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ABSTRACT 
Link spam deliberately manipulates hyperlinks between web 
pages in order to unduly boost the search engine ranking of one or 
more target pages. Link based ranking algorithms such as 
PageRank, HITS, and other derivatives are especially vulnerable 
to link spam. Link farms and link exchanges are two common 
instances of link spam that produce spam communities – i.e., 
clusters in the web graph. In this paper, we present a directed 
approach to extracting link spam communities when given one or 
more members of the community. In contrast to previous 
completely automated approaches to finding link spam, our 
method is specifically designed to be used interactively. Our 
approach starts with a small spam seed set provided by the user 
and simulates a random walk on the web graph. The random walk 
is biased to explore the local neighborhood around the seed set 
through the use of decay probabilities. Truncation is used to retain 
only the most frequently visited nodes. After termination, the 
nodes are sorted in decreasing order of their final probabilities 
and presented to the user. Experiments using manually labeled 
link spam data sets and random walks from a single seed domain 
show that the approach achieves over 95.12% precision in 
extracting large link farms and 80.46% precision in extracting 
link exchange centroids. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval 

General Terms 
Algorithms, Experimentation, Performance 

Keywords 
Search engine, web spam, link spam, random walks, seed sets 

1. INTRODUCTION 
Web spam comprises web pages that have been manipulated 

in ways to achieve higher ranking in search engine results than 
they deserve. This manipulation can be broadly classified into two 
types: content manipulation and link structure manipulation. 
Content manipulation is completely under the control of the web 
page authors and as a consequence is easy. Early search engines 

relied mostly on the classic vector space model [3] of information 
retrieval and did not use link-based ranking. As a result, content 
spam appeared as early as 1996, soon after the advent of 
successful search engines [1, 2]. Some content manipulation 
techniques such as meta tag stuffing and keyword stuffing [4] 
were very effective, especially when combined with text hiding 
techniques.  

The advent of link based ranking algorithms such as HITS [5] 
and PageRank [6,7] significantly reduced the effectiveness of 
content spam. Unlike altering web page content, acquiring 
incoming links from reputed sites with high rank was much more 
difficult. Link based ranking algorithms were also more 
successful at recognizing popular web sites. While content spam 
became less effective, link spam became more prevalent. Link 
spam deliberately manipulates hyperlinks between web pages in 
order to unduly boost the search engine ranking of one or more 
target pages. Since PageRank, HITS, and other derivatives value 
hyperlinks more than page content, they are especially vulnerable 
to link spam. The ever increasing popularity of shared authorship 
of web pages on the internet has reduced the barrier to generating 
link spam. Common examples of shared online authorship include 
blog pages, user reviews and comments pages, visitor and guest 
book pages, etc.   

In this paper, we propose utilizing an automated random 
model to detect link farms or link exchanges when given some 
spam seed domains. The motivation for this work is that usually it 
is easy to recognize a few sites (using an automated or manual 
process) that are joining link farms, but to enumerate or list all 
members from the same link farm or link exchange communities 
is nontrivial. The goal of our work is to provide a tool for search 
engine experts to automatically expand their spam blacklist when 
they have founded a few spam sites. 

2. Background and Related Work 
Link farms and link exchanges are two common instances of 

link spam [8-11].  In general, link farms are made up of sites or 
pages from the same owner, while link exchanges can be the joint 
collaboration between different content providers. 

2.1 Link Exchanges 
Link exchange or reciprocal link exchange is a practice of 

exchanging links with other websites. Both participating web sites 
agree to link to each other. Several methods exist for arranging a 
link exchange between webmasters. One common way is to show 
interest in exchanging links explicitly on the web pages. Another 
hidden method is to email another website owner and ask for a 
link exchange. A webmaster can also request for a link exchange 
through any of several webmaster discussion boards based on a 
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specific topic/category or make the invitation even open to 
anybody.  

One trick that some webmasters play is that they announce 
that they will only accept link exchanges from sites that are 
topically related, and not entertain link exchange requests from 
topically unrelated sites. Such sites are sill participating in link 
exchanges and, in some cases, such web sites end up dominating 
the top search ranks for queries related to the topic. 

  
Figure 1. An example link exchange community, wherein node 

A is the centroid, and nodes {B, C, D, E} are the leaves. 
Figure 1 shows an example star style graph for a link 

exchange. Node A is the initiator of the link exchange. Each of 
the other nodes, namely, B, C, D, and E have reciprocal links with 
node A. Node A is designated as the centroid of the link exchange 
community, while nodes B, C, D, and E are referred to as the 
leaves in the link exchange community. 

When nodes participate in many link-exchange communities, 
a new, big link community will be generated, as depicted in 
Figure 2.  

  
Figure 2. A community of link exchange communities. 

2.2 Link Farms 
While link exchange systems are designed to allow 

individual websites to selectively exchange links with other 
relevant websites, link farms comprise a group of web pages that 
all hyperlink to many/all other pages in the group. Owing to the 
size of these groups, most link farms are created through 
automated programs and services. Figure 3 presents an example 
of a small link farm. Nodes A, B, and C are densely connected to 
form a link farm.  

Carefully devised link exchanges and link farms and 
alliances between multiple link farms and link exchanges can be 
reciprocally advantageous to all participants [9,12]. In this paper, 
pages that spammers wish to boost are called target pages. For 
any link farm and any target set of pages, wherein each target 
page is pointed to by at least one link farm page, the sum of 
PageRank scores over the target set’s nodes is at least as large as a 
linear function of the number of pages in the link farm [7]. 

 
Figure 3. An example link farm. Nodes A, C, and D  

form the link farm. 

2.3 Seed Set Expansion 
The link structure of the Web automatically lends itself to 

seed set expansion. For example, the first step of the famous 
HITS algorithm uses a search engine to generate a small seed set 
of results which is then grown using a fixed-depth neighborhood 
expansion. HITS is then run on the enlarged seed set. Such seed 
set expansion is also broadly used in local link-based analysis, 
especially in community analysis [13,14], link based ranking 
algorithms [5,6], and classification [15]. Seed set expansion has 
also been used to some extent in identifying link spam. For 
example, Wu and Davison [27] identify a seed set of link farm 
pages based on the observation that the in- and out-neighborhood 
of link farm pages tend to overlap. Then the seed set of bad pages 
is iteratively extended to other pages which link to many bad 
pages. They neutralize the link spam by dropping links between 
link farm pages.  

From a graph theoretic perspective, local link-analysis 
algorithms attempt to find cuts of small conductance [16,17] 
within a carefully expanded neighborhood of the seed vertex. As 
part of their work on graph partitioning and graph sparsification 
[16], Spielman and Teng present a method for finding cuts based 
on the mixing of a random walk starting from a single vertex. The 
mixing random walk is used as a subroutine to produce balanced 
separators and multiway partitions. Andersen and Lang [17] 
investigated the possibility of using the basic random walk model 
to detect communities on the web. Motivated by the above ideas, 
we propose using a random walk model to detect link spam. 
Compared to Andersen and Lang [17], our method requires only a 
few seeds to be used to extract link spam communities. Both link 
exchanges and link farms produce spam communities – i.e., 
clusters in the web graph with small conductance. Link spam 
generates a problem by creating whole communities of web pages. 
In this paper, we use random walks to extract link spam 
communities.  

2.4 Detecting Link Spam 
Link spamming is important not only because it is very 

effective but also because it is much harder to detect than content 
based spam both by humans and automated algorithms. Even 
when equipped with knowledge of some members of a link farm, 
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human judges still need to spend a nontrivial amount of time to 
extract their partners from the web. The difficulty stems from the 
fact that one needs to examine the link structure and assess 
whether back-linking patterns are natural or artificially generated 
to boost search engine rankings. False positives result often. For 
example, link spamming tends to be a common side-effect for 
affiliate pages as their business model is based on traffic 
redirection from other sites. Detailed analyses of how PageRank 
scores can be manipulated by link spam are presented in [9,10]. 

Traditional link spam detection algorithms [18-23] have 
adopted a fully automatic approach that does not require human 
input. PageRank based schemes such as SpamRank [18], 
TrustRank [19], Topical TrustRank [20], Anti-Trust Rank [21], 
HostRank [22], BadRank [23] etc. have been proposed. Statistical 
approaches based on machine learning that detect link spam by 
finding missing statistical features have also received much 
attention [24]. Decision trees trained on a broad set of features 
have been used to distinguish navigational and link-spam (dubbed 
as nepotistic) links from good links [25]. Linkage pattern based 
features [26] combined with web page features such as host 
names, IP addresses, in- and out-degree, page count, and rate of 
change [24] have also been shown to be useful in detecting web 
spam.  

The strength of fully automated techniques lies in their 
scalability to the whole web. However, they can suffer from low 
precision at moderate to high recall. This is partly because of the 
inherent ambiguity in determining whether a community is spam 
or not. There can be disagreement even among different human 
judges. This is further exacerbated by the dynamic nature of web 
spam that results in a constant arms race between a search 
engine’s efforts to reduce web spam and the spammers adapting 
their techniques to subvert the solution. Further, trust based 
ranking algorithms may need to solve the problem of generating 
the optimal trusted seed set and machine learning based 
algorithms need to pay the cost of generating many possibly 
expensive features. 

For practical use, even the best web spam detection algorithms 
generate a non-trivial number of false positives and false 
negatives. False positives are much more damaging than false 
negatives. Commercial search engines employ manual effort to 
quickly identify these false positives and correct them 
appropriately. Tools that can make the manual post-processing 
more efficient and allow humans to scale their efforts are in great 
demand.  

In this paper, we present a directed approach to extracting link 
spam communities when given one or more members of the 
community. In contrast to previous completely automated 
approaches to finding link spam, our approach is specifically 
designed to be used interactively. In many cases, our approach 
can be used as a post-processing step to resolve ambiguous spam 
communities. The proposed approach starts with a small spam 
seed set provided by the user (or an automated algorithm 
scrubbed by a human) and simulates a random walk on the web 
graph. The random walk is biased to explore the local 
neighborhood around the seed set through the use of decay 
probabilities. Truncation is used to retain only the most frequently 
visited nodes. After termination, the nodes are sorted in 
decreasing order of their final probabilities and presented to the 
user. With the proposed tool in hand, human judges need only 
make decisions at the spam community level. So, their 

involvement can be limited and human input can be scaled by 
several orders of magnitude. 

3. METHOD 
Given a seed set containing one link spam seed and the web graph, 
a biased random walk is applied to extract other members within 
the same community as the seed domain or page. 

3.1 Random Walk Model 
The basic random walk model is quite simple and is similar to 
those presented in [16] and [17]. Consider a graph G = {V, E} 
with n = |V| nodes. Let A denote the adjacency matrix of G, and 
let D be the diagonal matrix where Dii = d(vi), the degree of the i-
th vertex. Let S represent the seed set and s = |S| represents the 
seed set size1. The random walk begins with an initial probability 
distribution p0 given by 

0
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Only the seed node(s) have non-zero probabilities. Then we 
iteratively update the probabilities as the random walk progresses, 
using 

( )1 11

2
t tp I AD p+ −= +  

The above random walk model simulates the following random 
web surfer behavior. The user starts from one of the seed nodes 
and at each iteration  

1. with 0.5 probability stays at the current node, and 
2. with 0.5 probability jumps to one of the child nodes2 

with equal probability 

Note that the model is also equivalent to the user starting with a 
seed node and at each iteration 

1. with 0.5 probability stays at the current node, and 
2. with 0.5 probability jumps to one of the non-zero 

probability nodes with probability proportional to their 
current value. 

Intuitively, the nodes within the same community as the seed set 
will get higher probability values after a few iterations because 
these nodes are closer to the seed nodes and are also better 
connected to other nodes within the same community. Thus, a 
random surfer will jump to them with a greater chance. While the 
nodes that are not within the spam community will finally get 
poor probability values because a random walker will jump to 
them from fewer nodes. If iterated for a long time, for a connected 
graph the probabilities will asymptotically converge to the first 
Eigenvector of the transition probability matrix, given by 

                                                                 
1 All experiments in this paper use a seed set of size 1. However, 

the proposed approach is general and applicable to seed sets of 
any size. 

2In directed web graphs, jumping to the child nodes corresponds 
to clicking on one of the out-links, while in undirected graphs 
this corresponds to jumping to either an out-link or an in-link. 
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The formulation is similar to several PageRank style random 
walks over the entire web graph. However, there are several key 
differences. Firstly, there is no uniform jump vector. Secondly, 
we are interested in the transient behavior of the random walk and 
not the asymptotic converged probabilities. Further, several 
modifications are made when this random walk procedure is 
implemented in practice (see Section 3.2), that change the 
dynamics of the random walk. 

In the transient phase, the node probabilities are good indicators 
of whether a node belongs to the same spam community as the 
seed set or not. Nodes with high probability are more likely to be 
part of the spam community than nodes with low probabilities. 
Nodes with zero probability are either not part of the spam 
community or they have not yet been discovered. 

The random walk model can be modified by changing the 
composition of A in the formula in Section 3.1. By generalizing A 
from a simple adjacency matrix to a weighted matrix, one can 
envision incorporating extra information about the nodes and 
edges in the graph to guide the random walk. The random walk 
follows outgoing edges from a given node with probability 
proportional to the edge weight. Examples of useful information 
include, but are not limited to, node weights based on content 
spam classifier outputs, edge weights based on topic similarity 
between pairs of pages, node and edge weights based on user 
traffic, clicks, dwell-time, etc. 

3.2 A Practical Random Walk Model 
Naively applying the above random walk model as is to a web 
graph leads to several practical problems. For example, most web 
graphs have low diameter and small mean pair-wise distances. So, 
the number of nodes with non-zero probability grows very 
quickly. For example, for the web domain graph used in this 
paper, the diameter is about 3, and a BFS of 3 steps on average 
extracts almost 30% of the whole graph. This is undesirable both 
from a computational perspective and the quality of results 
perspective. If unchecked, the computation degenerates to a 
PageRank style computation3 over the whole web graph and the 
resulting community will have little to do with the seed set. In this 
paper, following methods similar to those in [17], the random 
walk model was changed as follows.  

3.2.1 Truncation 
In order to improve the performance of the computation and also 
bias the random walk towards more promising nodes, a truncation 
step is added to the end of each iteration. The truncation 
procedure prunes some nodes (sets their probability to zero) from 
the tail of the sorted list of probabilities. Pruning can be done in 
two ways. One can pick a fixed threshold and remove all nodes 
with a probability value below the threshold. One can also choose 
to drop nodes in the bottom k-percentile of the probability 

                                                                 
3  Note that the simulated random walk does not have a jump 

vector. Thus the random walk is bound by the connected 
component containing the seed set. However, for most seed sets, 
on average they belong to the giant component which can be 
larger than 80% of the web graph. 

distribution. We chose the latter approach, as it is more dynamic 
and adapts to communities of different sizes. 

3.2.2 Renormalizing the Probabilities 
In any web graph, leaf nodes (nodes with no children) will leak 
probability at each iteration. The truncation step also results in a 
probability leak from the nodes that were pruned. To compensate 
for this, at the end of each iteration, the probabilities are 
renormalized to sum to one.  

3.2.3 White list of Good Domains 
Random walks from spam seeds often lead to reputed domains 
that are well connected in the web. Good domains, such as 
yahoo.com or dmoz.org, often have a large fanout and point to 
lots of other domains on the web. This results in an explosive 
growth in the size of the candidate set every time the random 
walk encounters a reputed domain. The good domains eventually 
dominate the random walk resulting in community drift. In order 
to address this problem, we use a white list of known good 
domains. The random walk is modified to not follow any links to 
white listed domains. This assumption is reasonable because we 
expand from spam seed sets and reputed well-known domains are 
very unlikely to join these link farms or link exchange 
communities. 

3.2.4 Decayed Random Walk 
Since the members of a link farm or link exchange are expected to 
have short distances from the seed set, it makes sense that we give 
larger weights to the nearby nodes than nodes that are far away 
from the seed set. We propose using a decay to constrain the 
random walk from wandering too far away from the seed set. This 
is implemented through a probability adjustment step before the 
truncation step. The probability adjustment step decays each non-
zero probability value by an exponential factor based on the 
distance of the node to the seed nodes, as follows:  

[ ] [ ] [ ]t tp i p i iγ= ×  

( )[ ] 2 ii δγ −=  

where δ(i) is the distance of node i to the seed set. For weighted 
graphs, one can extend this distance to be the sum of the edge 
weights along the shortest path. It is also common to truncate the 
decay after a certain distance, i.e., set γ(i) = 0, whenever  
δ(i)  > δmax. 

4. EXPERIMENTS 
The proposed random walk model was tested on the domain graph 
from July 2006 obtained by processing crawl data from Live 
Search4.  

4.1 Datasets 
4.1.1 Web Graph 
The domain level graph, GD = {VD, ED}, contained |VD| = 47.8 
million domains (nodes) and about |ED| = 470 million directed 
edges. By making each edge bi-directional to form an undirected 
graph, we get the number of edges to be 820 million. Each node 
in the graph was a domain. All hosts for the same domain were 
collapsed into the same node. Edges between domain nodes 
                                                                 
4 Live Search: http://www.live.com 



 

 

represent the existence of at least one hyperlink between the two 
domains. The edge weights were the number of links between 
domains. The diameter of the domain graph was about 3 and the 
average fan out of the nodes was around 10. The largest 
connected component contained 13.2 million domains. The graph 
contained 34.1 million isolated domains, i.e., they had no edges. 
These were registered domains that either were not yet hosted, or 
did not link to pages outside their domain.  

4.1.2 Spam Seeds 
We used a two step process to select a set of seeds for our 
experiments. Following [27], we first generated a list of domains 
that had at least 30 common incoming and outgoing links in the 
directed domain graph. Second, we randomly sampled 75 link 
farm seeds and 50 link exchange seeds from this set. Manual 
checks were used to ensure that these seeds were from unique link 
farm or link exchange communities. Note that these 50 link 
exchange domains are (one of many) centroids in the link 
exchange community. While labeling the link farms, each of the 
link farms was also classified into small or big based on the 
number of nodes participating in the link farm. Among the labeled 
set of link farm seeds, 46 were big link farms, with at least 50 
members, and 27 were small link farms, which contains less than 
50 members. On average, the small link farms contained only 10-
20 members. The remaining two seed domains were link farms 
made up of web blogs. Overall, for all experiments in this paper, 
the spam seed set size was 1, i.e., it contained only a single seed 
domain. 

4.1.3 White List 
A list of 25,667 good non-spam domains was used as a white list. 
Note that these made up less than 0.05% of the set of all domains 
in the domain graph. 

4.1.4 Practical Random Walk Parameters 
The random walk was run for 30 iterations starting from each of 
the 75 link farm seeds. We used the decayed random walk model 
and dropped the bottom 15 percentile during truncation. We 
choose the output from step 30. More intelligent ways of picking 
the best step to output the community are discussed and evaluated 
in [17]. However, in the interests of simplicity, we opted to 
choose a fixed iteration to output the extracted link farm. We did 
not tune either of these numbers. Real world systems should tune 
them for their intended use and improved performance in their 
problem domain. 

4.1.5 Directed, Inverted, and Undirected Walks 
The original domain graph contained directed edges. From the 
directed graph we computed both the inverted and undirected 
versions of the domain graph. The inverted graph was obtained by 
reversing the direction of each edge. The adjacency matrix for the 
inverted graph is obtained by simply transposing the original 
adjacency matrix. The inverted graph has been favored in 
previous link spam detection experiments [27]. The adjacency 
matrix for the undirected domain graph was obtained by taking 
the mean of the original adjacency matrix with its transpose.  

4.1.6 Weighted Domain Graph 
Usually, there is more than one link between domains. We can get 
a weighted domain graph by using the number of links as the 
weight.  

5. RESULTS 
We ran experiments using the directed, inverted, and undirected 
versions of the domain graph. Experiments were also conducted 
with weighted and unweighted versions of the graph. Only edge 
level weights (representing the number of edges between domains) 
were used in the experiments. Node level weights were not used 
in the experiments reported in this paper5. There were marginal 
differences between the performance, with all three versions 
producing roughly similar results. This is somewhat expected 
since strong link farms and link exchanges tend to have a 
symmetric structure. We often found that both the parents and the 
children of a seed node were members of the same spam 
community. The simulated random walks are very fast. Our test 
implementation took between 1 and 2 minutes for extracting both 
link farm and link exchange seed sets. We expect optimized 
implementations to be much faster. However, one consistent but 
relatively small difference was in the size of the spam 
communities extracted by the different random walk versions. In 
the domain graph, there were many more edges with small 
weights than large weights. As a result, all three weighted 
versions produced communities that were smaller than their 
unweighted counterparts.  
Random walks on the undirected domain graph produced slightly 
larger communities than their directed and inverted versions. This 
is also expected since the undirected graph has roughly twice as 
many edges as the directed or inverted graphs. Further, for a fixed 
truncation percentile threshold, spam communities found using 
random walks on the undirected graph grew faster over successive 
iterations than on the directed or inverted graph. This is explained 
by the average fan-out for each node in the undirected graph 
being almost twice that in the directed and inverted versions.  
The extracted spam communities were manually evaluated. 
Labeling a domain as part of a link farm or link exchange is a 
time consuming task. Unlike labeling individual web pages, to 
manually determine whether a given domain participates in a link 
exchange or not, one has to check several tens of pages in the 
domain. If one or more pages in the domain participate in a link 
exchange, the domain is marked as participating in a link 
exchange. One thing to note here is that we only mark the 
centroids of link exchange communities as link exchange nodes 
(see Section 5.2 for details). Link farms are even more time 
consuming to label, as one needs to find several colluding 
domains for each candidate link farm member domain being 
evaluated. 
In view of the above, we report manual evaluation results on only 
the undirected and unweighted domain graph. Overall we 
manually evaluated about 4000 domains. We expect the other 
random walk variants to be of similar quality with maybe a 
slightly lower recall and slightly higher precision. 

5.1 Link Farms 
Each link farm community obtained using the random walk 

was evaluated as follows. The domains in the community were 
first ranked in decreasing order based on their final probabilities. 
They were then segmented into ten buckets of equal size. Bucket 
1 contains the top 10 percentile nodes with highest probability 
values and bucket 10 contains the bottom 10 percentile nodes 

                                                                 
5 We plan to pursue using content based spam classifier outputs as 

node weights in future work. 



 

 

with lowest probability values. Three domains were randomly 
chosen from each of the ten buckets and manually checked to 
determine whether the domain belonged to the same link farm as 
the seed set or not. Hence, for each seed set, we manually 
checked 30 domains from the extracted link farm community. In 
total, we checked about 2250 domains for link farm seeds. 
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Figure 4. Histogram of the size of link farm communities 

extracted using the decayed random walk from a single link 
farm seed domain on the undirected and unweighted version 

of the domain graph. The mean of the histogram is 268.04 
domains. 
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Figure 5. Mean precision curve for link farm communities 
extracted using random walks on the undirected domain 

graph from 73 seed sets. 46 seeds were from big link farms 
with over 50 nodes. 27 seeds were from small link farms with 
less than 50 nodes. On average the small link farms only had 
about 10-20 nodes. Bucket 1 contains nodes with probabilities 
in the top 10 percentile, while bucket 10 contains nodes with 

probabilities in the bottom 10 percentile. 
Figure 4 presents a histogram of the size of the extracted link 

farm communities using the decayed random walk on the 
undirected and unweighted version of the domain graph. Note that 
each of the seed sets contained only a single domain. The number 
of domains in the extracted link farm community ranged from a 
few tens to several thousand with the mean being 268.04 domains. 

Figure 5 presents the mean precision curves for 73 seeds 
comprising seeds from 46 big and 27 small link farms. Here 
precision refers to the percentage of sites marked by our random 
walk model that are true link farm nodes. The two blog seeds 
failed to generate reasonable results. One possible reason is that 
both of these blogs had many outgoing links, which caused a 
community drift making the real link farm invisible. The random 
walk model does remarkably well for large link farms with over 
90% precision across almost all 10 buckets. The mean precision 
was 95.12% for large link farms over all 10 buckets. This 
suggests that starting from only one spam seed, we can identify 
several hundreds of its partners with more than 95% precision. 
For the two blog seeds, we observed a quick community drift and 
the resulting results were not as good. Blog seeds require a 
modified version of the algorithm that is robust to such 
community drift.  

For small link farms, the trend is obvious in that nodes with 
higher probability are more likely to belong to the same link farm 
as the seed node. However, after the first couple of buckets, the 
false positives quickly overwhelm true positives. Manual 
inspection of the results in the first bucket showed that most of 
the nodes with high probability were from the same link farm as 
the seed. In general, random walk models are known to 
experience community drift with small link farm seeds [17]. One 
can potentially counter this by using a truncated decay (δmax). 

5.2 Link Exchanges 
We followed a similar procedure for evaluating communities 

extracted from link exchange seeds. The nodes in the 
communities were sorted, bucketed, and sampled for evaluation. 
In total, 1500 link exchange domains were manually evaluated. 

In comparison with the evaluation of link farms, the link 
exchange evaluation procedure was much more stringent. Only 
domains that were centroids/hubs of the link exchange were 
marked as belonging to the link exchange spam community. Leaf 
nodes of a link exchange community were considered to be false 
positives. There are two reasons for this choice. Primarily, only 
the centroid/hub domains of a link exchange community can be 
manually labeled reliably correctly. Our approach during labeling 
involved looking for one or more pages in the domain that contain 
an explicit invitation to cross link with the promise to link back. 
Secondly, the easiest way to neutralize a link exchange 
community is to neutralize/demote the hubs in the link exchange 
community. Thus identifying the centroids/hubs of a link 
exchange community is of most interest when trying to detect link 
exchanges.  

Figure 6 presents a histogram of the size of the extracted link 
exchange communities using the decayed random walk on the 
undirected and unweighted version of the domain graph. Note that 
each of seed sets contained only a single link exchange centroid 
node. The number of domains in the extracted link exchange 
community ranged from a few tens to several thousand with the 
mean being 513.5 domains. 

Figure 7 presents the mean precision curve for link exchange 
communities extracted from 50 seeds. The random walk model 
does quite well with precision values above 80% in the top half 
buckets and above 70% in the bottom half buckets. The mean 
precision was 80.46% over the 10 buckets. As we have mentioned 
before, we only mark centroids of link exchange communities. 



 

 

Hence, higher precision would be obtained if leaf nodes of the 
link exchange communities were also included. 

6. DISCUSSION 
Stronger parametric flow methods do exist for finding low-

conductance cuts within an expanded neighborhood of the seed 
set. However, the random walk-based method used in this paper 
offer a weaker spectral-style guarantee on conductance. At the 
same time, these guarantees are counterbalanced by a valuable 
locality property which ensures that we output a community 
consisting of nodes that are closely related to the seed set. Further 
improvements on the quality of the results can be obtained by 
cleaning up the walk-based cuts with a conservative use of flow 
that does not disturb this locality property very much [17].  

In contrast to [17], wherein reliable extraction of 
communities required a large fraction (over 20%) of the target 
community be present in the provided seed set, the experiments in 
this paper clearly demonstrate that even a single seed is sufficient 
for extracting participating members from the link farm/exchange. 
An iterative process can be used to gradually grow the link spam 
seed set. Conducting a sequence of random walks with seed sets 
augmented with extracted results in the previous iteration might 
produce a larger number of results. However, preliminary 
experiments (not reported here) did not produce much 
improvement. 

It is worth mentioning that the random walk models 
presented in this paper are still somewhat irreducible. This is 
definitely the case if δmax is very large. As a consequence, under 
certain pathological cases, significant community drift is possible 
with the seed set completely missing from the extracted 
community. This occurs when the provided seed is not part of a 
tightly linked (spam) community, or is heavily dominated by 
another nearby (within δmax) community. In these cases, the 
probability of losing the seed set grows exponentially with the 
number of iterations.  

7. CONCLUSION 
In this paper, we investigated the performance of random 

walk models for extracting link farms and link exchanges 
communities based on the known link farm seeds.  

We presented a directed approach to extracting link spam 
communities when given one or more members of the 
community. In contrast to previous completely automated 
approaches to finding link spam, our method is specifically 
designed to be used interactively. Our approach starts with a small 
spam seed set provided by the user and simulates a random walk 
on the web graph. The random walk is biased to explore the local 
neighborhood around the seed set through the use of decay 
probabilities. Truncation is used to retain only the most frequently 
visited nodes. After termination, the nodes are sorted in 
decreasing order of their final probabilities and presented to the 
user. Experiments using manually labeled link spam data sets and 
random walks from a single seed domain showed that the 
approach achieves over 95.12% precision in extracting large link 
farms and 80.46% precision in extracting link exchange centroids. 

Given the high precision for big link farms and link 
exchange, random walk models seem to be a promising direction 
for detecting spam communities based on the known spam 
domains. We plan to explore combinations of page/node level 
features with local random walks to improve detection of more 
advanced collusion strategies that employ both content and link 

spamming techniques. We also plan to explore the performance of 
these algorithms on a much larger scale using page-level web 
graphs. 
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Figure 6. Histogram of the size of link exchange communities 
extracted using the decayed random walk from a single link 
exchange domain on the undirected and unweighted version 
of the domain graph. The histogram mean is 513.5 domains. 
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Figure 7. Mean precision curve for link exchange 

communities extracted using random walks on the undirected 
domain graph from 50 seed sets. Bucket 1 contains nodes with 
probabilities in the top 10 percentile, while bucket 10 contains 

nodes with probabilities in the bottom 10 percentile. 
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