
On Automated Composition for Web Services ∗

Zhongnan Shen and Jianwen Su
Department of Computer Science

University of California, Santa Barbara
szn@cs.ucsb.edu, su@cs.ucsb.edu

ABSTRACT
We develop a framework to compose services through discovery
and orchestration for a given goal service. Tightening techniques
are used in composition algorithms to achieve “completeness”.

Categories and Subject Descriptors
H.1.m [Models and Principles]: Miscellaneous; D.2.8 [Software
Engineering]: Metrics—performance measures

General Terms
Design, Algorithm, Measurement

Keywords
Service Composition, Service Discovery, Goal Service, Tightening,
Completeness

1. INTRODUCTION
Automated service composition, valuable in many domains, is

among the promises enabled by SOA. Motivated by applications in
e-commerce and e-science, we outline in this short note a frame-
work for service composition that starts from astateful goal ser-
vice. Given the fact that existing and soon-to-be-existingservices
are mostly described by stateless WSDL standard, an immediate
service composition problem is to map the activities in the goal
service to existing (WSDL) services through querying service reg-
istries. Clearly, service discovery has to be integrated into service
composition in the composition algorithms. We study issuescon-
cerning algorithms for the service composition problem.

2. SERVICE COMPOSITION
A goal service is specified as a stateful web service using au-

tomata, composed of activities that are (1) connected with com-
bined data and control flows and (2) described with entry/exit con-
ditions. Eachactivity in a goal service is described with input/output
envelops (data flows) and entry/exit conditions (semantics). An en-
velop is a set of attribute names with associated types. Attributes
in envelops may be referenced in conditions. Given an instance of
an input envelop, the activity can be performed if theentry condi-
tion is satisfied; after the activity, an instance of an output envelop
is generated and theexit condition for this pair of input and output

∗Supported in part by NSF grants IIS-0415195 and CNS-0613998.

Copyright is held by the author/owner(s).
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

envelops holds. Once the goal service is specified, relevantservices
can be discovered through searching service registries.

Fig. 1 shows atravel agent goal service. The service gets a travel
request from the user, books plane tickets, and makes transportation
reservations. Depending on the arrival time of the flight, the travel
agent makes a taxi reservation or a public transportation reserva-
tion. Due to the space limitation, we only describe the path with
individual plane ticket booking andpublic transportation reserva-
tion. The goal service guarantees day time arrival, which is ex-
pressed as “EstArrTime ∈ [6, 20]” in the entry conditiong1,1. The
entry conditiong4,2 of the public transportation reservation says
that tickets are reserved if the arrival time is between 6am and
10pm (ArrTime ∈ [6, 22]). P (e1, e2) is the exit condition of the
individual plane ticket booking activity, which says the arrival time
is within the estimated time range.� � � �� � � �� � � �� � � �� 	 � 	�
 � �

� � � �
�
 � �� �
 �� �
 � � � � � � � �� �� � � � � � � � � � � � � � � � � �� � �� � � � � � � � � � � � �� � � � � � � � � � � �� � �! � " � � � � � � � � � � # � � �� � � � " � � � � � � � � �! � " � � � � � � � �

$ % � � & � � ' $ % � � & � � '$ % � � & � 	 ' $ % � � & � 	 '
e1 = [DepPort, ArrPort, ArrDate, NumPeople, EstArrTime,

EstPlanePrice, EstHotelPrice, RoomType];
e2 = [ArrPort, ArrDate, NumPeople, ArrTime, PlanePrice,

EstHotelPrice, RoomType];
e4 = [ArrPort, ArrDate, NumPeople, ArrTime, HotelPrice,

HotelName];
g1,1 : e1.NumPeople 6 5 ∧ e1.EstArrTime ⊆ [6, 20];
g4,2 : e4.ArrTime ∈ [6, 22];
P (e1, e2) = e2.ArrTime ∈ e1.EstArrTime ∧ · · · .

Figure 1: A travel agent goal service

The composition problem is to identify for each activity in agoal
service a “suitable” service in a registry. Services in repository
are stateless services described by input/output envelopsand pre-
/post-conditions. Such a composition framework is motivated by
scientific workflow [4] and interactive services [1, 3]. We assume
that the control flow of a goal service is acyclic.

A realization for a goal service over a registry is a mapping from
activities in the goal service to services in the registry. For each
activity with input envelopsei

1, ..., e
i
n, output envelopseo

1, ..., e
o
m,

entry conditionsgj for ei
j , and exit conditionsP (ei

j , e
o
k) (1 6 j 6

n, 1 6 k 6 m), the service assigned to the activity has input en-
velopei , output envelopeo, preconditionP , and post-conditionQ
such that

WWW 2007 / Poster Paper Topic: Services

1261

• ei
⊆ ∩16j6nei

j , eo
⊇ ∪j,k(eo

j − ei
k) ,

• ∨16j6ngj → P , Q → ∧j,kP (ei
j, e

o
k) .

The input envelop and the precondition of the assigned service
should be guaranteed by the goal service, while the output envelop
and the exit condition of the goal service should be covered by the
assigned service. Instead of finding services using non-functional
properties [6], service discovery here is based on conditions [2].
The service composition problems are stated as follows.

Schema composition problem: Given a goal serviceG and a
service registryR, find a feasible realization ofG overR.

Instance composition problem: Given a goal serviceG, a service
registryR, and a goal invocationV , find a feasible realization ofG
overR for the invocationV .

3. COMPOSITION ALGORITHMS
A naive composition algorithm to compute a realization is to

formulate a search(∩je
i
j ,∪j,k(eo

j − ei

k),∨jgj ,∧j,kP (ei
j , e

o
k)) for

each activity against service registries. However, this may miss
candidate services. For example, services which provide public
transportation less than 6am to 10pm are not qualified for thepub-
lic transportation reservation activity in Fig. 1.

� � � � � � � � � � 	
 � �

� � � � � � � � � � � � � � � � � 	
 � �
� � �� � � � � � � � ! " # � $% & & # ! � ' � � $ () �� * + , - . $ / ((! 0 � 1 2 2 2 3� 4 5 6 , / ((! 0 � 1 2 2 2 3� 7 � � � � � � � � � � � � � � � 	
 � �
 � 8 � � 9 � � � � � : � � � � � � � � ; � <

� " � � = � � � � � � � � � � � � � � � 	
 � >
" & � . $ (� ! � $. ? (& 0. � (@ ! " � (� A) � . $B C D � � � � � � � � 	
 � >
E � (@ ! " � ! � � � � ! . F � @ & # � 8� � � � � � � ; � <
Figure 2: Tightening the goal service

Indeed, the entry condition and the exit condition of theindivid-
ual plane ticket booking activity can be used together to tighteng4,2

to ArrTime ∈ [6, 20], as shown in Fig. 2(a). Also, if the service in
Fig. 2(b) is selected for the activity, the entry conditiong4,2 can be
further tightened using the post-condition of the selectedservice.
For instance composition problem, constraints from the service re-
quest (or goal invocation) can be pushed down through the goal
service and help tighten the entry conditions, as shown in Fig. 2(c).
Finally, with a goal invocation, selected services can be invoked.
As an example, if the service in Fig. 2(b) is invoked, attributes in
the output envelop are bound to specific values, which can be used
to tighteng4,2 to g4

4,2 (Fig. 2(d)).
Conditions of preceding activities, selected services, and con-

straints in service requests can all be used to tighten entrycondi-
tions of the succeeding activities. Tighter entry conditions increase
the possibility of finding qualified services. For example, after the
entry condition is tightened as discussed above, public transporta-
tion services become qualified if they serve before 8pm instead of
10pm. We developed two strategies for tightening a goal service.

Tighten Strategy I aims at the schema composition problem. En-
try conditions and exit conditions of preceding activitiesare pushed
down to tighten entry conditions of the following activities. Once
an activity has been assigned a service in the registry, the exit con-
ditions are replaced by the post-condition of the selected service.

Tighten Strategy II aims at the instance composition problem.
Constraints from the goal invocation as well as conditions from pre-
ceding activities are pushed down through the goal service.Once
an activity is assigned a service in registry, the service selected is in-
voked, and attributes in output envelop are bound to specificvalues.
These conditions are added to the exit conditions of the activity.

A composition algorithm with a tightening strategy works asfol-
lows. If it is an instance composition, constraints from a goal invo-

cation are attached to the goal service. From the first activity to the
last (goal services are acyclic), the algorithm generates the tight-
ened entry conditions using conditions from preceding activities,
and replaces the original entry conditions with the tightened ones.
Subsequently, individual service discovery is performed for the ac-
tivity. A service is nondeterministically selected from the search
result. Finally, the exit conditions of the activity are updated by
being replaced with the the post-condition of the selected service.
The selected service is invoked and value-binding conditions are
added to the exit conditions if it is an instance composition. See [5]
for the complexity of the tightening process.

4. COMPOSITION COMPLETENESS
Tightening strategies naturally lead to the question whether a

composition algorithm is “complete”. By completeness, we mean
the ability to find a feasible realization if it exists. Thereare two
notions of completeness for the two composition problems. Acom-
position algorithm isschema complete if for every service registry
and any goal service, the algorithm computes a realization when-
ever it exists. A composition algorithm isinstance complete if for
each service registry, each goal service, and each goal invocation,
the algorithm returns a realization whenever the goal service has a
realization with services in the registry for the invocation.

For schema completeness, the only information about services is
from service descriptions. The tightening strategy I makesa full
use of the service descriptions, and a schema composition algo-
rithm with the first tightening strategy is shown to be schemacom-
plete. For instance completeness, if the tightening strategy II is
deployed, the composition algorithm can be shown to be instance
complete. However, to achieve instance completeness, it needs to
do exhaustive search and invoke all the related services.

5. CONCLUSIONS
Automated web service composition using service discoveryis

an interesting practical problem in many application domains. Al-
gorithms are developed for composing a given stateful goal service
through discovering stateless services in registries. Completeness
of composition algorithms are investigated. There are manyin-
teresting problems worth further exploration. One direction is the
development of efficient and yet effective algorithms that can uti-
lize properties of specific data domains and condition formats. In-
cremental or online algorithms are also very interesting. Another
direction is to re-examine query functions a registry should support.

6. REFERENCES
[1] D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, and

M. Mecella. Automatic composition of transition-based
semantic web services with messaging.VLDB, 2005.

[2] I. Elgedawy, Z. Tari, and M. Winikoff. Exact functional
context matching for web services.ICSOC, 2004.

[3] C. Gerede, R. Hull, O. Ibarra, and J. Su. Automated
composition of e-services: Lookaheads.ICSOC, 2004.

[4] B. Ludaescher, I. Altintas, C. Berkley, D. Higgins,
E. Jaeger-Frank, M. Jones, E. Lee, J. Tao, and Y. Zhao.
Scientific workflow management and the kepler system.
Journal of Concurrency and Computation, To appear.

[5] Z. Shen and J. Su. On complexity of the tightening problem
for web service discovery.SOCA 2007, To appear.

[6] L. Zeng, B. Benatallah, A. H.H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang. Qos-aware middleware for web
services composition.IEEE Trans. on Soft. Engineering,
30(5):311–327, 2004.

WWW 2007 / Poster Paper Topic: Services

1262

