

Extracting Link Spam using Biased Random Walks
From Spam Seed Sets

Baoning Wu
Dept of Computer Science & Engineering

Lehigh University
Bethlehem, PA 18015 USA

baw4@cse.lehigh.edu

Kumar Chellapilla
Microsoft Live Labs
One Microsoft Way

Redmond, WA 98052 USA

kumarc@microsoft.com
ABSTRACT
Link spam deliberately manipulates hyperlinks between web
pages in order to unduly boost the search engine ranking of one or
more target pages. Link based ranking algorithms such as
PageRank, HITS, and other derivatives are especially vulnerable
to link spam. Link farms and link exchanges are two common
instances of link spam that produce spam communities – i.e.,
clusters in the web graph. In this paper, we present a directed
approach to extracting link spam communities when given one or
more members of the community. In contrast to previous
completely automated approaches to finding link spam, our
method is specifically designed to be used interactively. Our
approach starts with a small spam seed set provided by the user
and simulates a random walk on the web graph. The random walk
is biased to explore the local neighborhood around the seed set
through the use of decay probabilities. Truncation is used to retain
only the most frequently visited nodes. After termination, the
nodes are sorted in decreasing order of their final probabilities
and presented to the user. Experiments using manually labeled
link spam data sets and random walks from a single seed domain
show that the approach achieves over 95.12% precision in
extracting large link farms and 80.46% precision in extracting
link exchange centroids.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval

General Terms
Algorithms, Experimentation, Performance

Keywords
Search engine, web spam, link spam, random walks, seed sets

1. INTRODUCTION
Web spam comprises web pages that have been manipulated

in ways to achieve higher ranking in search engine results than
they deserve. This manipulation can be broadly classified into two
types: content manipulation and link structure manipulation.
Content manipulation is completely under the control of the web
page authors and as a consequence is easy. Early search engines

relied mostly on the classic vector space model [3] of information
retrieval and did not use link-based ranking. As a result, content
spam appeared as early as 1996, soon after the advent of
successful search engines [1, 2]. Some content manipulation
techniques such as meta tag stuffing and keyword stuffing [4]
were very effective, especially when combined with text hiding
techniques.

The advent of link based ranking algorithms such as HITS [5]
and PageRank [6,7] significantly reduced the effectiveness of
content spam. Unlike altering web page content, acquiring
incoming links from reputed sites with high rank was much more
difficult. Link based ranking algorithms were also more
successful at recognizing popular web sites. While content spam
became less effective, link spam became more prevalent. Link
spam deliberately manipulates hyperlinks between web pages in
order to unduly boost the search engine ranking of one or more
target pages. Since PageRank, HITS, and other derivatives value
hyperlinks more than page content, they are especially vulnerable
to link spam. The ever increasing popularity of shared authorship
of web pages on the internet has reduced the barrier to generating
link spam. Common examples of shared online authorship include
blog pages, user reviews and comments pages, visitor and guest
book pages, etc.

In this paper, we propose utilizing an automated random
model to detect link farms or link exchanges when given some
spam seed domains. The motivation for this work is that usually it
is easy to recognize a few sites (using an automated or manual
process) that are joining link farms, but to enumerate or list all
members from the same link farm or link exchange communities
is nontrivial. The goal of our work is to provide a tool for search
engine experts to automatically expand their spam blacklist when
they have founded a few spam sites.

2. Background and Related Work
Link farms and link exchanges are two common instances of

link spam [8-11]. In general, link farms are made up of sites or
pages from the same owner, while link exchanges can be the joint
collaboration between different content providers.

2.1 Link Exchanges
Link exchange or reciprocal link exchange is a practice of

exchanging links with other websites. Both participating web sites
agree to link to each other. Several methods exist for arranging a
link exchange between webmasters. One common way is to show
interest in exchanging links explicitly on the web pages. Another
hidden method is to email another website owner and ask for a
link exchange. A webmaster can also request for a link exchange
through any of several webmaster discussion boards based on a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

AIRWeb’07, May 8, 2007, Banff, Alberta, Canada.
Copyright 2007 ACM 978-1-59593-732-2…$5.00

specific topic/category or make the invitation even open to
anybody.

One trick that some webmasters play is that they announce
that they will only accept link exchanges from sites that are
topically related, and not entertain link exchange requests from
topically unrelated sites. Such sites are sill participating in link
exchanges and, in some cases, such web sites end up dominating
the top search ranks for queries related to the topic.

Figure 1. An example link exchange community, wherein node

A is the centroid, and nodes {B, C, D, E} are the leaves.
Figure 1 shows an example star style graph for a link

exchange. Node A is the initiator of the link exchange. Each of
the other nodes, namely, B, C, D, and E have reciprocal links with
node A. Node A is designated as the centroid of the link exchange
community, while nodes B, C, D, and E are referred to as the
leaves in the link exchange community.

When nodes participate in many link-exchange communities,
a new, big link community will be generated, as depicted in
Figure 2.

Figure 2. A community of link exchange communities.

2.2 Link Farms
While link exchange systems are designed to allow

individual websites to selectively exchange links with other
relevant websites, link farms comprise a group of web pages that
all hyperlink to many/all other pages in the group. Owing to the
size of these groups, most link farms are created through
automated programs and services. Figure 3 presents an example
of a small link farm. Nodes A, B, and C are densely connected to
form a link farm.

Carefully devised link exchanges and link farms and
alliances between multiple link farms and link exchanges can be
reciprocally advantageous to all participants [9,12]. In this paper,
pages that spammers wish to boost are called target pages. For
any link farm and any target set of pages, wherein each target
page is pointed to by at least one link farm page, the sum of
PageRank scores over the target set’s nodes is at least as large as a
linear function of the number of pages in the link farm [7].

Figure 3. An example link farm. Nodes A, C, and D

form the link farm.

2.3 Seed Set Expansion
The link structure of the Web automatically lends itself to

seed set expansion. For example, the first step of the famous
HITS algorithm uses a search engine to generate a small seed set
of results which is then grown using a fixed-depth neighborhood
expansion. HITS is then run on the enlarged seed set. Such seed
set expansion is also broadly used in local link-based analysis,
especially in community analysis [13,14], link based ranking
algorithms [5,6], and classification [15]. Seed set expansion has
also been used to some extent in identifying link spam. For
example, Wu and Davison [27] identify a seed set of link farm
pages based on the observation that the in- and out-neighborhood
of link farm pages tend to overlap. Then the seed set of bad pages
is iteratively extended to other pages which link to many bad
pages. They neutralize the link spam by dropping links between
link farm pages.

From a graph theoretic perspective, local link-analysis
algorithms attempt to find cuts of small conductance [16,17]
within a carefully expanded neighborhood of the seed vertex. As
part of their work on graph partitioning and graph sparsification
[16], Spielman and Teng present a method for finding cuts based
on the mixing of a random walk starting from a single vertex. The
mixing random walk is used as a subroutine to produce balanced
separators and multiway partitions. Andersen and Lang [17]
investigated the possibility of using the basic random walk model
to detect communities on the web. Motivated by the above ideas,
we propose using a random walk model to detect link spam.
Compared to Andersen and Lang [17], our method requires only a
few seeds to be used to extract link spam communities. Both link
exchanges and link farms produce spam communities – i.e.,
clusters in the web graph with small conductance. Link spam
generates a problem by creating whole communities of web pages.
In this paper, we use random walks to extract link spam
communities.

2.4 Detecting Link Spam
Link spamming is important not only because it is very

effective but also because it is much harder to detect than content
based spam both by humans and automated algorithms. Even
when equipped with knowledge of some members of a link farm,

A

C E

DB

CentroidLeaf

C

D

B

A

E F

human judges still need to spend a nontrivial amount of time to
extract their partners from the web. The difficulty stems from the
fact that one needs to examine the link structure and assess
whether back-linking patterns are natural or artificially generated
to boost search engine rankings. False positives result often. For
example, link spamming tends to be a common side-effect for
affiliate pages as their business model is based on traffic
redirection from other sites. Detailed analyses of how PageRank
scores can be manipulated by link spam are presented in [9,10].

Traditional link spam detection algorithms [18-23] have
adopted a fully automatic approach that does not require human
input. PageRank based schemes such as SpamRank [18],
TrustRank [19], Topical TrustRank [20], Anti-Trust Rank [21],
HostRank [22], BadRank [23] etc. have been proposed. Statistical
approaches based on machine learning that detect link spam by
finding missing statistical features have also received much
attention [24]. Decision trees trained on a broad set of features
have been used to distinguish navigational and link-spam (dubbed
as nepotistic) links from good links [25]. Linkage pattern based
features [26] combined with web page features such as host
names, IP addresses, in- and out-degree, page count, and rate of
change [24] have also been shown to be useful in detecting web
spam.

The strength of fully automated techniques lies in their
scalability to the whole web. However, they can suffer from low
precision at moderate to high recall. This is partly because of the
inherent ambiguity in determining whether a community is spam
or not. There can be disagreement even among different human
judges. This is further exacerbated by the dynamic nature of web
spam that results in a constant arms race between a search
engine’s efforts to reduce web spam and the spammers adapting
their techniques to subvert the solution. Further, trust based
ranking algorithms may need to solve the problem of generating
the optimal trusted seed set and machine learning based
algorithms need to pay the cost of generating many possibly
expensive features.

For practical use, even the best web spam detection algorithms
generate a non-trivial number of false positives and false
negatives. False positives are much more damaging than false
negatives. Commercial search engines employ manual effort to
quickly identify these false positives and correct them
appropriately. Tools that can make the manual post-processing
more efficient and allow humans to scale their efforts are in great
demand.

In this paper, we present a directed approach to extracting link
spam communities when given one or more members of the
community. In contrast to previous completely automated
approaches to finding link spam, our approach is specifically
designed to be used interactively. In many cases, our approach
can be used as a post-processing step to resolve ambiguous spam
communities. The proposed approach starts with a small spam
seed set provided by the user (or an automated algorithm
scrubbed by a human) and simulates a random walk on the web
graph. The random walk is biased to explore the local
neighborhood around the seed set through the use of decay
probabilities. Truncation is used to retain only the most frequently
visited nodes. After termination, the nodes are sorted in
decreasing order of their final probabilities and presented to the
user. With the proposed tool in hand, human judges need only
make decisions at the spam community level. So, their

involvement can be limited and human input can be scaled by
several orders of magnitude.

3. METHOD
Given a seed set containing one link spam seed and the web graph,
a biased random walk is applied to extract other members within
the same community as the seed domain or page.

3.1 Random Walk Model
The basic random walk model is quite simple and is similar to
those presented in [16] and [17]. Consider a graph G = {V, E}
with n = |V| nodes. Let A denote the adjacency matrix of G, and
let D be the diagonal matrix where Dii = d(vi), the degree of the i-
th vertex. Let S represent the seed set and s = |S| represents the
seed set size1. The random walk begins with an initial probability
distribution p0 given by

0

1/ if ,
()

0 otherwise

S i S
p i

∈
=
⎧
⎨
⎩

Only the seed node(s) have non-zero probabilities. Then we
iteratively update the probabilities as the random walk progresses,
using

()1 11

2
t tp I AD p+ −= +

The above random walk model simulates the following random
web surfer behavior. The user starts from one of the seed nodes
and at each iteration

1. with 0.5 probability stays at the current node, and
2. with 0.5 probability jumps to one of the child nodes2

with equal probability

Note that the model is also equivalent to the user starting with a
seed node and at each iteration

1. with 0.5 probability stays at the current node, and
2. with 0.5 probability jumps to one of the non-zero

probability nodes with probability proportional to their
current value.

Intuitively, the nodes within the same community as the seed set
will get higher probability values after a few iterations because
these nodes are closer to the seed nodes and are also better
connected to other nodes within the same community. Thus, a
random surfer will jump to them with a greater chance. While the
nodes that are not within the spam community will finally get
poor probability values because a random walker will jump to
them from fewer nodes. If iterated for a long time, for a connected
graph the probabilities will asymptotically converge to the first
Eigenvector of the transition probability matrix, given by

1 All experiments in this paper use a seed set of size 1. However,

the proposed approach is general and applicable to seed sets of
any size.

2In directed web graphs, jumping to the child nodes corresponds
to clicking on one of the out-links, while in undirected graphs
this corresponds to jumping to either an out-link or an in-link.

()11

2
T I AD−= +

The formulation is similar to several PageRank style random
walks over the entire web graph. However, there are several key
differences. Firstly, there is no uniform jump vector. Secondly,
we are interested in the transient behavior of the random walk and
not the asymptotic converged probabilities. Further, several
modifications are made when this random walk procedure is
implemented in practice (see Section 3.2), that change the
dynamics of the random walk.

In the transient phase, the node probabilities are good indicators
of whether a node belongs to the same spam community as the
seed set or not. Nodes with high probability are more likely to be
part of the spam community than nodes with low probabilities.
Nodes with zero probability are either not part of the spam
community or they have not yet been discovered.

The random walk model can be modified by changing the
composition of A in the formula in Section 3.1. By generalizing A
from a simple adjacency matrix to a weighted matrix, one can
envision incorporating extra information about the nodes and
edges in the graph to guide the random walk. The random walk
follows outgoing edges from a given node with probability
proportional to the edge weight. Examples of useful information
include, but are not limited to, node weights based on content
spam classifier outputs, edge weights based on topic similarity
between pairs of pages, node and edge weights based on user
traffic, clicks, dwell-time, etc.

3.2 A Practical Random Walk Model
Naively applying the above random walk model as is to a web
graph leads to several practical problems. For example, most web
graphs have low diameter and small mean pair-wise distances. So,
the number of nodes with non-zero probability grows very
quickly. For example, for the web domain graph used in this
paper, the diameter is about 3, and a BFS of 3 steps on average
extracts almost 30% of the whole graph. This is undesirable both
from a computational perspective and the quality of results
perspective. If unchecked, the computation degenerates to a
PageRank style computation3 over the whole web graph and the
resulting community will have little to do with the seed set. In this
paper, following methods similar to those in [17], the random
walk model was changed as follows.

3.2.1 Truncation
In order to improve the performance of the computation and also
bias the random walk towards more promising nodes, a truncation
step is added to the end of each iteration. The truncation
procedure prunes some nodes (sets their probability to zero) from
the tail of the sorted list of probabilities. Pruning can be done in
two ways. One can pick a fixed threshold and remove all nodes
with a probability value below the threshold. One can also choose
to drop nodes in the bottom k-percentile of the probability

3 Note that the simulated random walk does not have a jump

vector. Thus the random walk is bound by the connected
component containing the seed set. However, for most seed sets,
on average they belong to the giant component which can be
larger than 80% of the web graph.

distribution. We chose the latter approach, as it is more dynamic
and adapts to communities of different sizes.

3.2.2 Renormalizing the Probabilities
In any web graph, leaf nodes (nodes with no children) will leak
probability at each iteration. The truncation step also results in a
probability leak from the nodes that were pruned. To compensate
for this, at the end of each iteration, the probabilities are
renormalized to sum to one.

3.2.3 White list of Good Domains
Random walks from spam seeds often lead to reputed domains
that are well connected in the web. Good domains, such as
yahoo.com or dmoz.org, often have a large fanout and point to
lots of other domains on the web. This results in an explosive
growth in the size of the candidate set every time the random
walk encounters a reputed domain. The good domains eventually
dominate the random walk resulting in community drift. In order
to address this problem, we use a white list of known good
domains. The random walk is modified to not follow any links to
white listed domains. This assumption is reasonable because we
expand from spam seed sets and reputed well-known domains are
very unlikely to join these link farms or link exchange
communities.

3.2.4 Decayed Random Walk
Since the members of a link farm or link exchange are expected to
have short distances from the seed set, it makes sense that we give
larger weights to the nearby nodes than nodes that are far away
from the seed set. We propose using a decay to constrain the
random walk from wandering too far away from the seed set. This
is implemented through a probability adjustment step before the
truncation step. The probability adjustment step decays each non-
zero probability value by an exponential factor based on the
distance of the node to the seed nodes, as follows:

[] [] []t tp i p i iγ= ×

()[] 2 ii δγ −=

where δ(i) is the distance of node i to the seed set. For weighted
graphs, one can extend this distance to be the sum of the edge
weights along the shortest path. It is also common to truncate the
decay after a certain distance, i.e., set γ(i) = 0, whenever
δ(i) > δmax.

4. EXPERIMENTS
The proposed random walk model was tested on the domain graph
from July 2006 obtained by processing crawl data from Live
Search4.

4.1 Datasets
4.1.1 Web Graph
The domain level graph, GD = {VD, ED}, contained |VD| = 47.8
million domains (nodes) and about |ED| = 470 million directed
edges. By making each edge bi-directional to form an undirected
graph, we get the number of edges to be 820 million. Each node
in the graph was a domain. All hosts for the same domain were
collapsed into the same node. Edges between domain nodes

4 Live Search: http://www.live.com

represent the existence of at least one hyperlink between the two
domains. The edge weights were the number of links between
domains. The diameter of the domain graph was about 3 and the
average fan out of the nodes was around 10. The largest
connected component contained 13.2 million domains. The graph
contained 34.1 million isolated domains, i.e., they had no edges.
These were registered domains that either were not yet hosted, or
did not link to pages outside their domain.

4.1.2 Spam Seeds
We used a two step process to select a set of seeds for our
experiments. Following [27], we first generated a list of domains
that had at least 30 common incoming and outgoing links in the
directed domain graph. Second, we randomly sampled 75 link
farm seeds and 50 link exchange seeds from this set. Manual
checks were used to ensure that these seeds were from unique link
farm or link exchange communities. Note that these 50 link
exchange domains are (one of many) centroids in the link
exchange community. While labeling the link farms, each of the
link farms was also classified into small or big based on the
number of nodes participating in the link farm. Among the labeled
set of link farm seeds, 46 were big link farms, with at least 50
members, and 27 were small link farms, which contains less than
50 members. On average, the small link farms contained only 10-
20 members. The remaining two seed domains were link farms
made up of web blogs. Overall, for all experiments in this paper,
the spam seed set size was 1, i.e., it contained only a single seed
domain.

4.1.3 White List
A list of 25,667 good non-spam domains was used as a white list.
Note that these made up less than 0.05% of the set of all domains
in the domain graph.

4.1.4 Practical Random Walk Parameters
The random walk was run for 30 iterations starting from each of
the 75 link farm seeds. We used the decayed random walk model
and dropped the bottom 15 percentile during truncation. We
choose the output from step 30. More intelligent ways of picking
the best step to output the community are discussed and evaluated
in [17]. However, in the interests of simplicity, we opted to
choose a fixed iteration to output the extracted link farm. We did
not tune either of these numbers. Real world systems should tune
them for their intended use and improved performance in their
problem domain.

4.1.5 Directed, Inverted, and Undirected Walks
The original domain graph contained directed edges. From the
directed graph we computed both the inverted and undirected
versions of the domain graph. The inverted graph was obtained by
reversing the direction of each edge. The adjacency matrix for the
inverted graph is obtained by simply transposing the original
adjacency matrix. The inverted graph has been favored in
previous link spam detection experiments [27]. The adjacency
matrix for the undirected domain graph was obtained by taking
the mean of the original adjacency matrix with its transpose.

4.1.6 Weighted Domain Graph
Usually, there is more than one link between domains. We can get
a weighted domain graph by using the number of links as the
weight.

5. RESULTS
We ran experiments using the directed, inverted, and undirected
versions of the domain graph. Experiments were also conducted
with weighted and unweighted versions of the graph. Only edge
level weights (representing the number of edges between domains)
were used in the experiments. Node level weights were not used
in the experiments reported in this paper5. There were marginal
differences between the performance, with all three versions
producing roughly similar results. This is somewhat expected
since strong link farms and link exchanges tend to have a
symmetric structure. We often found that both the parents and the
children of a seed node were members of the same spam
community. The simulated random walks are very fast. Our test
implementation took between 1 and 2 minutes for extracting both
link farm and link exchange seed sets. We expect optimized
implementations to be much faster. However, one consistent but
relatively small difference was in the size of the spam
communities extracted by the different random walk versions. In
the domain graph, there were many more edges with small
weights than large weights. As a result, all three weighted
versions produced communities that were smaller than their
unweighted counterparts.
Random walks on the undirected domain graph produced slightly
larger communities than their directed and inverted versions. This
is also expected since the undirected graph has roughly twice as
many edges as the directed or inverted graphs. Further, for a fixed
truncation percentile threshold, spam communities found using
random walks on the undirected graph grew faster over successive
iterations than on the directed or inverted graph. This is explained
by the average fan-out for each node in the undirected graph
being almost twice that in the directed and inverted versions.
The extracted spam communities were manually evaluated.
Labeling a domain as part of a link farm or link exchange is a
time consuming task. Unlike labeling individual web pages, to
manually determine whether a given domain participates in a link
exchange or not, one has to check several tens of pages in the
domain. If one or more pages in the domain participate in a link
exchange, the domain is marked as participating in a link
exchange. One thing to note here is that we only mark the
centroids of link exchange communities as link exchange nodes
(see Section 5.2 for details). Link farms are even more time
consuming to label, as one needs to find several colluding
domains for each candidate link farm member domain being
evaluated.
In view of the above, we report manual evaluation results on only
the undirected and unweighted domain graph. Overall we
manually evaluated about 4000 domains. We expect the other
random walk variants to be of similar quality with maybe a
slightly lower recall and slightly higher precision.

5.1 Link Farms
Each link farm community obtained using the random walk

was evaluated as follows. The domains in the community were
first ranked in decreasing order based on their final probabilities.
They were then segmented into ten buckets of equal size. Bucket
1 contains the top 10 percentile nodes with highest probability
values and bucket 10 contains the bottom 10 percentile nodes

5 We plan to pursue using content based spam classifier outputs as

node weights in future work.

with lowest probability values. Three domains were randomly
chosen from each of the ten buckets and manually checked to
determine whether the domain belonged to the same link farm as
the seed set or not. Hence, for each seed set, we manually
checked 30 domains from the extracted link farm community. In
total, we checked about 2250 domains for link farm seeds.

 10 100 1000 10000
0

5

10

15

20

Extracted Link Farm Community Size

P
er

ce
nt

ag
e

Figure 4. Histogram of the size of link farm communities

extracted using the decayed random walk from a single link
farm seed domain on the undirected and unweighted version

of the domain graph. The mean of the histogram is 268.04
domains.

0 2 4 6 8 10
0

20

40

60

80

100

Bucket

M
ea

n
P

re
ci

si
on

Big
Small

Figure 5. Mean precision curve for link farm communities
extracted using random walks on the undirected domain

graph from 73 seed sets. 46 seeds were from big link farms
with over 50 nodes. 27 seeds were from small link farms with
less than 50 nodes. On average the small link farms only had
about 10-20 nodes. Bucket 1 contains nodes with probabilities
in the top 10 percentile, while bucket 10 contains nodes with

probabilities in the bottom 10 percentile.
Figure 4 presents a histogram of the size of the extracted link

farm communities using the decayed random walk on the
undirected and unweighted version of the domain graph. Note that
each of the seed sets contained only a single domain. The number
of domains in the extracted link farm community ranged from a
few tens to several thousand with the mean being 268.04 domains.

Figure 5 presents the mean precision curves for 73 seeds
comprising seeds from 46 big and 27 small link farms. Here
precision refers to the percentage of sites marked by our random
walk model that are true link farm nodes. The two blog seeds
failed to generate reasonable results. One possible reason is that
both of these blogs had many outgoing links, which caused a
community drift making the real link farm invisible. The random
walk model does remarkably well for large link farms with over
90% precision across almost all 10 buckets. The mean precision
was 95.12% for large link farms over all 10 buckets. This
suggests that starting from only one spam seed, we can identify
several hundreds of its partners with more than 95% precision.
For the two blog seeds, we observed a quick community drift and
the resulting results were not as good. Blog seeds require a
modified version of the algorithm that is robust to such
community drift.

For small link farms, the trend is obvious in that nodes with
higher probability are more likely to belong to the same link farm
as the seed node. However, after the first couple of buckets, the
false positives quickly overwhelm true positives. Manual
inspection of the results in the first bucket showed that most of
the nodes with high probability were from the same link farm as
the seed. In general, random walk models are known to
experience community drift with small link farm seeds [17]. One
can potentially counter this by using a truncated decay (δmax).

5.2 Link Exchanges
We followed a similar procedure for evaluating communities

extracted from link exchange seeds. The nodes in the
communities were sorted, bucketed, and sampled for evaluation.
In total, 1500 link exchange domains were manually evaluated.

In comparison with the evaluation of link farms, the link
exchange evaluation procedure was much more stringent. Only
domains that were centroids/hubs of the link exchange were
marked as belonging to the link exchange spam community. Leaf
nodes of a link exchange community were considered to be false
positives. There are two reasons for this choice. Primarily, only
the centroid/hub domains of a link exchange community can be
manually labeled reliably correctly. Our approach during labeling
involved looking for one or more pages in the domain that contain
an explicit invitation to cross link with the promise to link back.
Secondly, the easiest way to neutralize a link exchange
community is to neutralize/demote the hubs in the link exchange
community. Thus identifying the centroids/hubs of a link
exchange community is of most interest when trying to detect link
exchanges.

Figure 6 presents a histogram of the size of the extracted link
exchange communities using the decayed random walk on the
undirected and unweighted version of the domain graph. Note that
each of seed sets contained only a single link exchange centroid
node. The number of domains in the extracted link exchange
community ranged from a few tens to several thousand with the
mean being 513.5 domains.

Figure 7 presents the mean precision curve for link exchange
communities extracted from 50 seeds. The random walk model
does quite well with precision values above 80% in the top half
buckets and above 70% in the bottom half buckets. The mean
precision was 80.46% over the 10 buckets. As we have mentioned
before, we only mark centroids of link exchange communities.

Hence, higher precision would be obtained if leaf nodes of the
link exchange communities were also included.

6. DISCUSSION
Stronger parametric flow methods do exist for finding low-

conductance cuts within an expanded neighborhood of the seed
set. However, the random walk-based method used in this paper
offer a weaker spectral-style guarantee on conductance. At the
same time, these guarantees are counterbalanced by a valuable
locality property which ensures that we output a community
consisting of nodes that are closely related to the seed set. Further
improvements on the quality of the results can be obtained by
cleaning up the walk-based cuts with a conservative use of flow
that does not disturb this locality property very much [17].

In contrast to [17], wherein reliable extraction of
communities required a large fraction (over 20%) of the target
community be present in the provided seed set, the experiments in
this paper clearly demonstrate that even a single seed is sufficient
for extracting participating members from the link farm/exchange.
An iterative process can be used to gradually grow the link spam
seed set. Conducting a sequence of random walks with seed sets
augmented with extracted results in the previous iteration might
produce a larger number of results. However, preliminary
experiments (not reported here) did not produce much
improvement.

It is worth mentioning that the random walk models
presented in this paper are still somewhat irreducible. This is
definitely the case if δmax is very large. As a consequence, under
certain pathological cases, significant community drift is possible
with the seed set completely missing from the extracted
community. This occurs when the provided seed is not part of a
tightly linked (spam) community, or is heavily dominated by
another nearby (within δmax) community. In these cases, the
probability of losing the seed set grows exponentially with the
number of iterations.

7. CONCLUSION
In this paper, we investigated the performance of random

walk models for extracting link farms and link exchanges
communities based on the known link farm seeds.

We presented a directed approach to extracting link spam
communities when given one or more members of the
community. In contrast to previous completely automated
approaches to finding link spam, our method is specifically
designed to be used interactively. Our approach starts with a small
spam seed set provided by the user and simulates a random walk
on the web graph. The random walk is biased to explore the local
neighborhood around the seed set through the use of decay
probabilities. Truncation is used to retain only the most frequently
visited nodes. After termination, the nodes are sorted in
decreasing order of their final probabilities and presented to the
user. Experiments using manually labeled link spam data sets and
random walks from a single seed domain showed that the
approach achieves over 95.12% precision in extracting large link
farms and 80.46% precision in extracting link exchange centroids.

Given the high precision for big link farms and link
exchange, random walk models seem to be a promising direction
for detecting spam communities based on the known spam
domains. We plan to explore combinations of page/node level
features with local random walks to improve detection of more
advanced collusion strategies that employ both content and link

spamming techniques. We also plan to explore the performance of
these algorithms on a much larger scale using page-level web
graphs.

8. ACKNOWLEDGMENTS
We would like to thank Chau Luu and Naoko Takanashi for

help with labeling the extracted link farms and link exchanges.
We would also like to thank the anonymous reviewers for
providing valuable feedback.

 10 100 1000 10000
0

5

10

15

20

25

Extracted Link Exchange Community Size
P

er
ce

nt
ag

e

Figure 6. Histogram of the size of link exchange communities
extracted using the decayed random walk from a single link
exchange domain on the undirected and unweighted version
of the domain graph. The histogram mean is 513.5 domains.

0 2 4 6 8 10
0

20

40

60

80

100

Bucket

M
ea

n
P

re
ci

si
on

Figure 7. Mean precision curve for link exchange

communities extracted using random walks on the undirected
domain graph from 50 seed sets. Bucket 1 contains nodes with
probabilities in the top 10 percentile, while bucket 10 contains

nodes with probabilities in the bottom 10 percentile.

9. REFERENCES
[1] C. Chekuri, M. H. Goldwasser, P. Raghavan, and E. Upfal.

“Web search using automatic classification.” In Proceedings

of the 6th International World Wide Web Conference
(WWW), San Jose, US, 1997.

[2] The Word Spy - Spamdexing.
http://www.wordspy.com/words/spamdexing.asp.

[3] R. Baeza-Yates and B. Ribeiro-Neto, “Modern Information
Retrieval.” Addison Wesley, 1999.

[4] http://en.wikipedia.org/wiki/Spamdexing

[5] J. M. Kleinberg. “Authoritative sources in a hyperlinked
environment.” Journal of the ACM, 46(5):604-632, 1999.

[6] S. Brin and L. Page. “The anatomy of a large-scale
hypertextual Web search engine.” Computer Networks and
ISDN Systems, 30(1-7):107–117, 1998.

[7] M. Bianchini, M. Gori, and F. Scarselli. “Inside PageRank.”
ACM Transactions on Internet Technology, 5(1), 2005.

[8] Z. Gyöngyi and H. Garcia-Molina. “Web spam taxonomy.”
In Proceedings of the 1st International Workshop on
Adversarial Information Retrieval on the Web (AIRWeb),
2005.

[9] Z. Gyöngyi, H. Garcia-Molina. “Link Spam Alliances.” In
Proceedings of the 31st International Conference on Very
Large Data Bases (VLDB), Trondheim, Norway, 2005.

[10] Y. Du, Y. Shi and X. Zhao. “Using Spam Farm to Boost
PageRank.” Online at http://www.eecs.umich.edu/~duye/

[11] H. Zhang, A. Goel, R. Govindan, K. Mason, and B. V. Roy.
“Making eigenvector-based reputation systems robust to
collusion.” In Proceedings of the 3rd Workshop on
Algorithms and Models for the Web-Graph (WAW), Rome,
Italy, October 2004. Full version to appear in Internet
Mathematics.

[12] R. Baeza-Yates, C. Castillo, and V. López. “PageRank
increase under different collusion topologies.” In
Proceedings of the 1st International Workshop on
Adversarial Information Retrieval on the Web (AIRWeb),
2005.

[13] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins.
“Trawling the Web for emerging cyber-communities.”
Computer Networks, 31(11{16):1481{1493, 1999.

[14] G. Flake, S. Lawrence, and C. Lee Giles. “Efficient
identification of web communities.” In Sixth ACM
SIGKDD, pages 150{160, Boston, MA, August 20-23 2000.

[15] S. Chakrabarti, B. E. Dom, and P. Indyk, “Enhanced
hypertext categorization using hyperlinks.” In Proceedings of
ACM SIGMOD-98, pages 307-318, Seattle, US, 1998. ACM
Press, New York, US.

[16] D. A. Spielman and S. Teng. “Nearly-linear time algorithms
for graph partitioning, graph sparsification and solving linear
systems,” In ACM STOC-04.

[17] R. Andersen and K. J. Lang. “Communities from seed sets.”
In Proceedings of the 15th International World Wide Web
Conference (WWW), 2006.

[18] A. A. Benczur, K. Csalogany, T. Sarlos, and M. Uher.
“SpamRank - Fully automatic link spam detection.” In
Proceedings of the First International Workshop on
Adversarial Information Retrieval on the Web (AIRWeb),
2005.

[19] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen. “Combating
web spam with TrustRank.” In Proceedings of the 30th
International Conference on Very Large Data Bases
(VLDB), Toronto, Canada, 2004.

[20] B. Wu, V. Goel, and B.D. Davison, “Topical TrustRank:
Using topicality to combat web spam.” In Proceedings of the
15th International World Wide Web Conference (WWW).
Edinburgh, Scotland, 2006

[21] R. Raj, V. Krishnan. “Web Spam Detection with Anti-Trust
Rank.” Second International Workshop on Adversarial
Information Retrieval on the Web (At the 29th Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval).

[22] N. Eiron, K. S. McCurley, and J. A. Tomlin. “Ranking the
web frontier.” In Proceedings of the 13th International World
Wide Web Conference (WWW), pages 309–318, New York,
NY, USA, 2004. ACM Press.

[23] BadRank as the opposite of PageRank.
http://en.pr10.info/pagerank0-badrank/.

[24] D. Fetterly, M. Manasse, and M. Najork. “Spam, damn
spam, and statistics – Using statistical analysis to locate
spam web pages.” In Proceedings of the 7th International
Workshop on the Web and Databases (WebDB), Paris,
France, 2004.

[25] B. D. Davison. “Recognizing nepotistic links on the web.” In
AAAI-2000 Workshop on Artificial Intelligence for Web
Search, Austin, TX, pages 23–28, July 30 2000.

[26] E. Amitay, D. Carmel, A. Darlow, R. Lempel, and A. Soffer.
“The Connectivity Sonar: Detecting site functionality by
structural patterns.” In Proceedings of the 14th ACM
Conference on Hypertext and Hypermedia (HT),
Nottingham, United Kingdom, August 26-30 2003.

[27] B. Wu and B. D. Davison. “Identifying link farm pages.” In
Proceedings of the 14th International World Wide Web
Conference (WWW), 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

