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ABSTRACT
Peer-to-peer (P2P) networks have received great attention
for sharing and searching information in large user commu-
nities. The open and anonymous nature of P2P networks is
one of its main strengths, but it also opens doors to manip-
ulation of the information and of the quality ratings.

In our previous work (J. X. Parreira, D. Donato, S. Michel
and G. Weikum in VLDB 2006) we presented the JXP al-
gorithm for distributed computing PageRank scores for in-
formation units (Web pages, sites, peers, social groups, etc.)
within a link- or endorsement-based graph structure. The
algorithm builds on local authority computations and bilat-
eral peer meetings with exchanges of small data structures
that are relevant for gradually learning about global prop-
erties and eventually converging towards global authority
rankings.

In the current paper we address the important issue of
cheating peers that attempt to distort the global author-
ity values, by providing manipulated data during the peer
meetings. Our approach to this problem enhances JXP with
statistical techniques for detecting suspicious behavior. Our
method, coined TrustJXP, is again completely decentralized,
and we demonstrate its viability and robustness in experi-
ments with real Web data.

Categories and Subject Descriptors: H.4 [Information
Systems Applications]: Miscellaneous; H.3.3 [Information
Storage and Retrieval]: Information Search and Retrieval;
H.3.4 [Information Storage and Retrieval]: Systems and Soft-
ware – Distributed Systems

General Terms: Algorithms, Security.
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1. INTRODUCTION
Peer-to-peer (P2P) systems have emerged in the last

years as a paradigm for storing and sharing information [31],
using the computing and storage power of a myriad of rela-
tively inexpensive computers (usually desktop PCs), to cre-
ate large scale systems that would be very expensive or even
unfeasible to build in a centralized manner.

So far the main application of such systems in practice
is sharing files that are stored locally on each computer. A
natural extension of that is global-scale P2P search systems,
in which each peer crawls a sub-set of the Web, and queries
are solved very efficiently in a distributed manner [32, 4].
The advantages are better scalability of course but also more
privacy and resistance to censorship, among others.

The PageRank algorithm [26, 20] defines an authority
score that considers hyperlinks on the Web as recommen-
dation. For computing PageRank, global knowledge of the
network is necessary. In our previous work [27, 28] we de-
veloped the JXP algorithm for computing decentralized
PageRank-style authority scores in a P2P network. In the
algorithm, each peer is responsible for computing the score
for the pages it stores locally, and through a series of meet-
ings, each peers gets an increasingly accurate approximation
of the scores of the local pages without needing to compute
scores for all pages in the network, which is good, as we are
assuming that no peer can hold the entire network locally.

Since high authority scores can bring benefits for peers,
it is expected that malicious peers would try to distort the
correctness of the algorithm, by providing different (usually
higher) scores for their local pages. In general P2P networks
are vulnerable to malicious agents that can cheat in order
to get more benefits, and need reputation systems [23] in
place to be able to operate properly.

Our contribution: in this work we present a trust model
that integrates decentralized authority scoring like JXP with
an equally decentralized reputation system. Our approach
is based on anomaly detection techniques, the allow us to
detect a suspicious peer based on the deviation of its behav-
ior from some common features that constitute the usual
peer profile.

The method combines an analysis of the authority score
distribution and a comparison of score rankings for a small
set of pages. The original JXP algorithm is then extended
to limit the impact of malicious peers. We call this extended
version TrustJXP. This algorithm is completely decentral-
ized, does not require storing any additional information
about other peers, can operate anonymously, and involves
only local computations. Also, TrustJXP does not require



any form of cooperation among peers, and the system works
as long as the fraction of well behaving peers is significantly
larger than the fraction of cheating peers.

We present the results of experiments that show how JXP
scores are affected by the presence of malicious peers under
different attack models, and how our TrustJXP method can
help to avoid the distortion caused by the manipulated data
of the cheating peers.

The rest of the document is organized as follows. Section 2
discusses related work. A brief review of the JXP algorithm
is presented in Section 3. The TrustJXP algorithm, includ-
ing our trust model, our methods for detecting anomalous
behavior, and how to combine JXP with the trust model,
is presented in Section 4. Experimental results are given in
Section 5. Section 6 presents ideas for future work.

2. RELATED WORK
PageRank [5] and HITS [17] are two well known methods

for link analysis on the Web graph, which can be used to
derive authority scores for Web pages that reflect query-
independent importance and community endorsements. [21]
provides an in-depth surveys of follow-up and related work
on link analysis.

A general framework for different types of trust and dis-
trust propagation in a graph of Web pages, sites, or other
entities is introduced in [13]. Detecting and combating Web
link spam is a special, but highly important case of reasoning
about trust and distrust on the Web. [14] gives a taxonomy
of the most important Web spamming techniques. In this
paper we do not deal with Web spam in that sense; Web
spam detection systems are independent from the work we
present here.

The problem of untrustworthy or manipulated content is
felt even more in a P2P environment [31]. The complete lack
of accountability of the resources that peers share on the net-
work offers an almost ideal environment for malicious peers
and forces the introduction of reputation systems that help
to assess the quality and trustworthiness of peers. In [23],
the authors present a complete overview of the issues related
to the design of a decentralized reputation system. Eigen-
Trust [16] is one of the first methods introduced to assign a
global trust value to each peers, computed as the stationary
distribution of the Markov chain defined by the normalized
local trust matrix C where cij is the local trust value that
a peer i assign to a peer j. A similar approach is presented
in [30]. The authors describe an anomaly detection pro-
cedure that analyzes peer activity on the network in order
to identify peers whose behavior deviates from peer profile.
The peer profile is based on a number of parameters like the
time and the duration of each connection, the number of
bytes uploaded, and the number of query requests, but they
require that peers identify themselves. In [25] the authors
present SeAl, an infrastructure designed for addressing the
problem of selfish peer behavior. It works by combining a
monitoring/accounting subsystem, an auditing/verification
subsystem, and incentive mechanisms.

Distributed link analysis in P2P networks has recently re-
ceived great attention [15, 33, 28, 27, 8] including our own
work. However, all of these methods, with the exception of
our own JXP work [28, 27], assume that the global graph
is partitioned into disjoint fragments across Web hosts or
peers. In contrast, our JXP method emphasizes peer auton-
omy and allows each peer to host an arbitrarily compiled

graph fragment at its discretion. This way, the fragments
of different peers may overlap in an arbitrary manner, and
this complicates the computation of global authority scores.
Section 3 gives details on how this issue is addressed by JXP.

Mathematically, all these methods employ Markov-chain
state lumping, aka. Markov-chain aggregation/disaggregation
techniques [24]. Various algorithms have adopted such tech-
niques for accelerating PageRank-like computations in cen-
tralized settings and for incremental updating of authority
scores [6, 19, 7].

The analysis of social networks is another related area that
has recently become very popular. The tasks considered
there are mining social relationships and interactions, so-
cial tagging activities, community substructures, and other
aspects of such networks (e.g., [10, 18, 11]).

In PeerTrust [34], there is a feedback mechanism in place
that after each transaction, measures the level of satisfac-
tion of a peer with respect to the transaction. These are
explicit ratings that are stored in a distributed fashion and
a time-window is applied to a peer does not gain much from
behaving correctly from some time, and then starting to
misbehave. The ratings are exchanged and a credibility fac-
tor is applied to each exchange of ratings about other peers.
This credibility may be based on the rating of the peer that
is generating the ranking, or in how similar his ratings are
to what the receiving peer has observed (this is anomaly
detection in the sense used in this paper). This requires to
keep an identity at each peer, while in our system, all peers
are anonymous.

In [1], a mechanism able to approximate EigenTrust [16]
is proposed. The authors use mechanism design in order to
develop a non-manipulable trust system, i.e., a system in
which each peer has no incentive to manipulate its recom-
mendation. The system is based on a cycling partitioning,
that is, peers are divided into groups forming topologically
a ring. Forcing each peer to download only from its succes-
sors in the ring, the trust system is proved to approximate
EigenTrust with an error that decreases exponentially in the
number of groups.

3. THE JXP ALGORITHM
The JXP algorithm dynamically computes an approxima-

tion of PageRank scores based on directed graphs that are
arbitrarily spread over autonomous peers in a P2P collabo-
ration. Each peer periodically, and independently of other
peers, performs local PageRank score computations on its
local graph fragment, where the local graph is augmented
by a world node that represents the locally unknown part of
the global graph. Mathematically, this is a state lumping or
aggregation technique for the underlying Markov chain.

JXP uses meetings between pairs of peers for mutual ex-
change of information about their local graph fragments, to
continuously improve each peer’s knowledge about its world
node. The meetings take place asynchronously, without any
central planning, and in the basic version of the algorithm
the peers for the meeting are picked uniformly at random.

At each peer, its world node is constructed by combining
all edges from local pages (or other kinds of graph nodes)
that point to external (i.e., non-local) pages into edges to the
world node. Analogously, when a peer learns (by means of
meeting another peer) about an edge from a non-local page
to a local page, a corresponding edge from the world node
to that local page is added to the local graph. Additionally,



the world node has a self-loop edge that represents all links
among external documents.

During a meeting, a peer adds all relevant information
given by the other peer into its world node and locally
recomputes the local JXP scores by a standart PageRank
power iteration on the local Web graph augmented by the
world node.

Throughout these meetings, the JXP scores that are lo-
cally maintained at each peer for its graph fragment con-
verge to the global authority scores that would be derived
from the entire global graph. Figure 1 illustrates a meet-
ing between two peers. Details about the JXP algorithm,
including the proof of convergence, can be found in [27].
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Figure 1: Improving Knowledge by Peer Meetings

The convergence rate of JXP scores depends on the choice
of peers for meetings. Convergence can be accelerated by
preferring to meet with nodes that have many edges to pages
known in the local graph of the meeting initiator. [27] shows
an efficient approach to identify such “good” peers based on
statistical synopses and caching, without unduly increasing
network bandwidth consumption.

Figure 2 shows the convergence speed of JXP with 100
peers, to show the typical behavior of the scores generated by
the JXP algorithm. The experimental scenario is described
later in section 5. The curve for the L1-norm illustrates that
the JXP scores are upper-bounded by the global PageRank
scores, which agrees with the analysis given in [27].

4. THE TRUSTJXP ALGORITHM
This section describes our extension to JXP. There are

many possible forms of attacks or manipulations in a P2P
network. In this paper we deal with the group of attacks
where peers want to distort the authority scores being com-
puted by JXP, by reporting false scores for a set of pages at
the meeting phase. We have modeled two general types of
attack:

1. A cheating peer can report a higher score for a subset
of its local pages, in an attempt to get its pages into
high positions in the global ranking that JXP peers
may perceive. In this form of manipulation, the peer
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Figure 2: JXP performance with 100 peers, all of
them honest: (a) cosine similarity (b) L1 norm.
With only about 20-30 meetings per peer the re-
sulting scores are already close to the actual values.

would boost pages at the “expense” of reducing the
total weight of its world node (giving lower score mass
to all non-local pages).

2. A cheating peer can manipulate the scores of its local
pages by modifying the scores, not necessarily increas-
ing them. This way, some pages are boosted while
others are downgraded. The score mass of the world
node would stay unchanged. If the cheating peer wants
to maintain the statistical distribution of the scores
among local pages, he can just permute the scores of
its local pages.

In the following subsections we describe how we detect
and eliminate or compensate the effects of these two forms
of attack, or even from combined attacks that use both tech-
niques.

4.1 Malicious Increase of Scores
As we mention earlier, for a peer, deceiving other peers

to make them believe that he posseses documents with high
authority scores can be benefical. To deter this kind of ma-
nipulation we use anomaly detection on the distribution of
the scores reported by a peer. The hypothesis is that the
local distribution of scores should resemble the global dis-
tribution of scores after a few iterations.

The justification for this hypothesis stems from the way
the local graph fragments are built. In our P2P model, each
peer gathers its data by performing focused Web crawls,
starting from particular seeds and possibly using a themati-
cally focused crawler in order to harvest pages that fit with
the interest profile of the corresponding user (or user group).
Given that the Web graph is self-similar [9, 2] under several
partitioning schemes (topically, geographically, per-domain,
etc.), the properties of the small graph fragment that a peer
eventually compiles should be statistically indistinguishable
from the properties of the full Web graph as seen by a cen-
tralized crawler.

Storing the typical profile: we keep a representation
of the distribution of the scores in the system in histograms.
Since scores are expected to follow a power-law distribution,
we make the boundaries of the buckets also exponential,
similar to what is used in [3]. More precisely, the bucket
number i will have the boundaries

bucket(i) = [a · bi−1, a · bi) .



The precise values for a and b will depend on the distri-
bution of PageRank values in the observed sample, which
in turn depends basically on the number of pages in the en-
tire network and the dampening factor for PageRank. The
dampening factor for the computation is shared among all
the nodes. The number of pages (at least its order of mag-
nitude) can be initialized with an estimation that can be
improved after a few meetings. The choice of the buck-
ets is not relevant, as long as not all the pages fall in the
same bucket. It is not necessary that all peers use the same
buckets, and in the worst case, a peer can re-initialize its
histograms with new parameters at any time (at the cost of
slowing down its convergence). In our experiments we used
a = 0.005 and b = 0.3 because those values cover the range
of usual values for PageRank in our setting.

We create, at each peer, a histogram which is initially
filled with the initial JXP scores of local pages. After each
meeting, the distribution of the local scores of the other
peer is added to the local histogram. We introduce a nov-
elty factor to account for the dynamics of the scores across
the meetings. Given the local histogram at meeting t, Ht,
and the score distribution from the other peer D, the local
histogram at meeting (t + 1) is updated as follows:

H(t+1) = (1− ρ)Ht + ρD

where the parameter ρ represents how much importance
we give to the new values, and the precise choice only affects
how fast the peer learns the global distribution of scores,
which in turn changes the convergence speed for the scores
in that particular peer. In our experiments we set ρ = 0.6.

Since we rely on the assumption that the number of hon-
est peers is significantly bigger than the number of dishon-
est ones, we expect that the histogram always reflects the
true distribution of the honest peers. If dishonest peers are
reporting higher scores for some of their local pages, the dis-
tribution of their local scores would no longer resemble the
distribution expected over all peers. Therefore, a compari-
son against the accumulated local histogram should give an
indication of this deviation from normal behavior.

Detecting anomalies: given the accumulated local his-
togram of a peer i, Hi, and the histogram containing the
scores distribution of another peer j, Dj , we want to com-
pute how much Dj deviates from Hi. Since the distributions
are expected to be similar [9], we believe that the distribu-
tions of honest peers should be very close to each other, and
if Dj differs from Hi by a large margin, it is an indication
that the peer is cheating about its local scores. For com-
paring the two distributions we have chosen the Hellinger
Distance, which is defined as [22]:

HDi,j =
1√
2
[
X

k

(
p

Hi(k)−
p

Dj(k))2]
1
2 (1)

where, k is the total number of buckets and Hi(k) and
Dj(k) are the number of elements at bucket k at the two
distributions, both normalized by the total number of ele-
ments at each distribution. The factor 1/

√
2 is introduced

to normalize the range of possible values.
As an alternative to the Hellinger Distance, we also tried

the χ2 goodness-of-fit test or information-theoretic measures
such as Kullback-Leibler divergence. The Hellinger Distance
gave the most robust results, but the other methods worked

fine, too. Also, since it is a metric, the Hellinger Distance
has nice properties, besides the fact that values can be nor-
malized, which makes it easier to be combined with other
measures.

4.2 Malicious Permutation of Scores
Our histograms comparison is inherently unable to detect

a cheating peer that reports a permutation of the current
scores of its local pages, since both distributions would be
statistically indistinguishable. For detecting this type of at-
tack we use a different technique. In our experimental stud-
ies of the JXP algorithm, we have observed that, after a few
meetings, although the local JXP scores do not correspond
yet to the global authority scores, the relative ranking order-
ings of their local pages are already very close to the actual
ordering. This is also exploited in [34] for a different task
(testing if a feedback given by a peer makes sense).

What we do is to compare the rankings given by the two
peers in a meeting for those pages fall into the overlap of
both local graphs, and we measure what we refer to as the
Tolerant Kendall’s Tau Distance between those rankings,
defined below.

We use a relaxation of Kendall’s Tau since we need to
tolerate small fluctuations in the scores of pages with almost
identical global authority. To this end, we discount page
pairs that have different relative orders in the two rankings
if their score differences are below a tunable threshold ∆.
In this case, we consider the page pair as incomparable and
their rank order as arbitrary.

Our Tolerant Kendall’s Tau Distance is therefore defined
as:

K′
i,j =|(a, b) : a < b ∧ scorei(a)− scorei(b) ≥ ∆

∧ τi(a) < τi(b) ∧ τj(a) > τj(b)|
(2)

where scorei(a) and scorei(b) are the scores of pages a and
b at peer i, a < b refers to the lexicographical order of page
URLs (to avoid double-counting), τi and τj are the rankings
of pages in the overlapping set at peers i and j, and ∆ is our
tolerance threshold. A good choice of ∆ can be derived from
the dampening factor of the underlying PageRank model as
follows. We consider as our threshold the minimum amount
of authority mass one page can have, which is the score mass
earned from the random jumps. Therefore, at each peer, ∆
is set to

∆ =
(1− ε)

N
(3)

where 1−ε is the usual damping factor of PageRank 1−ε =
0.15 and N is the total number of pages in the network, or
an approximation of it.

This approach assumes that whenever two peers meet,
there is a sufficient overlap between their locally known
pages to make this comparison statistically meaningful. In
an application where such overlaps cannot be guaranteed
with high probability, we would have to add artificial over-
laps as “honesty witnesses”. One way of designing such an
additional set of witness pages would be to randomly draw
a set of sample URLs and disseminate them in the network
by an epidemic protocol or using the overlay network of the
P2P system. This set of witnesses should be changed peri-
odically to counter adaptation strategies of malicious peers.



4.3 Computing Trust Scores
We now use our trust model to assign trust scores to peers.

The method is totally decentralized: each peer is responsible
for assigning (its perception of) trust scores to other peers,
based on interactions with them. During a meeting, peers
exchange the scores of their local pages. These scores are
used for computing both histograms divergence and the rank
divergence for the overlapping pages. These two measures
will determine the level of trust that should be given to
the peer. A new trust score is assigned to a peer at every
meeting, as scores are changing.

It is important to emphasize that our technique relies on
comparing only the scores of the local pages without any
further information about peer identity. As a matter of fact,
the histograms allow each peer to maintain a global view of
peers conduct without keeping track of the personal history
of each of them. This characteristic makes the algorithm
resilient to Sybil attack, since the identity of the peers is
never considered by the anomaly detection techniques we
integrate in TrustJXP.

For combining histograms divergence and rank divergence
into one single trust score, we take a conservative choice: we
always take the lower level of trust among the two measures.
Thus, we define the trust score that a peer i gives to a peer
j as

θi,j = min(1−HDi,j , 1−K′
i,j) (4)

This is the trust score that will be used in the TrustJXP
algorithm, which is presented in the following section. As
shown in the experiments in section 5, the distribution of
HD and K′ are comparable and thus this simple combina-
tion makes sense in practice.

4.4 Integrating Trust Scores and JXP Scores
The idea of TrustJXP is to incorporate the trust measure

θ into the JXP algorithm for computing more reliable and
robust authority scores. Our approach is to use the trust
measure at peer meetings when combining the scores lists.
For combining the scores lists, in the original JXP algorithm,
whenever a page is present in both lists, its score will be set
to the average of both scores or the maximum of the two
scores, depending on the approach chosen. More formally,
the score of page i in the updated score list L′ is given by

L′(i) =


(LA(i) + LB(i))/2 if “average”
max(LA(i), LB(i)) if “maximum”

(5)

where LA(i) and LB(i) are the scores of page i at the two
peers. If the page is not in one of the lists, its value is set
to zero on the respective list.

For the TrustJXP algorithm, the contribution of the scores
from the other peer are weighted based on how much that
peer is considered to be trustworthy. The score of a page i
in the updated scores list is now defined as

L′(i) =


(1− θ/2) ∗ LA(i) + θ/2 ∗ LB(i) if “average”
max(LA(i), θ ∗ LB(i)) if “maximum”

(6)
After combining the scores lists, the JXP algorithm pro-

ceeds as usual: the relevant information learned from the
other peer is added to the world node, and a PageRank
computation is performed, leading to new JXP scores.

5. EXPERIMENTAL RESULTS
We conducted preliminary experiments on a small Web

collection. Experiments with larger Web graphs are under-
way. Our Web collection was obtained in January 2005, us-
ing the Bingo! focused crawler [29]. We first trained the fo-
cused crawler with a manually selected set of seed pages for a
Web crawl, and the fetched pages were automatically classi-
fied into one of 10 pre-defined topic categories like “sports”,
“music”, etc.

We created 100 peers and assigned pages to these peers
by simulating a crawler in each peer, starting with a set
of random seed pages from one of the thematic categories
and following the links and fetching pages in a breadth-first
manner, up to a certain predefined depth. The category of
a peer is defined as the category to which the initial seeds
belong. During the crawling process, when the peer encoun-
ters a page that does not belong to its category, it randomly
decides to follow links from this page or not with equal prob-
abilities. In our setup, these 100 peers will correspond to the
trustful peers and each one will hold its full graph fragment
that was assigned to it. Thus, in the absence of malicious
peers, our JXP scores can converge to the global PageRank
scores of the complete graph for this Web collection, with a
total of N = 134, 405 pages and 1,915,401 links.

Different amounts of malicious peers were introduced in
the system. Malicious peers perform meetings and local
PageRank computations like any normal peer. The differ-
ence is that, when asked by another peer for its scores list,
a malicious peers will lie about the scores of its local pages,
according to one of the attack models described in the pre-
vious section: reporting a higher score for all or some of its
local pages, or permuting the scores among its pages.

In these experiments, peers do not change their behavior
during the TrustJXP computation; for example, if a peer
chooses to permute its scores for the first meeting, it will do
so for all subsequent meetings and it will apply always the
same permutation. Having an inconsistent behavior (cheat-
ing sometimes, cooperating sometimes) does not help the
peer as in [34], as there is no identity and no history is kept
for each peer. Reporting good scores does not help the peer
in building a reputation, but helps the system by accelerat-
ing its convergence towards the real values.

Evaluation metrics: we used four metrics, two over the
top-1,000 pages (roughly top 1% of the pages) and two over
the entire set. The idea is that the algorithm must give a
good approximation of the actual scores for all pages, but
particularly for those of high interest to the users. Over
the top-1,000 pages we used Spearman’s footrule distance
and the Linear Score Error. Spearman’s footrule distance is
defined as [12]:

F (σ1, σ2) =

kX
i=1

|σ1(i)− σ2(i)| (7)

where σ1(i) and σ2(i) are the positions of the page i in
the first and second ranking. In case a page is present in one
of the top-k rankings and does not appear in the other, its
position in the latter is considered to be k + 1. Spearman’s
footrule distance is normalized to obtain values between 0
and 1, with 0 meaning that the rankings are identical, and 1
meaning that the rankings have no pages in common. The
Linear Score Error is defined as the average of the absolute



difference between the JXP score and the global PageRank
score over the top-k pages in the centralized PageRank rank-
ing. Additionally, we have computed the L1 norm for the
JXP ranking vector and the cosine similarity between the
vectors with local JXP and global PageRank ranks. Since
the scores are normalized, the L1 norm for the global PageR-
ank vector is always 1.

5.1 Effect of malicious peers in JXP
Starting from the setup with 100 peers shown in Figure 2

we then introduced 10 cheating peers, and later 50 cheating
peers. Each of the malicious peers picks one of the following
attacks:

• Report local JXP scores that are twice as their true
values for all of their local pages.

• Report these falsely boosted scores for only half of
their local pages (drawn randomly but used consis-
tently throughout all meetings).

• Report permuted scores list (with a consistent permu-
tation, otherwise it could be easily detected by two
succesive meetings, as the peers are anonymous).

The results of this experiment are shown in Figure 3.

0 1000 2000 3000 4000
0.2

0.4

0.6

0.8

1

Number of Meetings in the Network

Spearman’s Footrule Distance

110 Peers − 10 Malicious
150 Peers − 50 Malicious

(a)

0 1000 2000 3000 4000
0

2

4

6

8x 10
−4

Number of Meetings in the Network

 Linear Score Error

110 Peers − 10 Malicious
150 Peers − 50 Malicious

(b)

0 1000 2000 3000 4000
0.7

0.8

0.9

1

Number of Meetings in the Network

Cosine

110 Peers − 10 Malicious
150 Peers − 50 Malicious

(c)

0 1000 2000 3000 4000
0

1

2

3

4

Number of Meetings in the Network

L1 Norm

110 Peers − 10 Malicious
150 Peers − 50 Malicious

(d)

Figure 3: Impact of malicious peers in JXP.

With the introduction of malicious peers and without any
trust mechanism, the JXP scores no longer converge to the
true global PageRank values. The mathematical analysis of
the JXP algorithm given in [27] proved that the JXP scores
are upper-bounded by the true PageRank scores. With ma-
licious peers reporting scores that are higher than the true
ones, there is no bound for the scores. This effect can es-
calate: it distorts the world-node score and the transition
probabilities from the world node to the local pages, and
can even lead to a negative transition probability for the
word node’s self loop. At this point, scores start becoming
undefined; this is the point where the linear-error, cosine,
and L1-norm curves stop.

Since the JXP scores are no longer upper-bounded in the
presence of malicious peers, it is not a good approach, when

combining the score lists of two peers, to take the higher
one of the two scores for pages that appear in both lists. We
then ran another experiment where the lists are combined by
taking the average of such scores. As we see in Figure 4, this
method slows down the effects of malicious peers but cannot
completely prevent the distortion. So a defense mechanism
against cheating peers is indeed crucial.
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Figure 4: Impact of malicious peers with JXP and
a naive defense mechanism: averaging the scores in-
stead of picking the maximum.

5.2 Effect of malicious peers in TrustJXP
We proceeded by testing our trust model, measuring both

histograms divergence and rank divergence for the overlap-
ping pages. We again introduced 50 cheating peers, but now
all peers performed the same type of attack. Figures 5 show
the Hellinger Distance and the Tolerant Kendall’s Tau for
the case where cheating peers report scores five times higher
than the true ones, and for the case where peers permute
their scores, respectively.

The results confirm our hypothesis that comparing his-
tograms can be an effective indicator of cheating behavior
with increased scores. We can also see that, when scores
are permuted, the histogram approach does no longer work,
and the rank divergence provides a better indication of such
malicious behavior.

Finally, we repeated this experiment with 50 malicious
peers, and used our new TrustJXP method for computing
local scores. The histograms and rank divergence, as well as
the final TrustJXP scores are shown in Figure 6.

For comparison on how effective a trust model could be,
we also simulated a best case, with an oracle-based defense
mechanism that knows the class of each peer (honest vs.
cheating) beforehand. The results for TrustJXP versus JXP
and the oracle-based system are shown in Figure 7. For most
of the metrics, our TrustJXP method is fairly close to the
ideal case in terms of detecting and compensating malicious
peers.

In the figure we can also see that JXP algorithm works
good at the beginning as it moves in large steps towards
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Figure 5: Increased-scores attack: (a) histogram di-
vergence (b) rank divergence. Permuted-scores at-
tack: (c) histogram divergence (d) rank divergence.
A circle (◦) represents a meeting between two honest
peers, and a cross (×) a meeting between an hon-
est and a dishonest peers. Meetings between two
dishonest peers are not shown for clarity.
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Figure 6: Random forms of attack: (a) histograms
divergence (b) rank divergence (c) trust scores (d)
effect of the hypothetical usage of thresholds in the
trust score.

the final scores, but it cannot counter the effect of malicious
peers and it quickly degrades.

In Figure 6 (d), we show the fractions of good and mali-
cious peers that receive a trust score θ above or equal to a
given threshold t. These values can be used to measure the
performance of a (hypothetical) system in which the trust
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Figure 7: Impact of 50 malicious peers in a system
of 150 peers.

score is measured and a meeting is rejected whenever the
other peer’s trust value is below the threshold. We can see
that a threshold equals to 0.8 allows us to recognize and
discard 81.93% of malicious peers.

Even though we have shown that TrustJXP is a good con-
tribution for the problem of detecting malicious behavior, it
is by no means sufficient in this task. Figure 8 shows the al-
gorithm performance for different number of bad peers in the
network. The number of good peers is fixed and equals to
100. We can see that, as the number of bad peers increases,
TrustJXP becomes less effective in detecting all malicious
behaviors. However, even with a high number of malicious
peers, the algorithm is able to slow down the effects of the
attacks.

6. CONCLUSIONS
We presented a method for identifying and reducing the

impact of malicious peers on the computation of authority
scores in a P2P network. We developed the TrustJXP algo-
rithm, an extension of the JXP algorithm that supports the
trust scores provided by our trust model. Experiments have
demonstrated the viability and robustness of our method,
ensuring the correctness of global authority scores.

The model combines an analysis or the authority score dis-
tribution and a comparison of score rankings from a small
set of pages. It relies on the assumptions that score distri-
butions at all honest peers should look alike, given that the
Web graph is self-similar, and that there is sufficient overlap
among peers’ local graphs. In cases where these assumptions
do not hold, honest peers might be unfairly punished, slow-
ing down the scores convergence.

We showed that the normal JXP system can withstand a
population of 10% of malicious peers using the attack models
described on this paper, but not a population of 33%. We
have seen that TrustJXP can work with such a high number
of malicious peers. For bigger populations, we showed that
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Figure 8: TrustJXP performance with varied num-
ber of malicious peers.

the algorithm becomes less effective, but it is still able to
slow down malicious effects.

In P2P systems, dynamics is very important. It would be
very important to verify in future work what happens if the
population of pages changes too rapidly over time.

Our future work will mostly focus on further extension of
the trust model to detect other types of malicious behaviors,
for instance, where attacks are coordinated among malicious
peers.

7. REFERENCES
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