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ABSTRACT 
Finding Contiguous Sequential Patterns (CSP) is an important 
problem in Web usage mining. In this paper we propose a new 
data structure, UpDown Tree, for CSP mining. An UpDown Tree 
combines suffix tree and prefix tree for efficient storage of all the 
sequences that contain a given item. The special structure of 
UpDown Tree ensures efficient detection of CSPs. Experiments 
show that UpDown Tree improves CSP mining in terms of both 
time and memory usage comparing to previous approaches. 

Categories and Subject Descriptors 
E.1 [Data]: Data Structures - Trees; H.2.8 [Database 
Management]: Data Mining 

General Terms: Algorithms, Performance, 
Experimentation, Theory. 

Keywords: Web usage mining, sequential pattern, contiguous 
sequential pattern 

1. INTRODUCTION 
Web usage mining provides useful information for many 
applications. One major technique for Web usage mining is 
sequential pattern (SP) mining which discovers user navigational 
patterns. In practice, contiguous sequential pattern (CSP, a 
variation of SP in which the items appearing in a sequence that 
contains the pattern must be adjacent with respect to the 
underlying ordering.) is more effective comparing to SP for 
applications such as Web recommendation/personalization [4]. 
Mining CSPs from Web logs can be taken as SP mining under 
two constraints. First, each element in a sequence consists of only 
one item. Second, items appearing in a sequence that contains a 
pattern must be adjacent with respect to the underlying order as 
defined in the pattern. Most previous approaches do not address 
the problem specifically, but instead they apply a general 
constraint description framework to solve the problem, which is 
inefficient due to the large searching space and inefficient data 
structures. In this paper a new data structure, UpDown Tree, is 
invented for CSP mining. An UpDown Tree combines suffix tree 
and prefix tree for efficient storage of all the sequences that 
contain a given item. The special structure of UpDown Tree 
ensures efficient detection of CSPs. Experiments show the 
effectiveness of UpDown Tree based CSP mining.  

2. MINGING CSP USING UPDOWN TREE 
Let P = {p1, … pn} be a set of items (Web page Ids), an access 
sequence AS = (as1, …, asm) is an ordered list of page Ids, where 

asi ∈  P, i ∈ {1, …, m}. An AS a = (a1, a2, … , aj) is a 
contiguous sub-AS of another AS b = (b1, b2, … , bk), k ≥ j, if 
there exists an integer i, 1 ≤ i ≤ k-j+1, such that a1 = bi, a2 = bi+1, . 
. . , aj = bi+j-1. In this case a is called contained in b, denoted as a 
⊆ b. A Web access sequence database (WASD) is a set of ASs 
{S1, S2, …, Su}, where Si is an AS. The support of an AS S in 
WASD is defined as SupWASD(S)= |{ Si |S⊆ Si }| / u. Given a 
positive value minSup as the support threshold, S is called a 
contiguous sequential pattern (CSP) in WASD if SupWASD(S) ≥ 
minSup. A CSP with length l is called an l-CSP. 

Problem Statement. Given a WASD and the minSup threshold, 
CSP mining is to find the complete set of CSPs in the database. 

2.1 Concept of UpDown Tree 
Our goal is to find a data structure that supports efficient CSP 
mining in terms of both memory and time. Below we propose a 
special data structure, UpDown Tree, for this purpose. 

Table 1 shows some example ASs. To detect CSPs containing an 
item, say 3, we need identify all the sequences that contain 3. 
Observing a sequence that contains 3, we know that it can be 
divided into two subsequences before/after 3 (the full prefix/suffix 
of 3). The full suffixes of 3 can be efficiently stored using a suffix 
trie. We call this trie a Down Trie because its root node is at the 
first level. For each full suffix of 3 we add its sequence Id to the 
Id set of the node in the Down Trie corresponding to the last item 
of the full suffix. The Down Trie can be further compressed into a 
Down Tree based on the concept of Patricia Tree [3] by merging a 
node with its parent if the node is the only child of its parent and 
the node has an empty Id set. Similarly, we can represent all the 
full prefixes of 3 with an Up Trie and compress the Up Trie into 
an Up Tree. The root node of the Up Tree is at the lowest level. 

Table 1. Some example access sequences  

Seq. Id AS Full prefix of 3 Full suffix of 3 

1 3 3 3 

2 5 8 3 4 2 5 8 3 3 4 2 

3 2 5 8 3 4 2 2 5 8 3  3 4 2 

4 2 5 3 4 7 2 5 3 3 4 7 

5 7 5 3 5 4 7 5 3 3 5 4 

Since Up and Down Tree share the same root, they are integrated 
into an UpDown Tree as shown in Fig. 1. To detect all the CSPs 
that include 3, intuitively, any such CSP corresponds to a path in 
the UpDown Tree that starts at a node in the Up Tree. Thus we 
can decompose the problem into finding all the CSPs starting at 
any node in the Up Tree, which can be efficiently solved as 
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described in Algorithm 1 below. Taking a depth first order to 
detect CSPs starting from every node in the Up Tree, we can 
implement a top down approach for CSP mining which is more 
efficient than traditional bottom up approach because it eliminates 
unnecessary candidate checking based on Apriori rule [1].  

 

Figure 1. An example UpDown Tree. 

2.2 UpDown Tree based CSP Mining 
Problem partitioning. Let {<x1>, < x2>, …, <xt>} be the 
complete set of 1-CSPs in a WASD, x1 < x2 < … < xt., based on 
apriori rule [1], any CSP only contains items in the set of {x1, x2, 
…, xt}. Given the set of all the CSPs, first we create t empty sets. 
We then remove all the CSPs that contain xt from the CSP set to 
set t, and in the resulted CSP set we remove all the CSPs that 
contain xt-1 to set t-1, …. We continue this process until removing 
all the CSPs that contain x1 from the CSP set to set 1. Now the 
original CSP set is empty. In this way we partition the CSP set 
into t disjoint set, and set i (1 ≤ i ≤ t) is the set of CSPs that 
contains xi and items smaller than xi. 

Algorithm 1 Detecting all the CSPs that contain an item xi. 

Input/output: UpDown Tree of xi/All the CSPs that contain xi 

Method: 1) Create an empty CSP set for xi. For each node k in the 
Up Tree in depth first order,  

1.1) Create an empty CSP leaf set and get the ending nodes of all 
sequences in the Id set of k in the Down Tree. For each ending 
node, put the Ids of all the sequences that end at it in its endIdSet; 

1.2) Enqueue each ending node into a priority queue based on the 
descending order of its height in the Down Tree; 

1.3) Dequeue nodes in the priority queue until the queue is empty. 
For each dequeued node m, if the size of its endIdSet is no less 
than minSup, add m to CSP leaf set, otherwise join its endIdSet to 
its parent’s endIdSet and enqueue the parent if m is not the root. 

1.4) For each node j in the CSP leaf set, create a CSP by 
concatenating the key d-gaps of the nodes in the path from k to j, 
and add the CSP to CSP set; 

1.5) For the sequences that are not counted towards the support of 
any CSP, add their Ids to the Id set of k’s parent node.  � 

Detecting all the CSPs of a WASD Following the problem 
partitioning strategy discussed above, first we create an 
occurrence set for each frequent item. Then for each frequent item 
xi in descending order, we first find all the CSPs containing xi (set 
i) using Algorithm 1. Then for each smaller item j in the CSPs 
detected, we remove its corresponding occurrences from its 
occurrence set to simplify CSP detection for set j. 

3. EXPERIMENT RESULTS 
Experiments were performed on a 1.8G Hz Pentium-M Laptop 
with 1 GB memory. We compare our approach with 
GenPrefixScan which is among the best ones for SP mining with 
gap constraints [2]. The testing datasets are generated by 
AssocGen [1], a standard data set generator for SP mining. The 
datasets contain 50-500K sequences (D) and 10,000 different 
items. The average length of sequences is 50. The average length 
of patterns is set to 8, and the number of patterns is set to 5000. 

Fig. 2 (a) shows experiment results on time usage. Both 
approaches scale up linearly as D increases. UpDown Tree 
outperforms GenPrefixScan by a factor of more than 5. Fig. 2(b) 
shows experiment results on memory usage. UpDown Tree 
approach scales up sub-linearly as D increases. GenPrefixScan 
approach scales up more than linearly. Both have similar memory 
usage when D is small. As D is increased to 500K, UpDown Tree 
outperforms GenPrefixScan by a factor of more than 5. 
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Figure 2. Time/memory usage on different sequence numbers. 

The reasons that our approach performs better is as follows, (1) 
The top down approach of our method eliminates unnecessary 
candidate checking by detecting the longest CSP first; (2) Instead 
of storing each sequence separately, UpDown Tree compresses 
the full prefixes/suffixes of each item and merges some certain 
nodes with their children, both can effectively reduce memory 
consumption.  

4. CONCLUSIONS 
In this paper a new data structure, UpDown Tree, is invented to 
solve the problem of Web log CSP mining. Experiment results 
show that UpDown Tree based approach performs much better in 
terms of both time and memory comparing to GenPrefixSpan, one 
of the best existing approaches for CSP mining. 
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