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ABSTRACT
PageRank is the best known technique for link-based impor-
tance ranking. The computed importance scores, however,
are not directly comparable across different snapshots of an
evolving graph. We present an efficiently computable nor-
malization for PageRank scores that makes them compara-
ble across graphs. Furthermore, we show that the normal-
ized PageRank scores are robust to non-local changes in the
graph, unlike the standard PageRank measure.

Categories and Subject Descriptors: H.4.m [Informa-
tion Systems]: Miscellaneous

General Terms: Algorithms, Measurement

Keywords: PageRank, Web dynamics, Web graph

1. MOTIVATION
PageRank [9] is a well known link-based ranking tech-

nique, widely adopted both in practice and research. At the
core of the method lies a random walk on the (web) graph
that can be equivalently represented as a finite Markov chain.
The visiting probabilities of the random walk, in other words,
the stationary state probabilities of the equivalent Markov
chain are represented by the corresponding PageRank scores
of nodes in the graph.

As a consequence of its probabilistic foundation and the
fact that each node is guaranteed to be visited, PageRank
scores are generally not comparable across different graphs
as the following example demonstrates. Consider the grey
and white nodes in the two graphs shown in Figure 1. In-
tuitively, importance of neither the grey node nor the white
nodes should decrease through the addition of the two black
nodes, since none of these nodes are “affected” by the graph
change. The non-normalized PageRank scores, however, as
given in the corresponding table in Figure 1 convey decreases
in the importance of the grey node and the white nodes,
thus contradicting intuition. These decreases are due to the
random jump inherent to PageRank that guarantees the ad-
ditional black nodes to have non-zero visiting probability.

The need for normalized PageRank scores, which can be
compared across different graphs, arises in different con-
texts. In a bibliographic application, importance of pub-
lications from different areas need to be compared. On the
Web, growth patterns of PageRank can potentially be used
to identify spamming attempts. Finally, in a distributed
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Graph A Graph B

PageRank PageRank
(non-normalized) (normalized)

Node A B A B

White 0.2920 0.2186 1.7391 1.7391
Grey 0.4160 0.3115 2.4781 2.4781
Black – 0.1257 – 1.0000

Figure 1: Sensitivity of PageRank Values (ε = 0.15)

Web search engine or a metasearch engine like [2, 8], Page-
Rank scores computed on different document collections of
varying size must be compared or aggregated.

Previous work [5] has only dealt with the normalization of
PageRank scores in an ad-hoc manner. In this work we pro-
pose a new principled normalization, describe the rationale
behind it, and show its robustness. The proposed normaliza-
tion has been successfully used in practical applications [3].

2. PAGERANK NORMALIZATION
We briefly recall the definition of PageRank and introduce

some notation. Let G(V, E) be a directed graph, the Page-
Rank score r(v) of a node v is defined as

r(v) = (1− ε)
X

(u,v)∈E

r(u)

out(u)
+

ε

|V | ,

with out(u) denoting the out-degree of node u and ε being
the probability of making a random jump (aka. damping
factor).

Accordingly, the PageRank score of any node in the graph
is lower bounded by

rlow =
ε

|V | ,

which is the score assigned to a node without incoming
edges. However, this definition does not account for dan-
gling nodes (i.e., nodes without any outgoing edges) – which
are shown to form a significant portion of the Web graph
crawled by search engines [4]. These nodes are treated by
making a random jump whenever the random walk enters
a dangling node. Under this model, with D ⊆ V denot-
ing the set of dangling nodes, the modified lower bound for
PageRank scores is given by:

rlow =
1

|V | (ε + (1− ε)
X
d∈D

r(d))
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which is again the score assigned to a node without incoming
edges. We use this refined lower bound for normalizing the
PageRank scores – for a node v its normalized PageRank
score is defined as

r̂(v) =
r(v)

rlow
.

In contrast to non-normalized PageRank scores that cor-
respond to visiting probabilities on the graph and thus de-
pend on its size, the normalized PageRank scores convey
how much more likely a node is to be visited than a node
having least possible importance. The normalization thus
eliminates the dependence on the size of the graph. For the
earlier example, the normalized PageRank scores of the grey
and the white nodes do not change as can be seen from the
table in Figure 1.

The computational cost associated with the proposed nor-
malization scheme is low. Identifying the set of dangling
nodes is possible in a single scan over the set of edges. Sum-
ming up the PageRank scores of the dangling nodes requires
another scan over the vector of non-normalized PageRank
scores. If PageRank scores are computed as described in
[9] (i.e., using a variant of the power iteration method), the
value rlow can be computed in one additional iteration, not-
ing that for the transition matrix, M, defined by,

Mij =


1/out(i) : (i, j) ∈ E

0 : otherwise

and the vector of PageRank scores r, the following holdsX
d∈D

r(d) = ‖r‖1 − ‖rM‖1 .

Our normalization can be applied separately for each given
graph. Thus, for instance, if PageRank scores obtained on
two graphs are to be compared, the scores can be normalized
separately without knowing the other graph. This property
is not common to all normalization schemes and central-
ity indices as pointed out in [7], but is crucial for appli-
cations where PageRank scores are computed, normalized,
and stored on snapshots of a large evolving graph (e.g., the
Web).

As demonstrated in the example above, non-normalized
PageRank scores are not robust given small changes to the
graph. In the example, a small change affected the Page-
Rank score of all nodes, regardless of their proximity to the
change. We next give a theorem that describes conditions
under which the normalized PageRank score of a node is
robust to atomic changes in the graph. Before stating the
theorem we need two definitions as preliminaries.

Definition 1. Let G(V, E) be a directed graph, an atomic
change is an addition/removal of a single node v or a single
edge (u, v).

Clearly, only nodes having neither incoming nor outgoing
edges can be removed from the graph (i.e., edges emanat-
ing from or pointing to the node must be removed first),
and, similarly, added edges must emanate from and point to
existing nodes. The graph resulting from an atomic graph
change is referred to as G′(V ′, E′) and the corresponding
PageRank scores as r′ and r̂′. The scope of an atomic change
includes nodes that are affected by the change and is defined
as follows.

Definition 2. The scope S ⊆ V ∪V ′ of an atomic change
is defined as

• S = {v} for an addition/removal of node v
• S = {w ∈ V ∪ V ′ | w is reachable from u in G or G′} for

an addition/removal of edge (u, v)

Given these preliminaries we now state the following theo-
rem regarding the robustness of normalized PageRank scores.

Theorem 1. Let S be the scope of an atomic change,
then v 6∈ S ⇒ r̂(v) = r̂′(v) for a node v.

Thus, for an atomic change, the normalized PageRank
scores of nodes that are not in its scope do not change. For
the proof of the theorem we use the following lemma that
follows from the results of Avrachenko et al. [1] and Jeh and
Widom [6].

Lemma 1. For a node v ∈ V the normalized PageRank
score r̂(v) can be written as

r̂(v) =
X
u∈V

X
t:u;v

0@l(t)Y
i=1

1

out(ωi)

1A (1− ε)l(t) .

Here, t : u ; v denotes the set of tours (i.e., paths possibly
containing cycles) that start from u and end in v. For a
single tour t = 〈ω1, . . . , ωn〉 (with ω1 = u and ωn = v)
l(t) = n− 1 denotes the length of the tour.

Proof. It can be seen from the preceding lemma that
the normalized PageRank score of a node v only changes
if either the set of tours leading to v (i.e.,

S
u∈V u ; v)

changes, or, the out-degree of any predecessor of v changes.
Let us now distinguish the two cases addition/removal of
1) a node w and 2) an edge (u, w).

1. Since v 6∈ S, clearly v 6= u holds. Apart from that, we
know that w has no outgoing edges and thus there is no
tour u ; v.

2. Since v 6∈ S, v is not reachable from u in both G(V, E)
and G′(V ′, E′). Therefore, the set of tours leading to v is
unchanged. Moreover, the change of u’s out-degree does
not affect the normalized PageRank of v, since u is no
predecessor of v.

The theorem above considers only atomic changes, but
extends naturally to arbitrarily different graphs as the fol-
lowing corollary explains.

Corollary 1. Let G(V, E) and G′(V ′, E′) be two arbi-
trary graphs and 〈S1, . . . , Sn〉 be the scopes of a series of
graph changes that produces the latter from the former graph,
then v 6∈

Sn
i=1 Si ⇒ r̂(v) = r̂′(v) for a node v.

3. REFERENCES
[1] K. Avrachenko, N. Litvak, et al. Monte Carlo methods

in PageRank computation: When one iteration is
sufficient. Tech. rep., INRIA Sophia Antipolis, 2005.

[2] M. Bender, S. Michel, et al. Minerva: Collaborative
P2P Search. In VLDB 2005.

[3] K. Berberich, S. Bedathur, et al. BuzzRank...and the
Trend is Your Friend In WWW 2006.

[4] N. Eiron, K.S. McCurley, et al. Ranking the Web
Frontier. In WWW 2004.
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