and Industrial Research (ISIR), Osaka University
8-1 Mihogaoka, Ibaraki, Osaka, 567-0047 Japan

+81-6-6879-8416

{kozaki, sunagawa, kita, miz}@ei.sanken.osaka-u.ac.jp
ABSTRACT
This paper discusses Hozo’s functionality for supporting
distributed and collaborative construction of ontologies. In a
distributed environment, each ontology is revised asynchronously
by different developers. In such a situation, one of the key issues
is the maintenance of consistency among inter-dependent
ontologies. In order to realize consistent distributed development
of ontologies, Hozo provides two functionalities: to manage the
dependencies between ontologies and to keep and restore
consistencies of ontologies when they are changed.

Keywords
Ontology, Distributed development, Dependency management

1. INTRODUCTION
Ontology is one of the key technologies to realize Semantic Web.
In the Semantic Web, ontologies are shared and reused by
different developers in a distributed environment. To construct
large scale ontologies, it is necessary to collaborate with many
developers. Therefore, distributed and collaborative construction
of ontlogies is one of the most significant issues. In this paper, we
discuss an ontology development system named Hozo to support a
construction of ontologies. We focus on providing a framework
for distributed development. Its main features include a
dependency management of ontologies and a framework for
supporting to keep consistency of ontologies. Section 2 discusses
a distributed ontology development we assume. Section 3
summarizes Hozo and flow of distributed ontology development.
The functionalities of Hozo to support such a development are
described in section 4. In Section 5, discuss some related work.
We conclude with a summary of some future works in Section 6, .

2. DISTRIBUTED CONSTRUCTION OF
ONTOLOGY
We assume a situation where several ontologies are constructed
separately in a distributed environment (and sometimes in parallel
by different developers). In such a situation, some ontologies may
import concepts (classes) defined in other ontologies, and another
concept might be defined in the ontology by extending the
imported concepts (see Figure 1). And then, it means the ontology
B which imports concepts from Ontology A depends on ontology
A. In this paper, we call ontologies which are depended by other
ontology and those depend on others depended ontologies, and
dependent ontologies, respectively. In Figure 1, Ontology A is the
depended ontology of Ontology B, and Ontology B is the

dependent ontology of A. The authors call a development of
ontologies in such a manner distributed ontology development.
The distributed ontology development applies to many situations:
cooperative development, understanding the total picture of
conceptual hierarchy of ontologies, reusing published ontologies
and so on.

In the distributed ontology development, developers construct
multiple ontologies in cooperation among the developers. They
can reuse published components of other ontologies if possible. It
is a common way for ontology development to extend an existing
ontology into a target-specific ontology. However, when
developers construct ontologies in parallel or reuse ontology
which is under construction and thus unstable, consistency among
the ontologies is easily broken because they are revised
asynchronously without notice. Furthermore, they are possibly
updated without concerning whether other ontologies depend on
them or not and how those ontologies would be influenced by
their changes because authorities for maintenance of the
ontologies are separated and distributed to each developer of them.
Therefore, when a developer changes his/her ontology, the change
influences on dependent ontologies of it. In many cases, such a
change may cause inconsistencies among the ontologies.

For consistent development of ontologies, a system should
manage dependencies among the ontologies and support their
developers to harmonize the ontologies. Practically, the system
should have at least two following functionalities:

1) To manage ontologies with its dependencies on others.

2) To provide a framework to keep and restore consistencies of
ontologies when they are changed.

Based on this observation, the authors have investigated how a
change of one ontology influences on others through its
dependencies. And they have devised strategies for the change in
order to keep and restore the consistency of them [1]. They have
implemented a framework for ontology development in harmony
among depended/dependent ontologies as an extension of Hozo
(our ontology development tool) [2].

Copyright is held by the author/owner(s).
WWW 2007, May 8--12, 2007, Banff, Canada.

Figure 1. Distributed ontology development.

Ontology A
Ontology B

Constructs
Ontology A

Developer A
Constructs
Ontology B

Developer B

Ontology B Imports
a concept from Ontology A

Imported concept
Another concepts
are defined by
extending an
imported concept

Ontology B
depends on A

Depended Ontology of B

Dependent
Ontology of A

3. HOZO
3.1 Overview of Hozo
We have developed an environment for building/using ontologies,
named Hozo, based on both of a fundamental consideration of an
ontological theory and a methodology of building an ontology.
The features of Hozo include 1) Supporting role representation [3,
4], 2) Visualization of ontologies in a well considered format, and
3) Distributed development based on management of
dependencies between ontologies. Hozo is composed of Ontology
Editor, Onto-Studio (a guide system for ontology design),
Ontology Server and Ontology Manager (see Figure 2). The
ontology editor provides a developer with a graphical interface,
through which they can browse and modify an ontology locally.
The ontology server stores and manages ontologies under access
control and version management. The developer can access and
browse them through the ontology manager. Furthermore, the
ontology editor of Hozo provides a user support module to
maintain consistencies of the dependencies among ontologies,
called Tracking Pane. Hozo’s native language is XML-based
frame language and ontologies can be exported in OWL, and
RDF(S). It does not support native OWL, but it can import OWL
partially1. The latest version of Hozo is published at the URL:
http://www.hozo.jp.

3.2 Flow of Distributed Ontology Development
Figure 3 shows a skeleton of our conceptual framework for
distributed ontology development. It consists of two parts in a
server-client architecture. One is a shared space, where developers
store ontologies to be opened to other developers. The other is a
local space, where each developer builds and modifies each
ontology which he is responsible for. The developers cannot edit
the ontologies stored in the shared space directly. Under access
control and version management, they edit the personal copies of
ontologies locally and upload them to the shared space when
necessary.

In the distributed ontology development, a target ontology can be
regarded as a system of interrelated ontologies stored in the shared
space. They are constructed in cooperation among the developers.
Each developer constructs some of them under his responsibility2.
Then, he may refer to other ontologies and import concepts

1 The OWL import mechanism is under improvement.
2 A same component ontology may be constructed by several

developers.

defined in them. It implies that each developer has two kinds of
ontologies: ontologies which the developer builds and ontologies
which he/she refers to.

Distributed ontology development proceeds in the repetition of the
following steps;

1) A developer gets latest information on ontologies which he
builds or refers to from the ontology server. And he
downloads them form shared space to personal space (client)
through an ontology manager. If it is needed, he locks
ontologies to avoid that someone updates those ontologies
while he is editing them.

2) The developer analyzes changes in the updated ontologies
and evaluate whether the changes are influencing on
consistency of the ontology which he is constructing with the
help of ontology manager.

3) If the changes cause inconsistency in his ontology, the
developer modifies his ontology in order to keep and restore
its consistency with the updated ontologies. Hozo helps this
modification process by suggesting possible countermeasures
for coping with each of the changes.

4) After the modification, the developer starts editing his
ontology as he needs. While editing the ontology, he can
imports and use concepts from other ontologies which he
refers to. Then the dependency between his ontology and the
referred ontology through the imported concepts is managed
by the ontology manager.

5) After editing, the developer publishes his ontology by
uploading it to the shared space. And then, he unlocks the
ontology if he allows other developers to edit it.

Every developer goes over this process individually and in parallel,
and then the whole target ontology evolves. As a result of their
developing processes the whole target ontology is constructed in
the shared space.

We suppose another collaborative development process such as
constructing a single ontology by many developers. Our
distributed ontology development also can support such process in
the repetition of the following steps:

1) The developers share a target single ontology in the shared
space. The ontology server manages versions of the ontology
and accesses to it.

2) When a developer edits the target ontology, he locks the
ontology and downloads it to his personal space.

Figure 2. Architecture of Hozo

Ontology
Manager

L
anguage

M
anagem

ent System

Ontology ServerOntology Server
Clients

(other agents)

ModelModel

OntologyOntology

R
eference / Install

Onto Studio
(a guide system for
ontology design)

support

Ontology/Model
Developer

building

（modifying

）

brow
sing

Dependency
Management

O
ntology
E

ditor

Tracking
Pane

Information
of changes

Figure 3. A Conceptual Framework for Distributed
Ontology Development.

Upload

Ontology which
the developer builds
Ontology which
the developer refers to

Download
Personal Space
(client system)

Shared Space
(server system)

Version Management
Access Control

Modification
Editing

Developer DeveloperDeveloper

Upload

Upload
Download

Modification
Editing

Modification
Editing

Figure 4. A snapshot of Ontology Manger.

Show information
of ontologies

Compare and Synchronize
ontologies in a client and a sever

Ontologies
 in a client

Ontologies
 in a server

3) If the ontology has been updated by another developer, he
analysis the changes by comparing the ontology with old
versions of it. The ontology manager supports him by
showing the changes and its influence.

4) After the analysis, the developer edits the ontology. And then,
he uploads the edited ontology to shared space and unlocks it.

4. DISTRIBUTED CONSTRUCTION USING
HOZO
Here, the authors summarize how Hozo supports distributed and
collaborative construction of ontologies.

4.1 Dependency Management of Ontologies
4.1.1 Ontology Server and Ontology Manager
The ontology manager (see Figure 4) acts as a bridge between the
personal space (in a client) and the shared space which the
ontology server provides. It carries out the following functions:
1) To show the latest information on the ontologies such as

“updated”, “locked by another developer” and so on.
2) Access control to ontologies (lock and unlock)
3) Version management of ontologies
4) To search concepts defined in other ontologies
5) Synchronize ontologies in client with ontologies in server

4.1.2 Import concepts form other ontologies
When the developer find reusable concepts defined in other
ontologies which are published in the server by other developers,
he can import them to his ontology. The ontology manager
supports him to import the concepts through Import Dialog of the
ontology manager (see Figure 5). The dialog shows concepts in
the selected ontology by tree structure based on is-a relation of
them, and the developer selects a concept which he wants to
import to his ontology. And then the system finds all the concepts
depended by the selected concept form its dependencies3, and it is
imported with them.

3 For example, super classes of the selected concept, and concepts

which the selected concept refers to.

In the ontology editor, imported concepts are represented with
different color from other concepts, and the developer cannot
modify4 them to keep consistencies of ontologies.

4.2 Harmonizing Interrelated Ontologies in
their Conceptual Dependencies
4.2.1 Checking changes of depended ontologies
Ontology Manager shows developers which ontology has been
changed. To maintain the consistency of dependency, the
developer should get more information on, for example, that what
concepts/slots in the depended ontology have been changed and
which concepts in his ontology are influenced by the changes.
Hozo shows such information on the tracking pane and the
browsing pane of its ontology editor.
The tracking pane lists the changes in depended ontologies which
influence on his ontology (see Figure 6). Those changes are
classified in three types (deleted, modified and added), and their
types are represented by icons. The changes are shown by nodes
with icons in tree structure, and the developer can know which
concepts are influenced by the change through child nodes of the
nodes. By clicking a node representing a concept, the selected
concept in the ontology is pointed in the browsing pane of
ontology editor.
In the browsing pane (see Figure 7), the ontology is visualized in
network structures, and the changed concepts are represented by
same icons5 as tracking pane shows. When the developer selects a
changed concept, the concepts influenced by the change are
highlighted on the browsing pane. And then, if the change type of
the selected concept is modification, the details are shown.

4.2.2 Modifying the ontology to keep the consistency
To keep the consistency of the ontology, Hozo suggests possible
countermeasures for coping with each of the changes to the
developer. These countermeasures are devised through our
investigation on conceptual dependencies of ontologies and the
change type of
imported concepts [1].
In the beginning, Hozo
shows the developer
two major strategies:
to accept the change
and to reject it. The
latter implies to
redefine the changed
concept in his
ontology. For example,
if the change type is
modification of an
imported concept,
acceptance of the
change corresponds to
replace the imported
concept with the

4 The developer can use imported concepts to define another

concept. For example, he can define sub classes of them.
5 On the browsing pane, sky blue nodes represent imported

concepts from depended ontologies. Therefore, only sky blue
nodes can have the icons because the changes appear only on
the imported concepts in the distributed ontology development.

Figure 5. Import Dialog.

Selected concept

Selected

 Import Dialog

C
on

ce
pt

 d
ep

en
de

d
by

se

le
ct

ed
 c

on
ce

pt

modified one. And, if the change type is deletion of imported
concept, the acceptance corresponds to deletion of the concept.
The developer can apply these countermeasures by selecting it
through a pop up menu on the browsing pane. After applying
countermeasures, he edits his ontology for coping with the change
if necessary. In that case, it is helpful to him that the system shows
the concepts influenced by the change. Furthermore, if he needs
advanced strategies, the system shows him all countermeasures6
with their details on a harmonizing pane.

5. Related Works
PromptDiff includes a version-comparison algorithm and enables
users to view the differences between the versions [5]. It takes
same approach with us, but it does not support distributed
development discussed section 2. DILIGENT [6] and ONKI [7]
supports distributed development of ontology through shared
space for ontologies in the same way with Hozo. But they do not
have functionalities to suggest countermeasures for coping with
each of the changes to the developer when depended ontologies
are modified. KAON and ours focus on that changes in one
ontology can cause inconsistencies in other dependent ontologies.
And, in order to ensure their consistencies, they propose deriving
evolution strategies [8]. But it does not provides strategies which
reduce the influences against the changes although Hozo suggests
them (e.g. deletion of a concept can be canceled by redefining it in
another ontology). The difference is caused by different treatment
of relationship between depended ontologies and dependent
ontologies.

6. CONCLUSION AND FUTURE WORK
In this paper, the authors discussed some functionalities of Hozo
to support distributed ontology construction. Harmonization of
ontology is an essential issue especially in a distributed
development. Our system contributes to resolving the issue based
on management of dependencies between ontologies. The
functionalities can support to construct a single ontology by many
developers collaboratively.

As future work, the authors plan to enhance our system according
to the following future plan: (1) Maintenance of consistency

6 We have not implemented some of advanced countermeasures

yet. But, we suppose the two major strategies are enough for
coping with the change in a lot of cases.

among ontologies and its instance models based on our framework.
(2) Supporting native OWL without transformation of file format.
(3) Functionality to deal with OWL imports which refer to OWL
files that are kept elsewhere. (4) Functionality for checking the
ontology with a reasoner.

7. ACKNOWLEDGMENTS
We are grateful to Mr. Mamoru Ohta for his support to implement
our system.

8. REFERENCES
[1] E. Sunagawa, et al.: An Environment for Distributed

Ontology Development Based on Dependency Management,
Proc. of ISWC2003, pp. 453-468, 2003.

[2] Kozaki K., et al.: Hozo: An Environment for Building/Using
Ontologies Based on a Fundamental Consideration of "Role"
and "Relationship", Proc. of EKAW2002, pp.213-218,
Siguenza, Spain, 2002

[3] Sunagawa, E., et al. :Organizing Role-concepts in Ontology
Development Environment: Hozo, Proc. of 2005 AAAI Fall
Symposium on Roles, an interdisciplinary perspective, 2005

[4] Kozaki K., et al.: Fundamental Consideration of Role
Concepts for Ontology Evaluation, Proc. of EON2006
Edinburgh, United Kingdom, May 22, 2006

[5] Noy, N., et al.: Tracking Changes during Ontology Evolution,
Proc. of ISWC2004, Hiroshima, Japan, pp.259-273, 2004

[6] Tempich, C., et al.: An Argumentation Ontology for
DIstributed, Loosely-controlled and evolvInG Engineering
processes of oNTologies (DILIGENT), Proc. of ESWC2005,
Greece, pp. 241-256, 2005

[7] Valo, A., Hyvonen, E. and Komurainen, V.: A Tool for
Collaborative Ontology Development for the Semantic Web,
in: Proc. of DC 2005, Madrid, Spain, 2005.

[8] Stojanovic, L., Maedche, A., Motik, B. and Stojanovic, N.,
User-driven Ontology Evolution Management, Proc. of
EKAW 2002, Madrid, Spain, pp. 285-300, 2002

Figure 6. Tracking Pane.

Legends
Deleted

Modified

Added

Depended ontology

Depended ontology

Concepts
which the change
influences

Changed concepts
and

its type of change
Selected Concept

Concepts which the change
of selected concepts influences

Details of
Modification

Figure 7. Representation of changes on Browsing Pane.

Legends
Deleted

Modified

Added

