
Towards Automating Regression Test Selection for Web Services

Michael Ruth
University of New Orleans

2000 Lakeshore Dr
New Orleans, LA 70148

mruth@cs.uno.edu

Shengru Tu

University of New Orleans
2000 Lakeshore Dr

New Orleans, LA 70148

shengru@cs.uno.edu

ABSTRACT

This paper reports a safe regression test selection (RTS) approach

that is designed for verifying Web services in an end-to-end

manner. The Safe RTS technique has been integrated into a

systematic method that monitors distributed code modifications

and automates the RTS and RT processes.

Categories and Subject Descriptors

D.2.5 [Testing and Debugging]: Testing Tools.

General Terms: Algorithms, Design, Experimentation,

Management, Reliability, Verification.

Keywords: Regression Test Selection, Web Services,

Automation, Control-Flow Graphs

1. INTRODUCTION
Web services must undergo rapid adjustments, since the

businesses they support are frequently changing. These

modifications must be supported by rapid verification. In addition

to the correctness of the new functions, we have to assure that

each modification does not impose any adverse effect on the

unmodified functions. A common practice is to rely on regression

testing (RT). Without a test selection process, regression testing

would require retest all the existing test cases. This approach over

time becomes less and less affordable for complex systems, when

more and more test cases are added to the test suite. One of the

key ideas of RT is to reduce the number of tests that need to be

retested, or regression test selection (RTS). Compared to other

RTS techniques, the safe regression test selection techniques

guarantee that no modification-revealing and thus possibly fault-

revealing test case will be left unselected and therefore untested

[1]. However, there is no available mechanism to apply safe RTS

techniques to Web services due to the distributed and autonomous

nature of Web services. While each service is thought of its own

development island, the services utilize each other to perform

complex business functions. This leads to issues rooted in both

the functional and verification dependencies between services.

In this paper, we propose a safe RTS technique for verification of

Web service systems in an end-to-end manner. Our approach is

based on the safe RTS algorithm by Rothermel and Harrold which

was developed for monolithic applications using control flow

graphs (CFG) [1]. Rather than requiring all the source code of the

participating services and applications, we require CFGs from

every party. The granularity of the CFGs can vary from very

detailed to very abstract. Using hash code, the CFGs will be able

to indicate changes but shield the program source code. In this

way, we have adopted the safe RTS, originally a white-box

technique, into a grey-box technique that can work for inter-

enterprise systems. Our approach has been designed to automate

the RTS process, and be capable of precisely locating the sources

of each fault. We have been developing a framework that

monitors distributed code modifications and automates the RTS

process as well as the test-running management.

There are quite a few regression testing techniques and tools for

generating test cases and performing the regression testing for

Web services. Our most closely related works were Tsai’s RTS

framework that enhances WSDL and uses UDDI [2], and

Harrold’s RTS for component-based software that uses meta-

content [3].

2. A SAFE RTS FOR WEB SERVICES
In principle, we follow the three main steps of the safe RTS

technique: (1) constructing CFGs of old and new program; (2)

identifying dangerous edges by comparing the corresponding

CFGs; (3) selecting test cases that need to be rerun. CFGs are

generated from actual programs in any language or extracted from

designs, which can be used as a common representation

mechanism among Web services.

2.1 Constructing Global Control-flow Graphs
At each service, a CFG is generated for every operation. Every

CFG is identified by its corresponding operation name and the

service’s URI. In terms of granularity level of the CFGs, on one

hand, we want to drill down to the statement level. In a

statement-level CFG, each statement corresponds to a node. To

support future comparison, every node records a hash code of its

corresponding statement. With such a detailed CFG, we will be

able to precisely predict the impact scope of a given code

modification. On the other hand, we want to be able to ignore any

unnecessary details. In every modern Web service

implementation, service implementations run in a framework such

as the J2EE server or the .Net framework. It is safe for us to treat

the code provided or generated by the frameworks as unchanged

libraries, and omit them in our analysis. Thus, the CFG of each

operation in each service will be generated from only those

methods (functions) which are actually implementing the

operation. The CFGs of some services can be abstracted to a

higher level such as the block level or the method (function) level.

This node records a hash code of the entire unit of the code.

Every CFG node carries four pieces of information represented by

the self-interpreted variable names: (service_operation_ID,

granularity_level, hash_code, is_changed, is_call_node).

We limit our approach to static service composition only. That is,

every called operation is predetermined by the program without

involving service discovery and lookup. We have to analyze the

Copyright is held by the author/owner(s).

WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.

ACM 978-1-59593-654-7/07/0005.

WWW 2007 / Poster Paper Topic: Services

1265

code and recognize the operations and their belonging services

that the subject program calls. (The subject program can be either

a client or a composite service.) In our experiments, we

particularly studied the Axis Web service proxy in which the

service locator object holds the service URI upon instantiation.

With the reference of the WSDL document of the Web service

corresponding to the URI, we can scan the subject program and

find each service-call statement. For each remote service call, we

create a special node in the CFG called “call node”. Every call

node records the operation name and the service URI of the call.

If a CFG has no call node, it is a terminal graph because it is ready

to support RTS processing. However, if a CFG contains a call

node, then this CFG cannot directly support RTS processing.

Thus we call such a CFG a non-terminal graph. Once all the

CFGs are in place, we can convert every non-terminal CFG to a

terminal one by inserting the corresponding CFG into each call

node. Since the inserted CFG may contain call nodes, the

conversion process is generally recursive. In updating and

transmitting CFGs, we impose a rule that allows any CFG holder

to deliver terminal CFGs only; this rule eliminates any

unnecessary communication.

2.2 Identifying Dangerous Edges
When the code of an operation is modified, a new CFG is created,

which is then compared to the old CFG by performing a dual-

traversal of both CFGs. Such a comparison determines which

parts of the graph are different. The differences can be either

structural (topological) change or a modification of the contents

of the corresponding nodes. Detecting the structural difference is

straightforward because the dual-traversal comparison is devised

for this purpose. The content difference is detected by comparing

the hash code stored in both of the CFG nodes. Once the changed

nodes are marked, the downstream edges in the CFG are marked

as dangerous. When applying this approach to Web service

system, we have to consider two special situations among others:

(1) the modification is made in a different (remote) site; (2)

multiple changes happen concurrently.

Case (1) is caused by the distributed nature of Web services. A

modification of an operation, M, in a service can affect other

services’ operations that directly or indirectly call M. To find the

set of these potentially impacted remote operations and their

hosting services, we use a call graph, in which each node (vertex)

represents an operation or a client program; each arc represents a

call relationship: the operation (or the client program) represented

by the source node calls (invokes) the operation represented by

the pointed node. Every node is associated with a box that

represents a Web service. The “service boxes” merely indicate the

locality of the operations. An example of such a call graph was

shown in Fig. 1. Obviously, if operation x calls operation y, then

a change in y may affect x. Let P be a node, and p be the

operation corresponding to P. In general, starting from P, all the

reversely reachable nodes compose of the inverse closure of P on

the call graph. The operations corresponding to the nodes in the

inverse closure are all the possibly affected operations due a

change in p. They should be tested. Thus, the services hosting

these operations should carry out a round of RTS process.

Case (2) is interesting and challenging. Autonomous services can

modify their operations concurrently. The RTS will be carried out

on each site separately. If there are failures, we wish to be able to

precisely determine which change is causing the trouble.

However, two changes in a system may conflict in such a way that

there is no way to determine which change caused the failure

upon the tests. We need to find a good order to select the test

cases and to run the cases, if concurrent running is not allowed.

Here, we use the call graph to help us analyze.

If two changes happen in two operations that are mutually

independent, that is, none of these two operations is reachable

from the other operation in the call graph. Obviously, these two

changes can be tested concurrently. We will be able to determine

which change cause the fault and act appropriately.

If the two changes occur on the same path, that is, one changed

operation is reachable from another changed operation in the call

graph the two changes conflict. We use a rollback mechanism to

handle conflict. Cascading rollbacks, which may occur in this

scenario, must be avoided by forcing changes in a call graph path

to be applied in the order of “downstream changes first”. Once a

failure happens, no upstream change should be attempted before

the troubled unit is fixed.

2.3 Selecting Test Cases
The result of the second step is a set of dangerous edges. Using a

table that recording the coverage relationships between the test

cases and the edges, selecting test cases is straightforward given

the set of dangerous edges. This is performed in the exact same

manner as described by [1].

3. AUTOMATING THE FRAMEWORK
A CFG is generated, integrated, stored and maintained by an RTS

agent at every participating service site. A straightforward way to

synchronize the RTS processes at multiple sites is to establish a

central Web service that creates and maintains the global call

graph. This service would have three operations: request_change

(op_ID), report_pass(op_ID), withdraw_change (op_ID). An

alternative distributed solution can be implemented using the

event-subscription model. Once every agent completes the

subscriptions for every remote operation, the RTS agents start

periodical CFG updating following a token-passing algorithm, the

goal of which is to enforce the “downstream changes first” rule in

CFG updates and RTS processes among all the participating

service sites.

4. REFERENCES
[1] G. Rothermel and M.J. Harrold, “A safe, efficient

regression test selection technique”, ACM Trans.

Softw. Eng. Methodol. Vol. 6, No. 2, 173-210, April

1997.

[2] W. T. Tsai, et al, “Extending WSDL to facilitate Web

services testing”, Proceedings of 7th IEEE HASE, pp. 171-

172, 2002.

[3] A. Orso, et al, “Using component metacontent to support the

regression testing of component-based software”,

Proceedings. IEEE ICSM, pp 716-725, 2001

WWW 2007 / Poster Paper Topic: Services

1266

