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ABSTRACT
The early success of link-based ranking algorithms was predicated
on the assumption that links imply merit of the target pages.How-
ever, today many links exist for purposes other than to confer au-
thority. Such links bring noise into link analysis and harm the qual-
ity of retrieval. In order to provide high quality search results, it is
important to detect them and reduce their influence. In this paper,
a method is proposed to detect such links by considering multiple
similarity measures over the source pages and target pages.With
the help of a classifier, these noisy links are detected and dropped.
After that, link analysis algorithms are performed on the reduced
link graph. The usefulness of a number of features are also tested.
Experiments across 53 query-specific datasets show our approach
almost doubles the performance of Kleinberg’s HITS and boosts
Bharat and Henzinger’simp algorithm by close to 9% in terms of
precision. It also outperforms a previous approach focusing on link
farm detection.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; I.5.2 [Pattern Recognition]: Design Methodol-
ogy—Classifier design and evaluation

General Terms
Algorithms, Performance

Keywords
Web search engine, link analysis, link classification, web spam

1. INTRODUCTION
In modern web search engines, link-based ranking algorithms

play an important role. Typical link analysis algorithms are based
on the assumption that links confer authority. However, this as-
sumption is often broken on the real web. As a result, the retrieval
performance based on such naive link analysis is often disappoint-
ing. According to our experiments on more than fifty query-specific

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AIRWeb’07, May 8, 2007 Banff, Alberta, Canada.
Copyright 2007 ACM 978-1-59593-732-2 ...$5.00.

datasets, on average only four out of the top ten results generated
by the HITS algorithm [15] are considered relevant to the query
(details in Section 5).

The prevalence of links that do not (or should not) confer author-
ity is an important reason that makes link analysis less effective.
Examples of such links are links that are created for the purpose
of advertising or navigation like those in Figure 1. These types of
links are common on the Web. From a person’s view, these links
do carry some information that the authors of the web pages want
to promote. However, from the perspective of link analysis algo-
rithms, these links are noisy information because they do not show
the authors’ recommendation of the target pages. Traditional link
analysis algorithms do not distinguish such noise from useful in-
formation. As a consequence, the target pages of these linkscould
get unmerited higher ranking. Therefore, in order to provide better
retrieval quality, the influence of such links needs to be reduced.

For years, researchers have been working on improving the qual-
ity of link analysis ranking, most often through improvements to
the traditional PageRank [21] and HITS [15] algorithms. Some
other work focuses on detecting and demoting web pages that
do not deserve the ranking generated by traditional link analysis.
However, little work has asked which linksshouldbe used in web
link analysis.

In this paper, we introduce the notion of “qualified links”— links
that are qualified to make a recommendation regarding the target
page. We propose to detect qualified links using a classifier which,
based on a number of similarity measures of the source page and
target page of a link, makes the decision that whether the link
is “qualified”. After this, the “unqualified links” are filtered out,
which leaves only the “qualified links”. Link analysis algorithms
are then performed on the reduced web graph and generate the re-
sulting authority ranking. We also studied a number of features

Figure 1: Examples of links that do not confer authority



in the “qualified link classification”, revealing some interesting in-
sights.

The contributions of this paper are:

• the novel notion of “qualified links” and a method to differ-
entiate such links from those “unqualified”;

• a study of the features being used to detect “unqualified
links”;

• an experimental comparison of our approach with other web
ranking algorithms on real-world datasets.

The rest of this paper is organized as follows. The background of
link analysis and related work in link spam detection and demotion
is briefly reviewed in Section 2. Our motivation is presentedin
Section 3 and the methodology is detailed in Section 4. In Section
5, experimental results are presented. Finally, we conclude this
paper with a discussion.

2. BACKGROUND AND RELATED WORK
The idea of incorporating link analysis in ranking algorithms was

first considered a decade ago. In this section, we briefly review the
background of link-based ranking algorithms and the related work
in link spam detection.

2.1 Background
Kleinberg [15] proposed that web documents had two important

properties, called hubness and authority, as well as a mechanism
to calculate them. In his Hyperlink-Induced Topic Search (HITS)
approach to broad topic information discovery, the score ofa hub
(authority) depended on the sum of the scores of the connected au-
thorities (hubs):

A(p) =
X

q:q→p

H(q) and H(p) =
X

q:p→q

A(q)

Kleinberg calculated these scores on the subset of the web that in-
cluded top-ranked pages for a given query, plus those pages that
pointed to or were referenced by that set.

Bharat and Henzinger [2] proposed a number of improvements
to HITS. One of the changes is an algorithm calledimp, which
re-weights links involved in mutually reinforcing relationships and
drops links within the same host. They found thatimp made a sig-
nificant improvement over the original HITS.

Page and Brin [21, 3] proposed an alternative model of page im-
portance, called the random surfer model. In that model, a surfer
on a given pagei, with probability (1 − d) chooses to select uni-
formly one of its outlinksO(i), and with probabilityd to jump to
a random page from the entire webW . The PageRank score for
nodei is defined as the stationary probability of finding the random
surfer at nodei. One formulation of PageRank is

PR(i) = (1 − d)
X

j:j→i

PR(j)

O(j)
+ d

1

N

PageRank is a topic-independent measure of the importance of a
web page, and must be combined with one or more measures of
query relevance for ranking the results of a search.

2.2 Related work
In this paper we are concerned with the classification of hyper-

links regarding their usefulness in web link analysis. Thus, prior
work in this area is quite relevant. Davison [8] first proposed the
automatic recognition of nepotistic links—links that are present
for reason other than merit. While that work considered seventy-
five features, only a few dealt with content, looking at page titles

and meta descriptions, and overlapping outgoing link sets.Rather
than binary features, our current work focuses on a few similarity
measures, and additionally considers the full content of the pages.
Benczur et al. [1] proposed to detect nepotistic links usinglanguage
models. In this method, a link is down-weighted if its sourceand
target page are not related based on their language models. This
approach is based on the assumption that pages that are connected
by non-nepotistic links must be sufficiently similar, whichis not re-
quired in our model. Chakrabarti et al. [5] extend HITS by increas-
ing the weights of links whose anchor text (or surrounding text)
incorporates terms from the query. Our approach does not examine
text specifically in or around the anchor, and more importantly, is
not query-specific.

While we focus on content, more work has considered the anal-
ysis of link structure to eliminate or down-weight links (e.g., to
combat web spam). Here we consider a representative set of such
work. Lempel and Moran [16] defined a tightly-knit community
(TKC) as a small but highly connected set of sites. Even though
such a community is not quite relevant to the query, it may still
be ranked highly by link-based ranking algorithms. The authors
proposed SALSA, a stochastic approach for link structure analysis,
and demonstrated that it is less vulnerable to the TKC effectthan
HITS. Li et al. [17] pointed out the small-in, large-out linkprob-
lem with HITS, in which a community is associated with a root
with few in-links but many out-links. Such communities may dom-
inate HITS results even if they are not very relevant. The authors
addressed this problem by assigning appropriate weights tothe in-
links of root. Wu and Davison [25] proposed a two-step algorithm
to identify link farms. The first step generates a seed set based on
the intersection of in-link and out-links of web pages. The sec-
ond step expands the seed set to include pages pointing to many
pages within the seed set. The links between these identifiedspam
pages are then re-weighted and a ranking algorithm is applied to the
modified link graph. Carvalho et al. [7] also proposed algorithms
to detect noisy links at site level by examining the link structure
among web sites.

Finally, we note that many other approaches to web spam de-
tection have been explored. This includes Drost and Scheffer’s
work on spam identification [9], the work by Fetterly et al. [10]
and Ntoulas et al. [19] on spam detection using statistical analysis
(of links and content), and Gyöngyi et al.’s work on using trust to
demote spam [11]. These approaches typically focus on the identi-
fication of specific pages that should be labeled as spam rather than
the links between them.

3. MOTIVATION
The early success of link-based ranking algorithms was pred-

icated on the assumption that links imply merit of the tar-
get pages. However, in many instances this assumption is
no longer valid. An evident example is spam links—links
that are created for the sole purpose of manipulating the rank-
ing algorithm of a search engine. The presence of link spam
makes link analysis less effective. Another example is navi-
gational links, where links are created for easy access to other
pages regardless of relevance. Links between different regional
web sites of the same company (http://foobar.com/ and
http://foobar.co.uk/), and links to the “terms of use” of a
web site can be considered as examples of navigational links. Al-
though navigational links are not created for the purpose ofspam-
ming, they should also be considered less valuable for link analysis
since they hardly imply authority of their target pages.

Based on this motivation, we introduce the notion of “a qualified
link”. A qualified link is a link on a page that is qualified to make



Figure 2: The process of “qualified” link analysis

a recommendation regarding the target page, and is in some sense
the opposite of a nepotistic link [8].

Besides spam links and navigational links, other types of “un-
qualified links” include advertising links and irrelevant links. Ad-
vertising links are links created for the purpose of advertising. Irrel-
evant links can be considered as the collection of other “unqualified
links”, such as links pointing to a required document vieweror to a
particular web browser for the desired display of the web page.

To determine whether a link is qualified or not, we propose to
build a binary classifier based on the characteristics of links. Then
based on the decision of that classifier, a filtering process can be
performed on the web graph which retains only the “qualified”
links. Finally, link analysis algorithms can run on the reduced
graph and generate rankings.

Alternatively, if the classifier is able to generate a reasonable
probability of a link being “qualified”, link analysis may beper-
formed on a weighted graph where each edge in the web graph is
weighted by its relative qualification.

There are a variety of metrics one might use to measure the qual-
ification of a link. The measures we use in this work are the simi-
larity scores of the source page and the target page, such as content
similarity and URL similarity. The similarity measures aredetailed
in Section 4. The classifier considers these similarity measures,
and makes a decision (of a link being “qualified” or not) or predict
a probability (of how likely a link being “qualified”). The process
of this approach is visualized in Figure 2.

4. QUALIFIED LINK ANALYSIS

4.1 Similarity measures
A variety of features could be used to measure the qualification

of a link. However, considering the issue of computational com-
plexity, it is desirable to use a small number of features andto use
features that are easy to compute. We propose predicting a link
being “qualified” or not by considering the similarity scores of its
source and target pages. Six features are used in this work; they are
host similarity, URL similarity, topic vector similarity,tfidf content
similarity, tfidf anchor text similarity, and tfidf non-anchor text sim-
ilarity. The computation of these similarity measures are detailed
as follows.

• Host similarity. Inspired in part by Kan and Thi [14], the
host similarity of two web pages is measured by the portion
of common substrings of the host names of the two web page
URLs. Supposes is a string andr is an integer,Sub(s, r) is
the set of all substrings ofs with lengthr, hostx is the host
name of a web pagex, then the host similarity of two web
pagesx andy is calculated by the Dice coefficient [24] of the
two host names as shown in Equation 1.

Simhost(x, y) =
2 ∗ |Sub(hostx, r) ∩ Sub(hosty , r)|

|Sub(hostx, r)| + |Sub(hosty , r)|
(1)

In the experiments of this work,r is set to 3.

• URL similarity. Analogous to host similarity, the URL sim-
ilarity is measured by the common substrings that the URLs
of two web pages have. Still using the notations above and
supposeURLx is the URL of web page x, then the URL
similarity of two web pagesx andy is calculated by Equa-
tion 2.

SimURL(x, y) =
2 ∗ |Sub(URLx, r) ∩ Sub(URLy , r)|

|Sub(URLx, r)| + |Sub(URLy , r)|
(2)

Here,r is also set to 3.

• Topic vector similarity. The topic vector similarity reflects
how similar the topics of the two web pages are. If there
aren pre-defined topicst1 throughtn, then each web page
x can be represented by a probability distribution vector
vx = (vx,1, vx,2, ..., vx,n), in which each componentvx,i

is the probability that pagex is on topicti. Such a vector can
be obtained by various means. In our experiments, the topic
vectors are computed using a naive Bayes classifier based on
Rainbow [18]. Each component of a topic vector corresponds
to a top-level category of ODP directory [20]. The topic vec-
tor similarity is computed as the product of the topic vectors
of the two pages.

Simtopic(x, y) =

n
X

i=1

vx,i × vy,i (3)

• Tfidf content similarity. The tfidf content similarity of two
web pages measures the term-based similarity of their textual
content. We use the equations used by the Cornell SMART
system [23] to compute the tfidf representation of a web doc-
ument. Given a collectionD, a documentd ∈ D, a termt,
supposen(d, t) is the number of times termt occurs in doc-
umentd, Dt is the set of documents containing termt, then
the term frequency of termt in documentd is

TF (d, t) =



0 if n(d, t) = 0
1 + log(1 + log(n(d, t))) otherwise

(4)
The inverse document frequency is

IDF (t) = log
1 + |D|

|Dt|
(5)

In vector space model, each documentd is represented by a
vector in which each componentdt is its projection on axis
t, given by

dt = TF (d, t) × IDF (t) (6)

Then the content similarity of web pagesx andy is computed
as the cosine similarity of their vector space representations.

Simcontent(x, y) =

P

t∈T
(xt ∗ yt)

q

P

t∈T x2

t ·
q

P

t∈T y2

t

(7)

• Anchor text similarity. The anchor text similarity of two
pages measures the similarity of the anchor text in those two
pages. It is computed the same way as content similarity,
except substituting each document by a “virtual document”
consisting of all the anchor text inside that document. Still,
the similarity score is computed as the cosine similarity of
the two vectors, each representing a “virtual document”. IDF
is estimated on the collection of these “virtual documents”.



Figure 3: Pruning a query-specific graph.

• Non-anchor text similarity. The non-anchor text similarity
of two pages measures the similarity of textual content thatis
not anchor text in those two pages. It is computed the same
way as content similarity, except substituting each document
by a virtual document consisting of all the textual content
inside that document that is not anchor text. IDF is estimated
on the collection of the “virtual documents”.

4.2 Qualified HITS
Before introducing Qualified HITS, we first analyze the tradi-

tional HITS algorithm and discuss its drawbacks. HITS uses a
two-step process to collect a query-specific dataset. The goal is
to produce a small collection of pages likely to contain the most
authoritative pages on a given topic. Starting from a given query,
HITS assembles an initial collection of pages, typically, up to 200
top ranked pages returned by a text search engine on that query. Al-
though this root setR is rich in relevant documents, it is typically
restricted to those pages containing the query string. For most short
queries, especially those representing a broad topic, sucha limita-
tion may exclude some strong authorities. In addition, there are
often extremely few links between pages inR [15], rendering it es-
sentially “structureless” and hard for later link analysis. To solve
the problem, an expansion step is evoked from the root set. Con-
sider a relevant page for the query topic, although it may well not
be in the setR, it is quite likely to know or to be known by at
least one page inR. Hence, the dataset is augmented by adding
any pages that are linked to or from a page in the root setR. These
interconnected candidates are then analyzed by the HITS algorithm
to identify the best authorities.

However, both the dataset collection process and HITS analysis
take the “links imply relevancy” for granted. Since they treat all
the hyperlinks equally, they are vulnerable to “unqualifiedlinks”.
Irrelevant pages may dominate the query-specific web graph and
ruin the ranking result. These unqualified hyperlinks breakthe rel-
evance assumption, prevent the dataset from staying on the query
topic, and bring noise to the HITS calculation as well. To solve
this problem, we propose a simple heuristic approach to eliminate
unqualified links and irrelevant pages from the dataset, which is
introduced below as Qualified HITS.

Suppose we produce a focused web graphG(V, E) for a given
query using the HITS process described above, whereV is the set
of web pages andE represents hyperlinks among those pages. In
addition, V consists of the initial root setR and the set ofR’s
neighboring pagesN . We then use the following rules to filter out
noise in the graphG. An example is given in Figure 3.

• For every hyperlink inE, compute the similarity scores of its
source page and target page. Feed these scores to a classifier
which is trained on some labeled links. If the classifier gives
a negative answer, we consider this hyperlink to be unquali-
fied and should be removed from the graph. In the example,

let us suppose linksa → d, a → e, c → e, b → d, b → a,
a → c andc → a are removed.

• Scan the graph with unqualified links eliminated and check
each page in the neighboring setN to see if it is still con-
nected with the root setR. If the answer is negative, it is
indicated that the page is not relevant to any page in the root
set and should not be included in the data set in the begin-
ning. As a result, this page, as well as all the links associated
with it, are removed from the link graph. Back to the exam-
ple, neighboring pagesb andc are no longer connected with
the root setR and thus are removed, as well as the links be-
tween them.d, f andg remain since they are still connected
to the root set.

In summary, originally in this example, pagesa, b, c andd form
a densely-connected community and dominate the link graph.Af-
ter the two steps above, the graph is converted from the one onthe
left to the right one in Figure 3. As a result, the connectivity inside
this community is reduced and some irrelevant pages are directly
removed. The reputation of these pages are thus successfully de-
moted. On the other hand, those good authorities, such asf ande

are not affected much.

4.3 Qualified PageRank
The method of qualified PageRank is the same as qualified HITS

except that the second step is unnecessary since PageRank runs on
the global link graph as opposed to a query-specific graph.

5. EXPERIMENTS

5.1 Datasets
Qualified-HITS needs to be tested on query-specific datasets.

In order to evaluate Qualified-HITS, we used the query-specific
datasets collected by Wu and Davison [25]. The corpora includes
412 query-specific datasets, with 2.1 million documents. The
queries are selected from the queries used in previous research, the
category name of ODP directory, and popular queries from Lycos
and Google.

The HITS dataset collecting process was used for each query;
Yahoo! was queried to get the top 200 URLs; then for each URL,
the top 50 incoming links to this URL are retrieved by querying
Yahoo! again. All pages referenced by these top 200 URLs were
also downloaded. Query specific graphs were generated by parsing
the retrieved web pages. Intra-host links were eliminated.

From this dataset, we used the same twenty queries as Wu and
Davison and then randomly selected an additional 38 queries, and
used the combined 58 query-specific datasets to evaluate theper-
formance of Qualified-HITS. These queries are shown in Table1.

In their work on link spam detection, they presented a two-step
algorithm for detecting link farms automatically. As a result, spam
pages are identified and the links among them are dropped (or
down-weighted).

Qualified PageRank is evaluated on a 2005 crawl from the Stan-
ford WebBase [6], which contained roughly 58 million pages and
900 million hyperlinks.

5.2 Human labeling of links
In order to build a classifier which categorizes links into qualified

links and unqualified links, a set of labeled training data isneeded.
We manually labeled 1247 links that were randomly selected from
five query-specific datasets (marked with ** in Table 1). To each
link, one of the following labels was assigned: recommendation,
navigational, spam, advertising, irrelevant, and undecidable. These



california lottery(**) table tennis(**) weather(**)
aerospace defence(**) IBM research center(**)

image processing(*) rental car(*) healthcare(*)
jennifer lopez(*) super bowl(*) web proxy(*)
art history(*) teen health(*) trim spa(*)
translation online(*) web browser(*) wine(*)
US open tennis(*) hand games(*) picnic(*)

online casino IT company music channel
source code download humanities wall street
native+tribal theatre morning call
kids entertainment library mtv download
education reference party games local search
ask an expert gifts shopping stocks
music shopping pets shopping E-commerce
business service small business rebate online
Chinese web portal wholesale food drink
healthcare industry chemicals tennis games
mental health addictions TV channel
health insurance dentistry car buying
breaking news weblog news

Table 1: Queries used for collecting query-specific data sets.

labels are not directly used to train the classifier. Instead, they are
mapped to two labels, qualified and unqualified. Recommendation
links are considered qualified, while, navigational, spam,advertis-
ing, and irrelevant links are unqualified. A link is labeled undecid-
able if the content of its source or target page is not available. This
category of links is not used to train the classifier.

Two human editors (the first two authors) were involved in this
labeling task. In order to estimate how consistent their decisions
are, their individual labeling results on 100 links are compared. On
85 links, their decisions are the same. After mapping the labels
to qualified or unqualified, they agree on 94 links. This compari-
son does not only reflect the consistency of the labeling, butalso
provides a rough upper bound on how well the classifier could do.

5.3 Link classification
Based on the human-labeled links, a linear SVM classifier is

trained and tested usingSVMlight [13]. The 1016 labeled sam-
ples (undecidable links are excluded) are randomly split into two
halves, on which a two-fold cross validation is performed. The av-
erage accuracy is 83.8%. The precision and recall of positive class
(qualified links) are 71.7% and 82.2%, respectively. The trained
model shows that anchor text similarity is the most discriminative
feature, followed by non-anchor text similarity.

To find out how discriminative the anchor text similarity is,we
trained and tested a linear SVM classifier on the anchor text simi-
larity only. The average accuracy is 72.8%, significantly lower than
that using all the six features.

For comparison, to estimate the upper bound of classification
performance, we trained a classifier on the whole labeled setand
tested the training accuracy. The accuracy is 85.1%, with precision
and recall being 73.7% and 83.4%.

In order to get better insight into the features, we plot the human-
assigned labels to feature values in six graphs (Figure 4 through
Figure 9), each showing one of the features. For each feature, the
possible range of the feature values is equally divided into20 sub-
ranges (or, buckets). In each graph, x-axis depicts the set of value
ranges. The bar graph shows the distribution of that featureof all
human-labeled links. The line graph shows the percentage ofqual-
ified links in each range.

From Figure 4, we can see that the distribution of topic vector
similarity is somewhat polarized, with the majority gathering at the
first and last range. This is because the topic vector given bythe

Figure 4: Topic vector similarity

Figure 5: Content similarity

textual classifier is polarized. In most vectors, one component dom-
inates others. As a result, the cosine similarity of two vectors tend
to be quite close to zero or one. The fluctuation of the probability of
“qualified links” indicates that topic vector similarity isnot a good
feature for detecting “qualified links”.

Compared with the distribution of topic vector similarity,the
distributions of the three content based features (contentsimilar-
ity, anchor text similarity, and non-anchor text similarity, shown in
Figure 5, Figure 6, and Figure 7, respectively) are more smooth.
About the probability of “qualified links”, although there are still
minor fluctuations, the high probability within the first three or four
buckets, followed by a dramatic decrease from the fifth to seventh
bucket, shows that the links in the rear buckets are mostly “unqual-
ified links”. This result indicates that links between two pages that
are too similar are likely to be “unqualified”. This matches our ob-
servation in practice on navigational links and spam links,where
the source and target pages often have a large portion of content or
anchor text in common.

The results on host name similarity and URL similarity, shown
in Figure 8 and Figure 9, are not so interesting. They are easyto
compute, but their usefulness here is also limited.

5.4 Retrieval performance of Qualified HITS
The classification of links is only an intermediate step. Thefinal

goal of qualified link analysis is to improve retrieval performance.
Here, we test Q-HITS on the query-specific datasets, and compare
its result with that of Bharat and Henzinger’simp algorithm [2].
Since five of the query-specific datasets have been used for human
labeling of links, the remaining 53 query-specific datasetsare used
for the evaluation of retrieval performance. A linear SVM classifier,
trained on all the human-labeled links, is used to classify the links
within the query-specific datasets. 23% of the 1.1 million links are
classified as “unqualified” by the classifier and removed. Then the
impalgorithm is applied to the reduced graph to generate the results
for each query.



Figure 6: Anchor text similarity

Figure 7: Non-Anchor text similarity

Since there is no available evaluation for results of these query-
specific datasets, the relevance between query and search results
have to be inspected manually. In our evaluation system, thetop ten
search results generated by various ranking algorithms aremixed
together. To evaluate the performance, 43 participants were en-
listed, to whom a randomly chosen query and a randomly selected
set of ten results (of those generated for the given query) were
shown. The evaluators were asked to rate each result as quiterel-
evant, relevant, not sure, not relevant, or totally irrelevant, which
were internally assigned the scores of 2, 1, 0, -1, -2, respectively. A
page is marked as relevant if its average score is greater than 0.5.

Based on the evaluation data, we can calculate the overall pre-
cision at 10 (P@10) for each approach; in addition, the overall av-
erage relevance score (S@10) is calculated to further explore the
quality of retrieval since precision cannot distinguish high-quality
results from merely good ones. We also evaluated the rankingalgo-
rithms over the Normalized Discounted Cumulative Gain (NDCG)
[12] metric. NDCG credits systems with high precision at topranks
by weighting relevant documents according to their rankings in the
returned search results; this characteristic is crucial inweb search.

Figure 8: Host name similarity

Figure 9: URL similarity

We used these metrics to compare the performance of the different
approaches.

5.4.1 Sample search results
Here we first demonstrate the striking results this technique

makes possible by an example query “US open tennis”. In Table
2, the top 10 results returned byimp are dominated by a group of
touring and traveling pages that are strongly connected. After ap-
plying Q-HITS, the links inside this community is broken. The
undeserved authority of its members are reduced.

5.4.2 Evaluation
Figure 10 shows the comparison of original HITS,imp, and Q-

HITS. The average precision of the top 10 results (precision@10)
of HITS is only 0.38. imp improved that by a large difference to
0.69. By filtering out “unqualified links”, precision@10 canbe fur-
ther improved to 0.75; the average score is improved by almost one
third from 0.74 to 0.96, compared toimp. T-tests show that the

Rank URL
1 http://www.luxurytour.com/
2 http://www.rivercruisetours.com/
3 http://www.escortedtouroperators.com/
4 http://www.atlastravelweb.com/
5 http://www.atlastravelnetwork.com/
6 http://www.sportstravelpackages.com/
7 http://www.atlasvacations.com/
8 http://www.escortedgrouptours.com/
9 http://www.escorteditalytours.com/
10 http://www.atlascruisevacations.com/

(a) Top 10 results byimp

Rank URL
1 http://www.tennis.com/
2 http://www.usopen.org/
3 http://www.wtatour.com/
4 http://www.usta.com/
5 http://www.atptour.com/
6 http://www.itftennis.com/
7 http://www.frenchopen.org/
8 http://www.gotennis.com/
9 http://www.tennistours.com/
10 http://www.sportsline.com/u/tennis/

(b) Top 10 results by Q-HITS

Table 2: Results for queryUS open tennis.



Figure 10: Retrieval performance on 53 query-specific datasets

improvement of Q-HITS overimp in precision and score are both
statistically significant (with p-values of 0.024 and 0.012, respec-
tively).

We also compared our approach with the link farm detection
work by Wu and Davison [25] (denoted as “Link farm removal”)
on the 15 queries in common (marked with * in Table 1). The re-
sult is shown in Figure 11. On those 15 query-specific datasets, the
precision@10 of HITS is 0.30. Link farm removal boosts that to
0.65. Having a precision@10 of 0.78, Q-HITS outperforms “Link
farm removal” by 20%.

In “Link farm removal” algorithm, the links among identified
link farm members are dropped. We compared the links droppedby
Q-HITS (i.e., unqualified links according to the classifier)and the
links that are dropped by “Link farm removal”. Q-HITS dropped
37.17% of all the links; “Link farm removal” dropped 18.93%.The
intersection of the links drop by the two algorithms accounts for
17.30% of all the links, showing that Q-HITS generates closeto a
superset of dropped links.

5.5 Retrieval performance of Qualified
PageRank

We applied Qualified PageRank (Q-PR) on the WebBase dataset
and compared its retrieval performance with PageRank (PR).The
queries used in the experiment is listed in Table 3. Again, the SVM
classifier trained on all the human-labeled links is used to classify
the 900 million links. This time, only 0.4% of of the links areclas-
sified as “unqualified”. After that, PageRank is performed onthe
reduced matrix generating the static ranking. The final result for
each query is generated by an order-based linearly weightedcom-
bination of the static ranking and OKAPI BM2500 [22] weighting
function (.8 for PageRank). The parameters of BM2500 equation
are set the same as in [4].

Figure 12 shows the experimental result of Qualified PageRank
and PageRank. We can see that dropping a tiny portion of link

Figure 11: Retrieval performance on 15 query specific datasets

tsunami diamond bracelet windshield wiper
brad pitt music lyrics weight watchers
games britney spears halloween costumes
diabetes olsen twins automobile warranty
iraq war college football new york fireworks
madonna harry potter lord of the rings
poker jennifer lopez herpes treatments
playstation jersey girl the passion of christ
poems george w. bush musculoskeletal disorders
tattoos online dictionar st patricks day cards

Table 3: Queries used to test Qualified PageRank.

(0.4%) is able to increase the precision from 0.58 to 0.60 (with
score@10 increased from 0.64 to 0.68).

6. DISCUSSION AND CONCLUSION
In this paper, we presented the approach of identifying quali-

fied links by computing a number of similarity measures of their
source and target pages. Through experiments on 53 query-specific
datasets, we showed that our approach improved precision by9%
compared to the Bharat and Henzingerimpvariation of HITS.

This paper is merely a preliminary study, demonstrating thepo-
tential of our approach. The following limitations can be addressed
in future work.

• The classifier and similarity measures being used are quite
simple. It is expected that the use of a better classification
algorithm and an advanced set of similarity measures would
produce a better result. For example, examining the similar-
ity of text in and around a link to its target (as in [5]) might
fare better, especially for multi-topic hubs.

• The punishment of removing “unqualified links” might be
too stringent. A manual examination of the experimental re-
sults revealed that some authoritative pages are removed in
addition to poor quality pages. Weighting the links by their
quality could be a better alternative than the current binary
weighting.

• The computational complexity of “qualified link analysis” is
an issue that requires careful consideration. Although the
index of the corpus could be made available before hand,
computing the similarity scores is still expensive considering
the size of the web. Potential solutions include using fewer
features, using features that are easy to compute, and uti-
lizing simple classification algorithms. We tested one possi-
ble extension, which builds a thresholding classifier basedon
anchor text similarity. The classifier simply categorizes the
links within the first eight buckets as “qualified links”, and
the rest as “unqualified”. This approach gives a precision of

Figure 12: Retrieval performance of Q-PR on WebBase dataset



negative class (“unqualified links”) at 97.05% on the labeled
training set. This classifier is then applied to the 53 query-
specific datasets. The retrieval performance is between that
of impand Q-HITS (precision@10 being 73.02%, score@10
being 0.93).

• As mentioned in Section 5.1, the data collection process used
an existing search engine, which could introduce certain bias
into the dataset. Building a dataset from a large web crawl
can solve such a problem.

• The experiment testing Qualified PageRank is still rudimen-
tary. In order to fully examine its usefulness, more experi-
mental work on global datasets is needed.

• This approach is not a panacea for “unqualified links”. We
did not differentiate the different types of “unqualified links”.
Some types of links are perhaps more difficult to identify
than others. Finer-grained discrimination might further boost
retrieval quality. As a preliminary investigation in this direc-
tion, we trained a multi-class classifier to distinguish each
individual type of “unqualified link”. The result showed that
the classifier was effective in finding spam links, while not
very helpful in finding other types of “unqualified links”.
This remains a topic for future study.
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