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ABSTRACT
Traditional clustering algorithms work on ”flat” data, mak-
ing the assumption that the data instances can only be
represented by a set of homogeneous and uniform features.
Many real world data, however, is heterogeneous in nature,
comprising of multiple types of interrelated components. We
present a clustering algorithm, K-SVMeans, that integrates
the well known K-Means clustering with the highly popular
Support Vector Machines(SVM) in order to utilize the rich-
ness of data. Our experimental results on authorship analy-
sis of scientific publications show that K-SVMeans achieves
better clustering performance than homogeneous data clus-
tering.

Categories and Subject Descriptors
I.5.3 [Pattern Recognition]: Clustering, Algorithms

General Terms
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1. INTRODUCTION
Discovery of latent semantic groupings and identification

of intrinsic structures in datasets is a crucial task for many
data analysis needs. Most real-world data, especially data
available on the web, possess rich structural relationships,
such as web images and surrounding texts, web pages and
hyperlinks, scientific publications and authors. In these ex-
amples, the secondary data types are often either neglected
by traditional clustering algorithms, or individual cluster-
ings on each dimension are mapped onto a combined clus-
tering solution. The former approach under-utilizes the in-
formation available to the clusterer, whereas the latter ne-
glects the structural relationships between the individual
data types.
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We present K-SVMeans clustering, which integrates two
sources of information into a single clustering framework.
The clustering along the main data type of interest is per-
formed using the popular K-Means algorithm and relational
similarity in the additional dimension is learned through On-
line Support Vector Machines [1]. The most significant ad-
vantage of online SVMs is that they are not batch learners
and thus, can handle streaming data. The ability to use
SVMs in an online setting enables us to efficiently integrate
them with unsupervised learning algorithms, and as will be
shown later, this combination does not require manually la-
beled data for SVM training.

2. K-SVMEANS CLUSTERING
The original formulation of K-Means algorithm first ini-

tializes p clusters with data objects and then assigns each
object xi, 1 ≤ i ≤ N to a cluster cj , 1 ≤ j ≤ p where
xi’s distance to the representative of its assigned cluster cj

is minimum. Variants of K-Means algorithm differ in the
initialization of clusters (e.g. random or maximum cluster
distance initialization), the definition of similarity (e.g. Eu-
clidean or Kullback-Leibler Divergence), or the definition of
cluster representativeness (e.g. mean, median or weighted
centroid vector). K-SVMeans algorithm is independent of
any of those variations, but for brevity, we will describe the
algorithm for Spherical K-Means with random initialization
where each cluster is represented by its centroid vector.

During K-SVMeans clustering process, an SVM is trained
for each cluster on the additional(secondary) dimension of
the data. For instance, in document clustering, the docu-
ments are clustered using K-Means and an SVM for each
cluster is trained on the authors of the documents that be-
long to their respective clusters. The clustering decisions in
K-SVMeans can be represented as follows: Let us denote
the objects in the primal data type as X = (x1, x2, · · · , xn)
and the second data type as U = (u1, u2, · · · , um). Let ui

j

represent the relationship between xi and uj and let ui de-
note the set of u’s connected to xi. Intermediate cluster
assignment decisions in K-SVMeans are determined by two
conditions. A data object xi is moved from cluster cj to
ck when 1) xi is closer to ck’s centroid and cj ’s SVM clas-
sifies ui as negative and ck’s SVM classifies ui as positive
(both K-Means and SVM have to agree on the cluster as-
signment change), and 2) in case xi’s candidate cluster ck’s
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Distance / Clus. Init. K-Means K-SVMeans(x1) K-SVMeans(x2) K-SVMeans(x3)

Spherical / Random 68.418 73.318 76.102 76.194
Spherical / Well Sep. 69.306 75.243 77.713 80.596
Euclidean / Random 55.945 60.284 61.575 62.082
Euclidean / Well Sep. 58.712 64.392 65.941 66.746

Table 1: Experimental Results based on the F1 scores of the clustering solutions.

SVM learner decides that ui do not belong to that cluster
(i.e. the decision values of the ui are negative), then we
apply a penalty term on the distance function of K-Means
so that the similarity between xi and the candidate cluster
centroid must be strong enough to warrant a cluster assign-
ment change of xi. The penalty term also ensures us that
the SVM learners are not adversely effected by the incorrect
clustering decisions of K-Means that result in mislabeling of
the ui. Only highly similar xi are allowed a cluster change
in case the SVM classification decision is not trusted. If
xi moves from cj to ck, ui are added to the SVM of ck as
positive, and SVMs of cp, p 6= k as negative observations.

K-SVMeans can be run in multiple iterations where the
initialization of the SVM learner is performed by using the
clustering solution generated in the previous run. In the
first iteration, we run standard K-Means algorithm to yield
a clustering based on the primary data type X. This iter-
ation has two purposes. First, we use the clustering result
from this step as a baseline for comparison. Second, and
more importantly, it generates the labeled initialization set
for the SVM learners of K-SVMeans. In the beginning of an
iteration t + 1, K-SVMeans looks at each cluster πt

i gener-
ated in the previous run and selects m objects closest to the
centroid of πt

i and use their associated u’s for SVM initial-
ization of ci. We use one-against-rest classification in the
SVMs, so the u’s become positive observations for their re-
spective clusters, and negative observations for the rest of
the clusters.

3. EXPERIMENTS
We conducted experiments on a subset of CiteSeer’s1 repos-

itory of scientific literature to evaluate the clustering per-
formance of K-SVMeans by comparing the predicted clus-
ter of each document with the categorical labels from the
document corpus. The CiteSeer dataset we used contains
7623 papers from 16 conferences, authored by 5623 distinct
authors. The papers are grouped into 5 topical categories
based on their publication venues.

Each author ai is represented as a collection of the words
in the documents that ai has (co)authored. Since each doc-
ument can potentially have multiple authors, each author is
represented as

~ai
fj =

X

ai∈dk

1

Rank(ai, dk)
· w(fj , dk) (1)

where Rank(ai, dk) is the rank of authorship of author ai in
document dk and w(fj , dk) is the TF-IDF score of feature
fj in dk. The author vectors are L2 normalized to eliminate
the effects of different document lengths and number of au-
thored documents. We initialize K-SVMeans(x1) with 50
authors from the clustering solution obtained from the K-
Means iteration, and increase the number of initialization

1http://citeseer.ist.psu.edu

authors by %50 at each successive iteration of K-SVMeans.
The penalty term that accounts for SVM misclassification
of authors for the clustering distance function of the docu-
ments is set to 1.5 empirically. As the evaluation metric, we
used the standard F1 measure that measures the harmonic
mean of precision(p) and recall(r). Our reported results are
micro-averaged F1 scores which gives equal weight to each
document and is independent of cluster sizes. For the K-
Means clustering section of K-SVMeans algorithm, we used
the Gmeans clustering toolkit [2] and we integrated it with
the LASVM package [1]. We report results for two cluster-
ing criterion functions of K-Means, averaged over ten runs.
The first clustering algorithm is the Euclidean K-Means that
makes clustering decisions based on the euclidean distances
between the document vectors. The second algorithm we
used is the Spherical K-Means that uses the cosine distances
between documents as the similarity metric. For both clus-
terings, we experimented with two initialization schemes.
In the first scheme, each document is initially assigned a
random cluster ID. The second scheme chooses one of the
cluster centroids as the farthest point from the center of the
whole data set, and all cluster centroids are well separated.

Our experimental results show that K-SVMeans ourper-
forms K-Means significantly, regardless of the clustering cri-
terion function or the initialization scheme of K-Means. K-
SVMeans(x2) and K-SVMeans(x3) are the second and third
iterations of the clustering, respectively. The inclusion of
more and more authors to the SVM initialization set in each
successive iteration enables the learners to build accurate
models earlier in the clustering solution, and thus, increases
the clustering accuracies.

4. CONCLUSIONS
Traditional clustering algorithms are not sufficient to deal

with the existing (and emerging) data that is heterogeneous
in nature, where relationships between objects can be rep-
resented through multiple layers of connectivity. We pre-
sented a novel clustering algorithm K-SVMeans which is de-
signed to perform clustering on rich structured multivariate
datasets. Our experimental results on the integration of au-
thorship analysis with topical clustering of documents show
significant improvements over traditional K-Means and con-
firms that there is great benefit in incorporating additional
dimensions of similarity into a unified clustering solution.
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