WWW 2007 / Poster Paper

Topic: Systems

AutoPerf: An Automated Load Generator and Performance
Measurement Tool for Multi-tier Software Systems

Shrirang Shirodkar
Department of Computer Science and
Engineering
[IT Bombay
Powai, Mumbai - 400 076, India
shrirang@cse.iitb.ac.in

ABSTRACT

We present a load generator and performance measurement
tool (AutoPerf) which requires minimal input and configu-
ration from the user, and produces a comprehensive capac-
ity analysis as well as server-side resource usage profile of
a Web-based distributed system, in an automated fashion.
The tool requires only the workload and deployment de-
scription of the distributed system, and automatically sets
typical parameters that load generator programs need, such
as maximum number of users to be emulated, number of
users for each experiment, warm-up time, etc. The tool also
does all the co-ordination required to generate a critical type
of measure, namely, resource usage per transaction or per
user for each software server. This is a necessary input for
creating a performance model of a software system.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools; D.2.8 [Software Engineering]: Metrics—
performance measures

General Terms

Experimentation, Measurement, Performance

Keywords

load generators, profilers, capacity analysis, distributed sys-
tems

1. INTRODUCTION

Performance measurement on a system test environment,
using load generator tools, is an essential step in the release
cycle of any Web-based application that is built for use by
a large number of simultaneous users. Performance mea-
surement of such applications can be done with two goals:
the first and common goal is to experimentally characterize
the performance of the application by treating the server
system as a “black box”. Thus all performance measures
are recorded at the clients that generate the requests. The
second goal is to profile the server, so as to obtain mea-
surements that can be used in a performance model of the
application [2, 5]. For e.g., a queuing model of a software

Copyright is held by the author/owner(s).
WWW 2007, May 8-12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

1291

Varsha Apte
Department of Computer Science and
Engineering
[IT Bombay
Powai, Mumbai - 400 076, India
varsha@cse.iitb.ac.in

server would require as a parameter, the CPU time taken by
a server to process one request. This can be obtained by pro-
filing the server during a measurement experiment. Models
can be used for extrapolating the performance of the system
for scenarios which are not available in the testbed [2].

Performance measurement, commonly known as “load
testing”, involves synthetic load generation on the the Web-
server, in a way that exercises various scenarios, which rep-
resent user behavior. A typical load testing exercise is done
by testing the server system at various “load levels” (from
low to high), where the load level is typically specified as the
number of virtual users who carry out a request-response cy-
cle. Measures such as the response time seen by the clients,
and the maximum request rate, or maximum number of
users supported by the application, can then be determined
experimentally. A number of “load generator” tools [1] exist
that provide a rich suite of features such as a GUI, support
for a variety of protocols, management of multiple experi-
ments using a database, and generation of graphs for various
measures.

The existing tools, however, have two limitations: first,
they are focussed mainly on quantifying the user- perceived
performance of the system, such as response time versus
number of simultaneous users, throughput versus number
of users, etc. However, server profile measures are cur-
rently not provided directly by any of the existing tools.
Generating such measures requires quite a bit of tedious
co-ordination of several unrelated tools by the performance
tester.

The second problem is that existing load generator tools
require several configuration values to be input manually
by the tool user. The correct values of these parameters
(e.g. number of users that are required to stress the sys-
tem or warm-up time of an experiment) need to be simply
“guessed” by the performance tester.

In this paper, we present a tool, AutoPerf that addresses
these problems. The only information that AutoPerf needs
is the URLs of the transactions to be analyzed, a specifi-
cation of the user behavior, and the deployment details of
the system under study. The tool automatically and effi-
ciently, runs the suite of tests needed to comprehensively
characterize the performance of the application. The tool
measures the client-perceived performance from low load to
saturation load on its own, and in addition, generates server
profile measures that can be used to build a queuing model
of the system.



WWW 2007 / Poster Paper

2. KEY FEATURES AND MECHANISMS
OF AUTOPERF

AutoPerf has several features and mechanisms that
distinguish it from existing load generator tools. We list
these below:

a) Probabilistic User Sessions: A user session in Au-
toPerf can be specified as a probabilistic session, termed as
the “Customer Behavior Model (CBMG)” [2] (i.e. a list of
URLs and probabilities of going from one URL to the other
in a single session).

b) Minimal System Specification: AutoPerf requires only
the following to be specified (in XML format): 1) The
CBMG, 2) the IP addresses of the machines on which
the servers are deployed and 3) the names of the server
processes that are to be profiled. Then, once the profiling
agents and the master controller are started - the entire
process of load testing and profiling is done automatically.

¢) Automated Capacity Analysis: Given the above input,
AutoPerf reports the following measures which characterize
the system capacity: the maximum throughput (in terms
of requests per second) of the system and the maximum
number of users after which throughput flattens or drops,
response time versus number of users, throughput versus
number of users, for the range of one to maximum number
of users.

d) Server-side profiling and correlating: An essential
feature of AutoPerf is the automated co-ordination of load
generator and the server profilers for generation of the
correlated server performance profiles. AutoPerf produces
the following server-side profiles: CPU utilization (for all
server processes, at each load level, where load level is
the number of concurrent users), CPU ms per process per
transaction, and memory required per process for each
additional user.

e) Mazimum number of users: AutoPerf uses a mechanism
based on a queuing theory result [4], which estimates the
“saturation number”, or the maximum number of users
supported by the system. Thus, this does not have to be
specified manually.

f) Determination of Load Levels: Once the maximum num-
ber of users is estimated, AutoPerf needs to run experiments
at various load levels, so that a reasonably smooth plot of
response time vs number of users, or throughput vs number
of users can be obtained. Here, carrying out experiments at
too many load levels may result in the experiment taking
too much time, whereas too few load levels may result in
a plot that does not capture the behavior of the measure
accurately enough. AutoPerf determines these load levels
automatically, so that a smooth plot is generated, while
minimizing the number of experiments required. The
algorithm for determining the the load levels is described
in [3]. Figure 1 shows an example of a plot of throughput
versus number of users for a web calendar application.
AutoPerf needs 7 experiments to generate this plot which
matches very well with the one generated by running the
experiment at each load level from 1 to 47).

g) Warm-up detection: For every load level, AutoPerf
generates load for some duration, detects the point at
which the system has “warmed up”, and only then starts
recording performance measures. This eliminates effects of
any transient values in determining averages.

1292

Topic: Systems

throughput observed using AutoPerf
throughput observed manually -

Throughput

20 30 40
No. of Concurrent Users

10 50

Figure 1: Throughput curves obtained manually and
that using AutoPerf

h) Determination of number of repetitions of transactions
per user: Since one of the quantities to be determined
by AutoPerf is the per-transaction resource usage time,
it is important to carry out a large enough number of
transactions, so that numerical errors (e.g. rounding off
to zero if the values are small) do not occur. AutoPerf
determines the minimum number of transactions that each
user should perform (termed “execution count”), so that an
accurate estimate can be made of resource consumption per
transaction. Currently, the execution count is determined
based on CPU ms precision.

AutoPerf itself has minimal resource requirements. The
load generator’s memory usage increases at a rate of 520
KB per virtual user. When load is generated on a very
fast server with zero think time, the CPU utilization at the
load generator increases at a rate of 0.3% per virtual user
on a Intel(R) Xeon(TM) dual CPU (each hyper-threaded)
2.80GHz machine.

3. SUMMARY

We have introduced a tool that requires minimal system
description for carrying out a full-fledged suite of load test-
ing experiments on an application. The tool also generates
server resource usage profiles, which are required as an in-
put to performance models. Autoperf thus has potential to
be used as a part of an automated performance modeling
framework, where a tool would automatically discover the
data and characteristics of a system and create a perfor-
mance model from such data.

4. REFERENCES

(1] R. Hower. Web Test Tools.
http://www.softwareqatest.com/, 2007.

[2] D. Menasce and V. Almeida. Scaling for E-Business.

Prentice-Hall, Inc., Upper Saddle River, NJ 07458, 2000.

V. Selot. Automated tool for resource profiling and capacity
analysis of distributed systems. Master’s thesis, Indian
Institute of Technology, Bombay, July 2006.

K. Trivedi. Probability and Statistics with Reliability,
Queuing and Computer Science Applications. Pearson
Education, Inc., 201 W. 103rd Street, Indianapolis, IN
46290, 2002.

C.U. Smith and L.G. Williams. Performance Solutions, A
Practical Guide To Creating Responsive, Scalable Software.
John Wiley & Sons, Inc., 605 Third Avenue, New York, NY
10158-0012, 2002.

3]

[4]



