
Estimating the Cardinality of RDF Graph Patterns
1Angela Maduko, 1Kemafor Anyanwu, 2Amit Sheth 3Paul Schliekelman

1Department of Computer Science
3Department of Statistics

University of Georgia
{maduko, anyanwu}@cs.uga.edu,

pdschlie@stat.uga.edu

2Kno.e.sis Lab
Department of Computer Science and Engineering

Wright State University
amit.sheth@wright.edu

ABSTRACT
Most RDF query languages allow for graph structure search
through a conjunction of triples which is typically processed using
join operations. A key factor in optimizing joins is determining
the join order which depends on the expected cardinality of
intermediate results. This work proposes a pattern-based
summarization framework for estimating the cardinality of RDF
graph patterns. We present experiments on real world and
synthetic datasets which confirm the feasibility of our approach.

Categories and Subject Descriptors
H.2.4 [Systems]: Query processing

General Terms: Management, Performance.

Keywords: Pattern Cardinality Estimation, Statistical
Summaries

1. INTRODUCTION
Most RDF query languages allow for graph structure search
through a conjunction of triples [3] typically processed using join
operations. A key step in join query optimization is determining
the join order, which depends on the expected cardinality of
intermediate results. For example, to detect a basic potential
Conflict of Interest in the paper review process of a conference,
one may search for PC members who are authors of any
submitted papers. Figure 1a and b show the SPARQL expression
for this query (namespaces are omitted) and its graph structure
(pattern). The query requires three join operations. One order first
finds all reviewers who are authors of submitted papers, then the
result is joined to the set of papers submitted to “WWW”. Figure
1d, e and f show the possible ways processing may begin. The
optimal join order for the query requires good estimates of the
cardinality of these patterns from a summary of the frequency
distribution of patterns. Also, a summary that is seamless across
RDF systems is desirable. This work is a first step towards
addressing this problem. We focus on structure queries with no
variables on the edges (as in Figure 1a) which are useful in real
applications. We state the problem addressed in this work as:
Given a space budget B and RDF schema and instance graphs,
summarize the frequency distribution of patterns in the instance
graph to fit B for obtaining good estimates of the frequencies of
patterns. We propose and evaluate three techniques which differ
in terms of the value/size tradeoff made during summarization.

2. APPROACH
In our graph model for RDF, nodes denote subjects or objects of
schema (instance) triples while edges denote the predicates
relating the respective subject and object nodes.

(b)
(a)

Select ?reviewer ?paper
Where
{

?reviewer authorOf ?paper .
?paper submittedTo ?conference .
?conference name “WWW” .
?reviewer pcMemberOf ?conference.

}

?paper

?conference

?reviewer

“WWW”

name

authorOf

submittedTo

pcMemberOf

(c)

?conf?paper

pcMemberOf

?rev

authorOf
?paper

?conf

?rev

authorOf

(e)

submittedTo

?paper

?conf

?rev

submittedTo

(f)

pcMemberOf

Figure 1: A graph pattern query and its sub-graph patterns.

2.1 Pattern Sequencialization
To summarize the frequency distribution of patterns, we desire a
generic representation for all embeddings of a query pattern. To
do this, we summarize the Schema graph to contain all patterns
that exist and may exist in the RDF instance graph. This summary
which we call the RDF Semantic and Structural Summary (GSSS)
extends the RDF Semantic Summary [1]. We adopt the Minimum
DFS Code (MDC) [4] of a pattern as its canonical label. Simply
put, if all edges of a graph are assigned labels from a finite set of
labels with a total order, the MDC of the graph is the
lexicographically smallest sequence of edge labels obtained by
performing a DFS traversal of the graph. (See [4] for details). We
assign a 5-tuple <i, j, γ(l), η(u), η(v)> to each edge e = (u, v)
labeled l, where i and j are the DFS discovery times of u and v, η
maps u/v to the number of its GSSS node while γ maps l to the
number of the GSSS edge of the same label.

2.2 Pattern Cardinality Estimation
Given a query pattern GQ, we first validate GQ in GSSS to ensure it
existed in the instance graph. If so, we obtain its representation
GQS. Next, we check if the summary contains GQS. If so, we return
its cardinality. If not, we assume that minimal size super-patterns
of a pattern are uniformly distributed (the size of a pattern is the
number of edges it contains). Thus, we return a product of the
cardinality of its maximal size sub-pattern GQSM and the pattern
growth rate of GQSM. If GQSM has D unique minimal size super-
patterns (that are not in the summary) with total cardinality N and
if GQSM has cardinality C, the growth rate of GQSM given by N/CD
is used to compensate for the frequency anti-monotone property
which may not always hold. If GQS has multiple maximal sub-
patterns, we greedily select the one with the least growth rate.

2.3 Summary Construction
Our technique exploits 1) the fact that patterns may have nearly
the same frequencies as their sub-patterns 2) prior knowledge of
the importance of patterns. Thus the concept of a value for
patterns forms the basis of our summary construction. The value
of a pattern derives from its observed and estimation values. The

Copyright is held by the author/owner(s).
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

WWW 2007 / Poster Paper Topic: Semantic Web

1233

observed value (tailored for different applications) defines known
information about pattern importance. Given a set of patterns P =
(P1, P2, …, Pm) with frequencies (PF1, PF2, …, PFm), if POI = (POI1,
POI2, …, POIm) is a vector containing the prior information about
patterns such that 0 ≤ POIi ≤ 1, we define the observed value of a
pattern Pi (POVi) as POIi × maxj{PFj}. The estimation value of a
pattern defines the number of its minimal size super-patterns
whose cardinalities are estimable from its cardinality within an ε
error. We derive ε using an exponential increase/logarithmic
decrease approach to refine an initial small ε until we obtain a set
PS such that the total size of patterns in PS meets the budget and
their total estimation value is at least the total size of patterns not
in PS. Based on the observed and estimation values, we value
patterns as follows: Let P = (P1, P2, …, Pm) be a set of patterns, let
PEVmax and PFmax be the maximum of the expected values and
frequencies of patterns in P respectively. Given a constant c ∈ [0,
1] and an indicator variable i that takes the value 1 if POVi ≥ c ×
PFmax and 0 otherwise, the value of any pattern Pi is given by:

PVi = (1 + PEVi)(1 + POVi) + i(c × PFmax × PEVmax)
The additive constants in the first term of the equation ensure that
the value of a pattern is non-zero when either its observed or
estimation value is non-zero. The constant c in the second term
allows the summary to be tuned to suit application needs by
favoring some patterns.
Our construction algorithm first generates all patterns of up to a
fixed size δ then less valuable patterns are pruned until the budget
is met. Given a budget B and vectors P = (P1, P2, …, Pm), PS =
(PS1, PS2, …, PSm) and PV = (PV1, PV2, … PVm) of patterns of size
at most δ, their sizes (in bytes) and their values, we consider three
alternatives for selecting patterns to meet the budget.
Optimal Solution (OPT). The optimal solution maximizes
∑ωiPVi constrained on ∑ωiPSi ≤ B, (ωi is an indicator variable
whose value is 1 if PSi is part of the solution or 0 otherwise). We
solve this problem using dynamic programming by observing
that:

[] []
[] []{ }⎩

⎨
⎧

+
>

=
otherwise P P -B 1,-mV ,B 1,-mVmax

B P if B 1,-mV
 B m,V

VmSm

Sm

V[m, B] is the maximal value of patterns with total size at most B.
Since this solution 1) may select lower valued patterns over
higher ones and 2) is NP-hard, we consider two greedy
approximations.
Maximal Value Greedy Solution (MVG). Patterns are selected
in decreasing order of value to favour less error tolerant patterns.
Maximal Unit Value Greedy Solution (MUVG). Patterns are
selected in decreasing order of value per unit size.

3. EXPERIMENTAL EVALUATION
We experimented on real life (swetoDBLP [5]) and synthetic
(Lehigh University Benchmark [2]) datasets which differ in the
number and complexity of patterns. For properties (#nodes,
#edges, #edge labels, average degree, #connected components
(cc), min #edges in a cc, max #edges in a cc, size of patterns
(bytes)), we used SwetoDBLP with (95566, 120512, 31, ≈3, 135,
4, 106479, 227149) and LUBM2 with (38370, 113463, 12, ≈6, 1,
113463, 113463, 23878). (Excluding literal triples). We compared
OPT, MVG and MUVG using summary sizes of 5KB, 25KB and
50KB for SwetoDBLP and scaled down sizes of 800B, 4KB and
8KB for LUBM2 (same proportion of ratio of number of unique
patterns to summary size). We also compared these with the
Histogram-based solution (HS) of an RDF Database system, but

for smallest summaries since we could not control the summary
size of HS. We used three query workloads; 1) positive workload
for patterns with cardinalities > 0; 2) frequent workload for
patterns with cardinalities ≥ 5000 and 3) negative workload for
patterns with 0 cardinalities. Using the absolute error metric |Ci –
Ci′|, (Ci and Ci′ are the true and estimated cardinalities), we
cumulate the percentage of patterns estimated with at most ε
error, ε ∈ [0, Ε] where Ε is the maximum estimation error. We
obtain pattern cardinalities for HS using the Explain command,
after instructing the system to create detailed statistics for the
datasets.

0

20

40

60

80

100

120

0 10 20 30

Log_2(error) using 5KB space

Pe
rc

en
ta

ge
 o

f Q
ue

rie
s

in

W
or

kl
oa

d

OPT

MVG

MUVG

HS

0

20

40

60

80

100

120

0 20 40

Log_2(error) using 800B

Pe
rc

en
ta

ge
 o

f Q
ue

rie
s

in

W
or

kl
oa

d

OPT

MVG

MUVG

HS

Figure 2: Performances on (a) SwetoDBLP and (b) LUBM2

Figure 2a shows the results for the 5KB summary of SwetoDBLP,
for the positive workload. HS performed worst with estimation
error of at least 1024 for all patterns, compared to 20% for OPT
and MVG and about 35% for MUVG. OPT, closely followed by
MVG, had 100% accuracy and an error of at most 32 for 40% and
60% of the patterns. OPT performed best overall. Figure 2b shows
the results for LUBM2. Due to the irregularity of LUBM2, the
techniques have larger estimation errors, but given the summary
sizes used, their performances are promising. For example, OPT
performed best with 100% accuracy on 60% of all patterns and an
estimation error of at most 1024 for 10% of patterns on the 8KB
summary. We also obtained promising results for the frequent
workload on both datasets. For the negative workload, HS
performed best on SwetoDBLP with 100% accuracy for about
80% of patterns and worst on LUBM2, producing non-zero
estimates for all patterns. OPT, MVG and MUVG produced non-
zero estimates for 90% of patterns for the datasets. These false
positives indicate that spurious patterns exist in GSSS. We note
that our estimation time is negligible, 0.00031 seconds on the
average.

4. FUTURE WORK
For future work, we will investigate techniques for estimating the
cardinalities of larger patterns by combining those of a number of
smaller ones. We also hope to improve the accuracy of negative
queries and investigate how to handle updates.

5. ACKNOWLEDGMENTS
This work is funded by NSF-ITR-IDM Award#0325464 titled
‘SemDIS: Discovering Complex Relationships in the Semantic
Web’.

6. REFERENCES
[1] Anyanwu, K., Maduko, A., Sheth, A. SemRank: Ranking

Complex Relationship Search Results on the Semantic Web.
WWW 2005.

[2] Guo, Y., Pan, Z., Heflin, J. LUBM: A Benchmark for OWL
Knowledge Base Systems. J. of Web Semantics 3(2), 2005.

[3] Haase, P., Broekstra, J., Eberharth, A., Volz, R. A Comparison
of RDF Query Languages. ISWC 2004.

[4] Yan, X., Han, J. gSpan: Graph-Based Substructure Pattern
Mining. ICDM 2002.

[5] http://lsdis.cs.uga.edu/projects/semdis/swetodblp

(a) (b)

WWW 2007 / Poster Paper Topic: Semantic Web

1234

