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ABSTRACT 
Most RDF query languages allow for graph structure search 
through a conjunction of triples which is typically processed using 
join operations. A key factor in optimizing joins is determining 
the join order which depends on the expected cardinality of 
intermediate results. This work proposes a pattern-based 
summarization framework for estimating the cardinality of RDF 
graph patterns. We present experiments on real world and 
synthetic datasets which confirm the feasibility of our approach. 

Categories and Subject Descriptors 
H.2.4 [Systems]: Query processing 

General Terms: Management, Performance. 

Keywords: Pattern Cardinality Estimation, Statistical 
Summaries 

1. INTRODUCTION 
Most RDF query languages allow for graph structure search 
through a conjunction of triples [3] typically processed using join 
operations. A key step in join query optimization is determining 
the join order, which depends on the expected cardinality of 
intermediate results. For example, to detect a basic potential 
Conflict of Interest in the paper review process of a conference, 
one may search for PC members who are authors of any 
submitted papers. Figure 1a and b show the SPARQL expression 
for this query (namespaces are omitted) and its graph structure 
(pattern). The query requires three join operations. One order first 
finds all reviewers who are authors of submitted papers, then the 
result is joined to the set of papers submitted to “WWW”. Figure 
1d, e and f show the possible ways processing may begin. The 
optimal join order for the query requires good estimates of the 
cardinality of these patterns from a summary of the frequency 
distribution of patterns. Also, a summary that is seamless across 
RDF systems is desirable. This work is a first step towards 
addressing this problem. We focus on structure queries with no 
variables on the edges (as in Figure 1a) which are useful in real 
applications. We state the problem addressed in this work as: 
Given a space budget B and RDF schema and instance graphs, 
summarize the frequency distribution of patterns in the instance 
graph to fit B for obtaining good estimates of the frequencies of 
patterns. We propose and evaluate three techniques which differ 
in terms of the value/size tradeoff made during summarization.  

2. APPROACH 
In our graph model for RDF, nodes denote subjects or objects of 
schema (instance) triples while edges denote the predicates 
relating the respective subject and object nodes.  
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Figure 1: A graph pattern query and its sub-graph patterns. 

2.1 Pattern Sequencialization 
To summarize the frequency distribution of patterns, we desire a 
generic representation for all embeddings of a query pattern. To 
do this, we summarize the Schema graph to contain all patterns 
that exist and may exist in the RDF instance graph. This summary 
which we call the RDF Semantic and Structural Summary (GSSS) 
extends the RDF Semantic Summary [1]. We adopt the Minimum 
DFS Code (MDC) [4] of a pattern as its canonical label. Simply 
put, if all edges of a graph are assigned labels from a finite set of 
labels with a total order, the MDC of the graph is the 
lexicographically smallest sequence of edge labels obtained by 
performing a DFS traversal of the graph. (See [4] for details). We 
assign a 5-tuple <i, j, γ(l), η(u), η(v)> to each edge e = (u, v) 
labeled l, where i and j are the DFS discovery times of u and v, η 
maps u/v to the number of  its GSSS node while γ maps l to the 
number of the GSSS edge of the same label.  

2.2 Pattern Cardinality Estimation 
Given a query pattern GQ, we first validate GQ in GSSS to ensure it 
existed in the instance graph. If so, we obtain its representation 
GQS. Next, we check if the summary contains GQS. If so, we return 
its cardinality. If not, we assume that minimal size super-patterns 
of a pattern are uniformly distributed (the size of a pattern is the 
number of edges it contains). Thus, we return a product of the 
cardinality of its maximal size sub-pattern GQSM and the pattern 
growth rate of GQSM. If GQSM has D unique minimal size super-
patterns (that are not in the summary) with total cardinality N and 
if GQSM has cardinality C, the growth rate of GQSM given by N/CD 
is used to compensate for the frequency anti-monotone property 
which may not always hold. If GQS has multiple maximal sub-
patterns, we greedily select the one with the least growth rate.  

2.3 Summary Construction 
Our technique exploits 1) the fact that patterns may have nearly 
the same frequencies as their sub-patterns 2) prior knowledge of 
the importance of patterns. Thus the concept of a value for 
patterns forms the basis of our summary construction. The value 
of a pattern derives from its observed and estimation values. The  
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observed value (tailored for different applications) defines known 
information about pattern importance. Given a set of patterns P = 
(P1, P2, …, Pm) with frequencies (PF1, PF2, …, PFm), if POI = (POI1, 
POI2, …, POIm) is a vector containing the prior information about 
patterns such that 0 ≤ POIi ≤ 1, we define the observed value of a 
pattern Pi (POVi) as POIi × maxj{PFj}. The estimation value of a 
pattern defines the number of its minimal size super-patterns 
whose cardinalities are estimable from its cardinality within an ε 
error. We derive ε using an exponential increase/logarithmic 
decrease approach to refine an initial small ε until we obtain a set 
PS such that the total size of patterns in PS meets the budget and 
their total estimation value is at least the total size of patterns not 
in PS. Based on the observed and estimation values, we value 
patterns as follows: Let P = (P1, P2, …, Pm) be a set of patterns, let 
PEVmax and PFmax be the maximum of the expected values and 
frequencies of patterns in P respectively. Given a constant c ∈ [0, 
1] and an indicator variable i that takes the value 1 if POVi ≥ c × 
PFmax and 0 otherwise, the value of any pattern Pi is given by:   

PVi  = (1 + PEVi)(1 + POVi) + i(c × PFmax × PEVmax) 
The additive constants in the first term of the equation ensure that 
the value of a pattern is non-zero when either its observed or 
estimation value is non-zero. The constant c in the second term 
allows the summary to be tuned to suit application needs by 
favoring some patterns.  
Our construction algorithm first generates all patterns of up to a 
fixed size δ then less valuable patterns are pruned until the budget 
is met. Given a budget B and vectors P = (P1, P2, …, Pm), PS = 
(PS1, PS2, …, PSm) and PV = (PV1, PV2, … PVm) of patterns of size 
at most δ, their sizes (in bytes) and their values, we consider three 
alternatives for selecting patterns to meet the budget.  
Optimal Solution (OPT). The optimal solution maximizes 
∑ωiPVi constrained on ∑ωiPSi ≤ B, (ωi is an indicator variable 
whose value is 1 if PSi is part of the solution or 0 otherwise). We 
solve this problem using dynamic programming by observing 
that: 
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V[m, B] is the maximal value of patterns with total size at most B. 
Since this solution 1) may select lower valued patterns over 
higher ones and 2) is NP-hard, we consider two greedy 
approximations. 
Maximal Value Greedy Solution (MVG). Patterns are selected 
in decreasing order of value to favour less error tolerant patterns.  
Maximal Unit Value Greedy Solution (MUVG). Patterns are 
selected in decreasing order of value per unit size.  

3. EXPERIMENTAL EVALUATION 
We experimented on real life (swetoDBLP [5]) and synthetic 
(Lehigh University Benchmark [2]) datasets which differ in the 
number and complexity of patterns. For properties (#nodes, 
#edges, #edge labels, average degree, #connected components 
(cc), min #edges in a cc, max #edges in a cc, size of patterns 
(bytes)), we used SwetoDBLP with (95566, 120512, 31, ≈3, 135, 
4, 106479, 227149) and LUBM2 with (38370, 113463, 12, ≈6, 1,  
113463, 113463, 23878). (Excluding literal triples). We compared 
OPT, MVG and MUVG using summary sizes of 5KB, 25KB and 
50KB for SwetoDBLP and scaled down sizes of 800B, 4KB and 
8KB for LUBM2 (same proportion of ratio of number of unique 
patterns to summary size). We also compared these with the 
Histogram-based solution (HS) of an RDF Database system, but 

for smallest summaries since we could not control the summary 
size of HS. We used three query workloads; 1) positive workload 
for patterns with cardinalities > 0; 2) frequent workload for 
patterns with cardinalities ≥ 5000 and 3) negative workload for 
patterns with 0 cardinalities. Using the absolute error metric |Ci – 
Ci′|, (Ci and Ci′ are the true and estimated cardinalities), we 
cumulate the percentage of patterns estimated with at most ε 
error, ε ∈ [0, Ε] where Ε is the maximum estimation error. We 
obtain pattern cardinalities for HS using the Explain command, 
after instructing the system to create detailed statistics for the 
datasets.  
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Figure 2: Performances on (a) SwetoDBLP and (b) LUBM2 

Figure 2a shows the results for the 5KB summary of SwetoDBLP, 
for the positive workload. HS performed worst with estimation 
error of at least 1024 for all patterns, compared to 20% for OPT 
and MVG and about 35% for MUVG. OPT, closely followed by 
MVG, had 100% accuracy and an error of at most 32 for 40% and 
60% of the patterns. OPT performed best overall. Figure 2b shows 
the results for LUBM2. Due to the irregularity of LUBM2, the 
techniques have larger estimation errors, but given the summary 
sizes used, their performances are promising. For example, OPT 
performed best with 100% accuracy on 60% of all patterns and an 
estimation error of at most 1024 for 10% of patterns on the 8KB 
summary. We also obtained promising results for the frequent 
workload on both datasets. For the negative workload, HS 
performed best on SwetoDBLP with 100% accuracy for about 
80% of patterns and worst on LUBM2, producing non-zero 
estimates for all patterns. OPT, MVG and MUVG produced non-
zero estimates for 90% of patterns for the datasets. These false 
positives indicate that spurious patterns exist in GSSS. We note 
that our estimation time is negligible, 0.00031 seconds on the 
average. 

4. FUTURE WORK 
For future work, we will investigate techniques for estimating the 
cardinalities of larger patterns by combining those of a number of 
smaller ones. We also hope to improve the accuracy of negative 
queries and investigate how to handle updates.  
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