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ABSTRACT 
In XML databases, materializing queries and their results into 
views in a semantic cache can improve the performance of query 
evaluation by reducing computational complexity and I/O cost. 
Although there are a number of proposals of semantic cache for 
XML queries, the issues of fast cache lookup and compensation 
query construction could be further studied. In this paper, based 
on sequential XPath queries, we propose fastCLU, a fast Cache 
LookUp algorithm and effiCQ, an efficient Compensation Query 
constructing algorithm to solve these two problems. Experimental 
results show that our algorithms outperform previous algorithms 
and can achieve good performance of query evaluation. 

Categories and Subject Descriptors 
H.2.4 [Systems] Subjects: Query processing 

General Terms: Algorithms, Performance, Languages 
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1. INTRODUCTION 
The popularity of XML inspires the need to quickly retrieve XML 
data. In XML databases, a semantic cache of materialized views, 
which are queries combined with their result nodes, can help 
accelerate the process of evaluating XML queries in that when 
there is a cache hit, there is no need to evaluate the query against 
the whole database and retrieve the result from lower storage, the 
cached data can accomplish the task simply. 

We study a group of XPath queries in XPath fragment XP{/, //, [], *}, 
which contains four features: child axes (/),descendant axes (//), 
wildcards (*) and predicates ([]). There are two steps in exploiting 
the semantic cache of an XML database to answer queries: cache 
lookup and compensation query construction for evaluation. We 
propose algorithm fastCLU to accomplish the first step based on 
Basic Path and Predicate Condition Sets of sequential XPath 
queries. A view V can answer Q if there exists another query CQ 
which gives the result of Q when queried against the result of V. 
CQ is the compensation query and usually has less executing cost 
than Q. V is the matching view of Q. The other algorithm effiCQ 
constructs the compensation query efficiently for the second step. 
For example, suppose there are three views: V1= 
a[[b[k<100]][j]]/f/g[c[d][.//e]], V2=a[b/c]/u//v, V3=a[b[k<50]]/*/x, 
and a query: Q1=a[[b[k<100]][j]]/f/g[c[d][e]][h]. Q1 can be 
answered by view V1 by restricting the e node in V1 to be the 
child of the c node and the output g node to have an h child. Thus 
compensation query CQ1=g/[c/e][h]. 

2. Problem Definition 
Generally an XPath query can be modeled as a tree pattern 
composed of a node set, an edge set of child and descendant 
edges, a root node and an output node. To simplify the cache 
lookup process, we convert an XPath query into an equivalent 
sequential representation which has a Basic Path and a Predicate 
Condition Set. The Basic Path of an XPath query Q is the path 
containing all nodes from Q’s root node to Q’s output node. 
Nodes in the Basic Path the path nodes and other nodes are 
referred to as predicate nodes. The number of nodes in a Basic 
Path BP is the depth of BP, denoted as dBP. Child and descendant 
axes in a Basic Path are denoted explicitly by “/” and “//”. 

For each path node nBP of an XPath query Q, suppose there are nc 
leaf nodes {ln1, ln2, ..., lnc}, which are leaves of sub-trees of nBP 
whose root nodes are not path nodes, we call them predicate leaf 
nodes. For all the predicate leaf nodes of nBP, we construct a 
including nc path expressions rooted at nBP and ended at one of the 
nc predicate leaf nodes, we call this set the Predicate Condition 
Set of nBP and denote it as PCSN(nBP)={pci | 1≤i≤nc, pci is a path 
from nBP to the i-th predicate leaf node of nBP }. The set of all of 
Q’s path nodes’ Predicate Condition Sets is the Predicate 
Condition Sets of Q and is denoted as PCSQ(Q). 

The homomorphism from one query pattern to another ensures the 
containment relationship the other way round. In other words, for 
two query patterns P1 and P2, if there is a homomorphism from P1 
to P2, P2 is contained in P1[3]. Thus a materialized view V can 
answer a query Q if Q is contained in V. Sequential representation 
of XPath queries can help reduce the time cost of homomorphism 
mapping checking from queries to views. 

Figure 1 gives examples of tree patterns and homomorphism. The 
Basic Paths of P1, P2 and P3 are a/d//e, a/d/e/f and a/d/k/e 
respectively. The depth of a/d//e is 3. There is a homomorphism 
from P1 to P2 in Figure 1(a). 
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Figure 1. Homomorphism and containment of queries 

Definition 1. Basic Path Containment: for two XPath queries Q1 
and Q2, let their corresponding Basic Paths be BP1=n1n2...nl1 and 
BP2=n1’n2’...nl2’ respectively, BP2 is contained in BP1 if (1) l1≤l2 
and (2) for any pair of symbols si, si’ (1≤i≤l1) at the i-th position of 
BP1 and BP2 respectively, one of the following conditions is 
satisfied: (a) si’.tagName=si.tagName, (b) si=“*”, (c) si’=si=“/”, 
(d) si’=“/” or “//” while si=“//”. 
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Definition 2. PCSN Containment: for two path nodes n1 and n2, 
PCSN(n1)={pi | 1≤i≤np1, np1 is the number of predicate leaf nodes 
of n1}, PCSN(n2)={pj | 1≤j≤np2, np2 is the number of predicate 
leaf nodes of n2}, PCSN(n2) is contained in PCSN(n1) if (1) 
np1≤np2; (2) for each path expression p=s1s2...sl1 in PCSN(n1), 
there is p’=s1’s2’...sl2’ in PCSN(n2), such that l1≤l2 and p is 
segmented by “//”into k parts which do not contain “//” and have 
exactly the same occurrences in p’, and the “//” symbols in p are 
mapped to “/”, “//” or path fragments in p’ between k segments. 

Definition 3. PCSQ Containment: for two queries Q1 and Q2 
PCSQ(Q1)={PCSN(ni)|1≤i≤dBP1,ni∈BP1}, PCSQ(Q2)={PCSN(nj’) 
| 1≤j≤dbp2, nj’∈BP2}, PCSQ(Q2) is contained in PCSQ(Q1) if (1) 
BP2 is contained in BP1; (2) PSCN(n)=PCSN(n’) for all of P1’s 
path nodes n except P1’s output node no; and (3) let no maps to no’ 
in Q2, PCSN(no’) is contained in PCSN(no). 

Since PCSQ containment actually requests Basic Path 
containment, therefore, the criteria of query/view answerability 
can be put as follows: if PSCQ(Q) is contained in PCSQ(V) for a 
query Q and a view V, V can answer Q. This makes the 
foundation of our algorithms. 

3. Algorithms: fastCLU and effiCQ 
FastCLU runs like this: First find a set of candidate views whose 
Basic Paths contain the Basic Path of the input query Q, and rank 
the candidate views by depth of the Basic Paths, views with 
greater Basic Path depth precede views with smaller Basic Path 
depth. Then check Predicate Condition Sets containment between 
Q and the current view in candidate set. If a matching view is 
found, this view is passed to algorithm effiCQ to construct 
compensation query. If none of candidate views contains Q, there 
is a cache miss and Q has to be evaluated against data in lower 
storage. Note that although [1] also uses string matching in cache 
lookup, it considers a view in the cache as a whole, and its 
matching process involves a time-consuming predicate condition 
set generation and containment test. Meanwhile, our algorithm 
does not require such a generate-and-test course and does not need 
the superset of Q’s predicate conditions, which makes it more 
time efficient. Due to space limit, details of fastCLU is omitted. 
EffiCQ is outlined as follows to present it clearly. 

Algorithm effiCQ: compensation query construction 

Input: Q, an XPath query; V, a matching view of Q 

Output: CQ, the compensation query of Q 

Let BPQ=n1/(or//)n2/(or//).../(or//)nd, BPV=n1/(or//)n2/(or//).../(or//)ndV 

1:  BPCQ=nk/(or//)nk+1/(or//)... ndV/(or//).../(or//)ndQ; 

    /* nk is the node before the first different axis symbol of BPQ and 
BPV if there is any, otherwise it is the output node of V */ 

2:  for each path expression PEj in PCSN(ndV) of Q do { 

3:    if (PEj is contained in but not equal to some path expression PEj’ 
of PCSN(ndV) of V) OR (PEj is not contained in any path expression 
PEj’ of PCSN(ndV) of V) 

4:          put PEj into PCSN(ndV) of CQ;  } 

5:  if (ndV is not the output of Q) 

6:     attach the predicate conditions of ni+1, ni+2, ..., ndQ to ni+1, ni+2, ..., 
ndQ to CQ; 

7:  return CQ; 

As presented, EffiCQ constructs the compensation query CQ to 
answer a query Q by its matching view V found by fastCLU. CQ 
is queried against V to return result of Q. 

4. EXPERIMENTAL EVALUATION 
We compare our algorithms with the view selection method in [1], 
which is based on string matching and referred to as algSM, and 
the naive semantic cache, which requires exact equivalence of 
view and query. We used a 300 MB XML document generated by 
the XMark [2] generator. Testing programs run in Windows 2000 
system with 768MB memory. 

Cache Lookup Performance. Figure 2 shows how the hit rate 
varies with the zipf exponent z used for creating attribute 
predicates. Hit rate of fastCLU is 1.29 and 7.48 times of that of 
algSM and the Naive Cache. This is because fastCLU can handle 
such cases that a descendant axis in Basic Path of a view is 
mapped to a child axis in Basic Path of a query, which algSM will 
treat as a cache miss. 
Query Processing Performance. Figure 3 shows the average 
time to answer a query by the three algorithms to illustrate the 
speedup gained by fastCLU and effiCQ. We cached 2,000 queries 
and submitted 20,000 test queries and set z=1.75. Our strategy of 
caching path nodes and effiCQ help to enlarge the answering 
capacity of our semantic cache; consequently, a higher hit rate and 
a shorter average processing time of one query is achieved. 
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Figure 2. Hit rate vs. 
workload size 

Figure 3. Average processing 
time 

5. CONCLUSION 
In this paper, we propose algorithm fastCLU, which uses 
equivalent sequential representation of XPath queries to accelerate 
cache lookup, and agorithm effiCQ, which constructs 
compensation queries efficiently with lower computational cost to 
evaluate XPath queries. Experimental results demonstrate that our 
algorithms can achieve high performance for query evaluation. 
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