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ABSTRACT

Current web search engines focus on searching only the et
shapshot of the web. In some cases, however, it would beadhéesir
to search over collections that include many different ¢saand
versions of each page. One important example of such a eollec
tion is the Internet Archive, though there are many othelisces
the data size of such an archive is multiple times that of glsin
shapshot, this presents us with significant performanchkectoges.
Current engines use various techniques for index comjpressid
optimized query execution, but these techniques do nobéxple
significant similarities between different versions of a@aor be-
tween different pages.

In this paper, we propose a general framework for indexirdy an
query processing of archival collections and, more geherahy
collections with a sufficient amount of redundancy. Our apph
results in significant reductions in index size and queryeessing
costs on such collections, and it is orthogonal to and carobhe c
bined with the existing techniques. It also supports higificient
updates, both locally and over a network. Within this frarosuy
we describe and evaluate different implementations tlaatetioff
index size versus CPU cost and other factors, and discusisapp
tions ranging from archival web search to local search of sits,
email archives, or file systems. We present experimentaltses
based on search engine query log and a large collectionstiomsi
of multiple crawls.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing

General Terms
Algorithms, Design, Experimentation.

Keywords

Search engines, inverted index, redundancy eliminatimex com-
pression, query execution.

1. INTRODUCTION

or thousands of servers, and employ numerous publishedrand p
prietary performance optimizations in order to supportugands
of queries per second on hillions of web pages. Current besare
gines focus on providing access to the most recent snapshw o
evolving web. In order to optimize the freshness of theireid
search engine crawlers continuously retrieve new web pagies
them to their document set, and then either periodicallyontio-
uously update their inverted index to reflect the new datahéf
URL of a page has been previously crawled, then the engine typ
cally replaces the old with the newer version, and any inédiom
contained only in the older version becomes unavailable.

While most users are primarily interested in current pathese
are many cases where a search over all previous versiong woul
also be of interest. As one important example, the Intermehite
has collected more thab billion web pages over the last decade
in an attempt to archive and preserve the information on i \t
is currently not feasible for the archive to offer full-tes¢arch on
the entire data for a large user population, due to the high ao
processing a query on such a data set. One reason is thattcurre
indexing and query processing techniques, when applieaytten
successive crawls of the same set of URLSs, result in indesssiz
and query processing costs roughly ten times that of a sangiel.

Of course, completely identical versions of a page couldgly
removed from the index. However, in many cases the new versio
of a page is different from, but still substantially similar, the
previous one, and it would be desirable to be able to exphist t
redundancy to decrease index size and increase query tpoug

A large amount of recent research by networking, OS, and data
compression researchers has focused on the problem oéeffici
storing and transmitting redundant data collections. Tidtides
work on differential compression techniques, e.g., foragje and
versioning file systems [22, 13, 26, 17, 10], file synchrotiiza
techniques such async [37], and redundancy-eliminating com-
munication protocols for web access or other tasks [19, 2534).
Thus, we know how to store and transmit the redundant documen
collections themselves in a highly efficient manner. Howeaé
most all current techniques for dealing with inverted ireexn
such collections, including current index compressiotégues,
are unable to exploit redundancy across version boundéoies
exception is the very recent work in [7, 16] which we discuagst).

In this paper, we focus on this problem of how to efficiently in

With the rapid growth of the web, more and more people use web dex and search collections with significant redundancy. ipgse

search engines as their primary means for locating reléwnémt
mation. Such search engines are built on large clustersrafrieds
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a complete framework for indexing, index maintenance, arety
processing on such collections. Our main focus is on arthala
lections, such as the Internet Archive, that contain séwnalar
versions of the same document. In addition, there are dentier
scenarios that can be addressed with our approach. Geneaal b
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based web crawls as well as site-specific collections also te
have a significant amount of redundancy, particularly withige
sites [12]. The same is true for email archives where rejplitsn
quote from previous messages in the thread. In these cases, o
framework also reduces the index size, though by a more rateler
factor. It can also support highly efficient updates in theeoathere

old versions are replaced by new versions, and in the caseevahe
remote index is updated across a network. Finally, theréndee-
esting possibilities for applications to desktop seardhiadexing

of versioning file systems that retain old versions of alkfile

The basic ideas underlying our approach are almost embarras
ingly simple, and we now describe them very briefly. First,use
content-dependent string partitioning techniques, &igmnowing
[30] or Karp-Rabin partitioning [20], to split each documémto
a number offragments, say, 10 to 25 on average. The main char-
acteristic of these techniques is that similar files will énamany
fragments in common; this has been previously exploited By O
and networking researchers to save storage and transmisssts
on redundant data sets [13, 19, 22, 25, 27]. We then simply in-
dex these fragments instead of the complete documentseaeh
distinct fragment is assigned a fragment ID and the indexaios
references to fragments rather than documents. The resutbiich
smaller index for collections with significant redundaniye then
design modified algorithms fatocument-at-a-time query process-
ing that efficiently stitch the fragments back together nigireval-
uation of a query. Finally, by also identifying each fragmken a
hash of its content, we can support extremely efficient wgslan
such indexes, both locally and across a network.

While the basic ideas are simple, there are various detsils t
complicate matters. In particular, we consider severdbiiht
fragment sharing policies that trade off index size versus the CPU
cost of query processing and the size of certain auxiliaty seuc-
tures: In some cases, we may limit elimination of identicabf
ments to different versions of a page or pages within a sitélew
in other cases we may want to detect duplicate fragmentsscro
the entire collection. While some of the ingredients in opr a
proach have been previously employed in several scenaréle-
lieve that our general framework still makes a significart aovel
contribution. As mentioned, redundancy elimination ttyloyar-
titioning of data into blocks has been used to reduce trasson
costs and storage sizes for redundant data sets; seel8,d.9[ 22,
25, 27, 37]. The most relevant previous results on textudgxiing
are theLandmarks approach [23], which focuses on efficient index
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just numbered frond to n — 1. For now we do not distinguish be-
tween different documents and different versions of theesdot-
ument. LetW = {wo,w1,...,wm—1} be all distinct words that
occur anywhere in the collection. Typically, almost anyt &txing
that appears between separating symbols such as spacesaspm
etc., is treated as a valid word (@rm) for indexing purposes.

Indexes: An inverted index I for the collection consists of a
set of inverted list¥ ., [w,, .- ; lw,,_, Where listl,, contains
a posting for each document containing. Each posting con-
tains the ID of the document where the word occurs (doclDg, th
number of occurrences in this document (frequency), theeftyr
word-based) positions of the occurrences within the docttirfpm-
sitions), plus possibly other information about the cohteheach
occurrence (e.g., in title, in bold font, in anchor text) this paper,
we assume that each posting is of the faqetid, f, po, ... ,ps_1).
The postings in each inverted list are usually sorted by@pahd
stored on disk in highly compressed form. Thus, Booleanigser
can be implemented as unions and intersections of thesgvikile
phrase searches (e.g., “New York”) can be answered by |gakin
the positions of the two words. We refer to [38] for more dstai

Ranked Queries: We define a query = {to,t1,... ,ta—1} as
just a set of terms (words). For simplicity, we ignore isssigsh as
term order in the query, phrase searches, or various otliemsp
though our techniques can be adapted to all of these. Thelraost
sic way to perform ranking of results in search engines isthas
comparing the words (terms) contained in the documentsraifei
query. More precisely, documents are modeled as unordexgsl b
of words, and a ranking function assigns a score to each damum
with respect to the current query, based on the frequencydi e
query word in the page and in the overall collection, the fergj
the document, and maybe the context of the occurrenceliegber
score if term in title or bold face). Formally,ranking function is
a functionF’ that, given a query = {to,t1,...tx—1}, assigns to
each document a scoref'(d, ¢). The system then returns the, say,
10 documents with the highest score. Commonly studied classes
of ranking functions include th€osine and Okapi measures, but
current search engines use many other factors in additisimiple
term-based ranking. Our techniques are largely orthogortakese
issues.

The most important observation for our purposes here isahat
ranked query can be processed by traversing the invertsdfdis
the query terms, and computing the score for each document en
countered in the lists, based on the information storedemptbst-

updates when a new version of a document replaces an older oneings plus usually some additional statistics stored séplgraFor

and the very recent work in [7, 16] on searching redundanécol
tions. TheLandmarks approach in particular strongly influenced
our approach.

The remainder of this paper is organized as follows. In the ne
section, we provide some necessary background. Sectior-3 di
cusses related work in more detail, and Section 4 summattizes
contributions of this paper. Our general framework is idtroed
and discussed in detail in Section 5. Section 6 presentslianpre
inary experimental evaluation of our framework using reatnry
logs and web data. Finally, Section 7 provides some conutudi
remarks.

2. TECHNICAL BACKGROUND

We now provide some basic technical background on text in-
dexing, search engine query processing, and redundanegtidet
through partitioning. In the following definitions, we asse that
we have a document collectidd = {do, d1,...dn,—1} Of n web
pages that are stored on disk. Each document is uniquelyifigen
by a document ID (doclID); in the simplest case the documenets a

412

various reasons, many web search engines prefer to retetn do
ments that contain all (or almost all [6]) of the query tertnsthis
case, it suffices to only compute the score of any documens&ho
doclD is in the intersection of the relevant inverted lists.

Document-at-a-Time Query Processing: The cost of query
processing is usually dominated by that of traversing therbed
lists. For large collections, these lists become very lof&ven
several billion pages, a typical query involves hundred#Bfto
several GB of index data which, unless cached in memory,diaes t
fetched from disk. Thus, list traversal and intersectiompaotation
has to be highly optimized, and should not require holdimgcbm-
plete lists even temporarily in main memory. This is usudiiyne
using an approach callegbcument-at-a-time (DAAT) query pro-
cessing, where we simultaneously traverse the relevant lists from
start to end and compute the scores of the relevant docuraents
passant [6, 21].

We later need to adapt this approach to our new index streictur
and thus we now provide some more discussion; additionalldet
are available in the appendix. In the DAAT approach, we main-
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window of size b for hashiny

tain one pointer into each of the inverted lists involvedia query, i
and move these pointers forward in a synchronized manndets i
tify postings with matching doclDs in the different lists.t Any | R | A | K | Al B | Al B |A| B|F | H | M]A l Cl |
point in time, only one posting from each list is considered a
must be available in uncompressed form in main memory. Aeroth
advantage of the approach is that it allows us to implemetit op
mizations that skip over many elements when moving forward i
the lists [24], while hiding all details of the index structuand
compression method. i
Content-Depending File Partitioning Using Winnowing: A window of size w
significant amount of research in the networking, OS, and dat
compression communities has focused on eliminating rezheids
in large data sets by partitioning each file into a number otkd Figure 2.1: Example of the winnowing approach on a file. A
and then removing any blocks that have previously occurféds small window of sizeb = 3 moves over the file to create a se-
is usually done by identifying each block by a hash of its eafit quence of hashes. A larger window of sizes = 5 moves over
if we choose the blocks to be large enough, we can limit the-num the hashes to determine block boundaries.
ber of hashes such that they can be kept in main memory for many

hash

23 17|45 13|48 13 48|87|19 7 |21|12|29|13 |

Block 1 Block 2 Block 3

scenarios. One problem is how to perform the partitionifigvd dred distinct words, and thus a naive scheme for disk-rasite
simply partition each file into blocks of fixed size and stdreit dexes would require several hundred changes in differeatitans
hashes, then we would be unable to detect many repeatedsblock on disk. A number of optimizations for index updates havenbee
due to alignment issues. (E.g., if one file differs from aeotbnly proposed [9, 36, 11]. If a very high rate of updates needs to be

by a deleted or inserted character at the beginning, noneeof t supported, then the best approach appears to be based odiperi
blocks would likely match.) In some cases, this can be resblv  cally pushing updates to the index. That is, when new doctsnen

by checking for all possible alignments between currentpaesi- arrive in the system, we first add them to a second, memorgebas
ously seen blocks [37, 34, 32], but in other scenarios thisféea- index structure. To keep this structure from growing beyoren-
sible [22, 25, 13, 27, 19]. ory size, we periodically merge it (or parts of it) into theimandex
For such cases, several techniques have been proposedrtitat p  on disk. If the main index is very large, it may be preferablese
tion a file in a content-dependent manner, such that two airfiiés a multi-level scheme where the data in memory is first merge i
are likely to contain a large number of common blocks [20,230, a slightly larger index structure on disk, which itself igipeically
35]. Among these, we focus on the more recsitinowing tech- merged into an even larger structure, etc. To process a,query
nique proposed in [30], which appears to perform well in pcac perform separate accesses into each of the index stru¢inchsi-
Given afilef[0...n — 1], the process runs in two phases: ing the one in memory) and then merge the results. This approa

has provable performance bounds and is used in a number-of sys
tems (e.g., Lucene and the text index of MS SQL Server).

Many details depend on the types of updates we need to support
e.g., addition of new documents, deletions, replacemeoldofer-
sions by newer versions, or addition of newer versions. Nudé
if we do not store positions in the postings, then a new varsio

(1) First, we choose a hash functidh that maps substrings of
some fixed small sizé to integer values, say fdr around
10 to 20. We then hash each of the — b + 1 substrings
si = f[i...i+b—1]in f, resulting in an array of integer
valuesh[0...n — b] with h[i] = H (s;).

(2) We now choose a larger window size sayw = 100 or a page that differs very slightly from the previous one majyon
more, and slide this window over the arraj0...n — b, require updates to a few postings. If positions are storededls
one position at a time. For every position of the window, we then a single word added to the beginning of the page maytresul
now use the following rules to partition the original file in updates to all postings. This challenge was addressetiéby t
) ) Landmarks approach in [23], which we discuss in more detail later.
@ .SUppOSQM IS St.”Ctly smallgrthan all other valuég;] In general, when a document is added, deleted, or modifiési, th
in the current window of sizev. Then cut/ between  regylts in a sequence of insert, delete, and update comnunds
fli — 1] and f[i]. individual postings that are first buffered in memory anchtpe-
(b) Suppose there are several positiditsthe current win- riodically applied to the larger disk-based structurese phrfor-
dow with the same minimum valudi]. If we have pre- mance of such an update scheme is determined by the number of

viously cut directly before one of these positions, then such commands that are generated, as this determinesdberficy
no cut is applied in this step. Otherwise, cut before the and amortized cost of the periodic merges into the diskhasac-
rightmost such position. tures. In our later experiments, we will use this as our meastl

It is shown in [30] that if two files have a common substring of efficiency.

size at leasiv + b + 1, then they are guaranteed to have at least

one common block. The maximum size of a blockviswhile the 3. DISCUSSION OF RELATED WORK

expected size, assuming a random h&sks (w+1) /2. The parti- We now provide some pointers to related work and discuss the
tioning can be performed highly efficiently by usingailing hash most closely related previous work in more detail. For basit
function H, i.e., a function such tha¥ (s;+:) can be computed di- search engine architecture we refer to [5, 28, 14]. For hackyl
rectly from H (s;) and f[i + b]. The entire process is illustrated in  on indexing, ranking, and query execution in IR and web $earc
Figure 2.1. engines, see [2, 3, 38, 39]. Document-at-a-time query ggicg
Index Updates: Finally, we need some background on efficient is described and evaluated, e.g., in [21].

schemes for updating inverted indexes. Consider a new [age t Inverted Index Compression: There are a large number of tech-
has been crawled and needs to be added to the index. The primar niques for inverted index compression; see [38, 39] for aamngew.
performance challenge here is that the typical page hasadéwm- One simple and popular scheme caled-byte, evaluated in [31],
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encodes each posting, frequency, or position in a varialeber
of bytes. This allows much faster decompression than many bi

Session: Search Potpourri

archival collections and collections with redundanciesveen dif-
ferent URLSs, which is the main focus of our work. We use corten

aligned schemes such as Golomb, Rice, Gamma, or Delta codingdependent partitionings and identify each resulting fragnby a

that in turn achieve a smaller compressed size. Howevey,reer
cent bit-aligned schemes in [1, 15] manage to outperforrbyse

in terms of both compressed size and decompression speedr In
experiments, we will use var-byte as well as the recent Sirfpl
scheme from [1]. Our approach here is orthogonal to the ehoic
of compression, and can be used in combination with any @the
techniques.

hash. Our approach also supports efficient updates ovenariet
and does not require access to the complete outdated velgimog
updates. In summary, we believe our framework provides en el
gant generalization and significant extension to the wofR3j.
Indexing of Redundant Content: Very recent work in [7, 16],
published while our work was in progress, describes altammap-
proaches for indexing text collections with redundancye bhasic

We note that improvements in compression rate can also be ob-idea is also to avoid repeated indexing of content that issshiae-

tained by assigning doclIDs to pages based on similarity hed t
applying appropriate local coding models [4, 33]. Howetkese
techniques give only fairly moderate improvements, andalefr
fectively exploit redundancies when pages are very simildre
issue of assigning appropriate doclIDs (or in our case, doeli
fragment IDs) will also come up in our approach.

File Partitioning and Redundancy Elimination: A number of
networking, OS, and data compression researchers havedthd
problem of eliminating repeatedly occurring blocks of dftan
large data sets; see, e.qg., [37, 27, 34, 32, 22, 25, 13, 1%ore
cases [37, 32, 18, 26], it is possible to use blocks of fixed, $imt
many other scenarios require the use of content-dependetit p
tioning techniques such as [20, 30, 29, 35]. We useniimeowing
technique in [30], which according to our experiments penf®
well in practice in terms of the trade-off between the amaime-
dundancy detected and the number of blocks that are cre@ted.
initial goal in this work was to study bandwidth-efficientliex up-
dates over a network, and we were particularly influencedis t
direction byrsync [37] and theLow-Bandwidth File System [25].

We also note that a lot of work in the web community has fo-
cused on detecting plagiarism, near-duplicate pages, hrak@-
level duplication between different documents; see, ¢1@., 8].
In fact, the winnowing technique was initially proposed $wrch
purposes rather than for eliminating redundancy for peréorce
reasons. (Our description of this technique in the previagion
was adapted to this new scenario.)

Index Updates: A number of researchers have studied the prob-
lem of efficiently updating inverted index structures [9,, 34,
23]. As mentioned, current state-of-the-art methods gaagyost-
ing updates that are only periodically merged into the diaked
structures, rather than directly applying changes on disk.

Most relevant to our work here is tHeandmarks approach in
[23], which focuses on the case where an old version of a wge pa
is replaced with a updated, but often very similar, versiéposi-
tions are stored in each posting, then a naive approach virawiel
to update almost all postings when a new version arrives,talue
changes in alignment. The approach in [23] avoids this byesg
ing positions relative to certainandmarks in the page, rather than
as absolute offsets from the start of the page. When an update
curs, posting updates are only generated for those arehs page
that have actually changed, and the position informatianttie

Landmarksis updated to account for changes in the offsets from the 5,

start of the page. We note that thendmarks approach can be seen
as an implicit partitioning of a page into blocks or fragnsmne
for each Landmark. The work in [23] looked at several heiasst
for selecting the_,andmarks, but did not consider the above parti-

tween different pages or different versions of a page. Heweke
approaches taken are somewhat different from ours. In [Tj- s
lar documents are organized in a tree structure where eatshiso
a document with some private and some shared content, ahd eac
node inherits its ancestors’ shared content. In [16], comparts

of different versions of a document are identified by sohamgul-
tiple sequence alignment problem. The approaches in [7al$6]
use adaptations of standard DAAT query processing. Theyotlo n
consider incremental updates, but require that the callect fully
available during indexing. There are interesting oppaties for
future research that combine ideas from these approachtie®uwi
own.

4. CONTRIBUTIONS OF THIS PAPER

We study the problem of indexing and searching large web page
collections with redundancy, and propose a new and gerrarakf
work that results in significant savings in the size of theeitwd
index and the performance of query processing. In particola
contributions are:

(1) We propose the use of content-dependent partitionicigr te
niques, in particular th&innowing approach in [30], to avoid
repeated indexing of content that is shared between several
pages or several versions of a page. This is done by parti-
tioning each page into a number of fragments and then inde-
pendently indexing each fragment using standard techsique

We propose modifications of document-at-a-time queoy pr
cessing algorithms that can efficiently utilize such fragtne
based indexes. We consider several sharing policies betwee
different pages, and show how to adapt query processing for
these policies.

@)

(3) We discuss several application scenarios for our fraonew
and provide efficient update mechanisms for local indexes

and index updates over a network.

We perform a preliminary experimental evaluation of our
framework based on search engine query traces and more
than6 million web pages extracted from several crawls. Our
results show benefits in index size, query processing speed,
and update cost.

4)

OUR FRAMEWORK

We now describe our new framework in detail. We first describe
the various data structures in our setup and the basic stepgd
indexing and index updates.

tioning techniques. One main insight in our work came whenwe 5 1 Basic Setup

realized the relationship between file synchronizatiomnéges
such agsync and the index update approachLiandmarks.

However, there are also a number of differences to our work.
The work in [23] focuses on the scenario where old versions of

pages are replaced by newer ones, and does not consideséafca
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In the following, we use the term page to refer to distinctwdoc
ments or information items identified, e.g., by a URL. We Use t
termversion to refer to different versions of the same page. Thus, if
a crawler visits the same one million URLs ten times, we haxe o
million pages and ten million versions. We use the téagment to
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refer to a block of data produced by applying a content-degen
partitioning technique to a page. Pages are identified byctDdo
while fragments are identified by a fraglD.

Basic Indexing Process:To index a new version of a page, we
first partition it into a number of fragments. However, befoun-
ning winnowing, we first remove all HTML tags from the page and
then hash each word in the resulting text page to an intedeeva
in fact, it suffices to hash to an unsigned char. We then runevin
ing on the resulting unsigned char array, where each clearact-
responds to a single word — this guarantees that partitosligns
with word boundaries. By using values®fbetweenl 00 and200,
we obtain fragments containirig) to 100 words on average; thus
the typical web page is divided into abait to 20 fragments.

We then compute an MD5 hash over the content of each frag-

ment, and check a global table to see if a fragment with thihha
has been previously indexed. If yes, then we do not indeXithis
ment. Otherwise, we assign a unique fragment ID (fragIDhis t
fragment, and add for each term in the fragment a postingef th
form (fraglD, f,po,...,ps—1), where f is the number of oc-
currences of the term in this fragment and there the offsets of
the occurrences from the start of the fragment. We will ldiscuss
how to best generate fraglDs, as this impacts query prouwgssid
index size. For now, we observe that these postings can atedre
by the index just as normal postings, and that the averagdeap
tween consecutive fraglDs in the inverted lists increaseievthe
average values of and thep; decrease, relative to the doclDs,
frequencies, and positions in a standard index.

Finally, for each page, we maintain a data structure thapkee
track of the different versions of the pages and which fragme
each version consists of. This structure will be stored im-co

pressed form, and is updated whenever we add a new page or ver:

sion to the index (even if a page consists completely of djrea
existing fragments).

Data Structures: Search engines typically contain three major
data structures that are needed for query processing:

¢ the inverted index, consisting of inverted lists sorted by d
cID and mapped into one or several large files,

e a dictionary structure which stores for each distinct tenm i
the collection a pointer to the start of the inverted listtfus
term, plus useful statistical information such as the numbe
of documents containing the term, and

e a page table which stores for each doclD the length of the
corresponding page in words, other useful information such

as the Pagerank value of the page, and possibly the complete

URL of the page.

The structures are illustrated in the top half of Figure 54 exe-
cute a query, we first use the dictionary to find the start ofithe
verted lists of the query terms, then compute the tdpesults by
traversing the lists and computing scores using the pogtiiog-
mation and the additional statistics kept in the dictiorang page
table, and finally we use the information in the page tablestotf
the actual pages for the tdg}results in order to return meaningful
text snippets with the results.

In our framework, we add several new data structures, shown i
the bottom half of Figure 5.1, as follows:

e ahash table which stores a hash value (e.g., 64-bit of MD5)
of the content of each distinct fragment that has occurred
in the collection, plus the corresponding fraglD (or selera
fragIDs in some scenarios).

e adoc/version table that stores information about a page and
its various versions, in particular how many versions there
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Inverted Index Dictionary
-~ 1 Term Offset | Term Freq
I ~]

| —

Page Table
URL |d| Page Rank
Doc/Version Table Hash Table Reuse Table
DocID | Version&Frag Info FragID] Hash Value DocID | FragID

Figure 5.1: Major data structures in our index organization:
standard (top) and additional structures in a fragment-basd
index (bottom).

are, which version contains which fragment, and how large
each fragment is.

o afragment reusetablethat stores in whicbther pages a frag-
ment occurs. For efficiency reasons, it is useful to dististgu
betweenlocal sharing, where a fragment occurs repeatedly
in different versions of one page, aghbbal sharing, where
fragments are reused in versions of other pages. Each frag-
ment has grimary page, which is the first page where it
occurs. Entries in this table are only created when an ajread
existing fragment is reused in another page.

We note that in some scenarios, we can remove or merge some
of the structures, as we discuss later. For example, thethbth

is only needed during updates. In terms of memory resoutices,
largest new structure is typically the hash map which (fagdadata

sets and with proper prefix compression) can be stored int&bou
bytes for each pair of @4-bit hash and 82-bit fragID. (We chose

64 bits as this results in a fairly low probability of any hasHlieo
sions even for moderately large data sets. Note that if éstmil

does occur, the result is equivalent to that of a slightlyoinect
parsing of the new page with the colliding fragment.)

5.2 Algorithms for Local and Global Sharing

We now consider query processing in our new index organiza-
tion. In particular, we consider two different sharing p@s:

e Global Sharing: In this policy, we allow unrestricted re-
dundancy elimination across pages. Thus, if a fragment has
previously occurred in any other page, it is not indexedragai

e Local Sharing: In this policy, we only avoid re-indexing of
a fragment if it has previously occurred in a version of the
same page.

Note that there are other interesting choices in betweesettveo,
such as allowing fragment sharing only among pages on the sam
site. Since such pages are more likely to be similar thanamand
pages from other sites, this might achieve most of the benefit
global sharing without some of the costs. We focus here otwtbe
above extreme cases.

Concerning the assignment of fraglDs to fragments, it véltie-
sirable to number fragments in a way such that fragmentsroogu
in the same page are close to each other in the inverted Tikts.
is easy to do if we have no updates, while a little bit more work
is needed in the update case. However, even with updatess this
possible if suitable adjustments to the numbering schem@ear
formed as part of the periodic update operations to the liésled
index that are performed by efficient update schemes. Itniteso
times useful to assume that a fragID is actually a pair ctingi®f
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the doclD of its primary page and a fragment number; {&9, 3)
means that a fragment occurred first in p&geand was the fourth
fragment that occurred first in that page. In terms of actastp
ing structure, we may either store the fragID as one numbesor
two smaller numbers, assuming care is taken to use an ajgtepr
index compression technique.

Our query processing can be seen as consisting of threegpphase
(i) identification of pages that contain all query words (e
or not they occur in the same version), (ii) for each such page
check if any version of the page contains all words (this iregu
retrieval of the doc/version table to understand how fragsenap
to versions), and (iii) computation of the actual score fpage or
version. Note that this possibly also allows us to rank pageb

Session: Search Potpourri

Query Processing with Local Sharing:If we only allow local
sharing, then the above algorithm simplifies in several wayist,
we do not need a fragment reuse table at all. Second, nogiaket
required, and we can essentially run standard DAAT on thexihal
implement phase (i). On the other hand, we would expect &iarg
index size. Local sharing alone should already give deceméfits
if there are many versions of each page, but of course wid giv
benefit at all for a single snapshot of pages with a certainuamo
of redundant content between different pages.

Discussion:ln summary, our approach requires changes in query
processing that may result in additional computationalrachory
costs. The details depend on our choice of sharing poligaljo
global, or in between), but also on whether we assume AND or OR

versions based on other factors such as when and how longea pag semantics for our query terms. For AND, we may not be able to

contained the query words, or other temporal factors thataueot
explore in this paper.
Query Processing with Global Sharing: In this case, we pro-

perform as many forward skips, while for OR this is less of&n i
sue. On the other hand, fast schemes for OR often use pretetnpu
quantized score that take document lengths into accouist;nibt

cess a query in a similar manner as in a standard index, by scan clear how to do this in our approach where a fragment may occur

ning lists from start to end. However, there are some diffees:

In standard indexes, we can often skip forward over many-post
ings (usingnextGEQ()), while the existence of global sharing now
prevents us from doing so in many cases. For example, canside
the case of a query for “cat”,“dog”, and “sheep” where “catthe
shortest list and “sheep” the longest, and “cat” occursifirtagID

(5, 1), “dog” occurs firstin(2, 0), and “sheep” occurs first iy, 3).
Suppose we start by reading the first posting in the “cat; Visth
fragID (5,1). Then we cannot simply follow the standard DAAT
approach: If the fragmer(t, 1) is also used in a version of page
9, then we have to make sure not to skip any fragments for page
in the “dog” list since a match for “dog” there would indicdteat
each of the three words occurs at least in some version ofpdfe
the fragment2, 0) also occurs in pag&, then we cannot even skip
any fragments for pagein the “dog” list.

In other words, global sharing restricts the amount of skigp
we can perform in the index traversal when computing anseter
tion. In particular, in all lists, in addition to the stopsptied by
standard DAAT, we need to stop to check for the existence wf an
postings for fragIDs that are later reused in another pagsuch
a posting exists, we also need to stop to check for any pasting

in several documents of different lengths. Finally, addisl dif-
ferences and challenges may arise once we add early-teiomna
techniques to the query processor, but this is beyond theesob
this paper.

5.3 Index Updates

We now consider how to use our framework for efficient up-
dating of the index. First, consider the case of a new ver&on
new page) being added to the index. In this case, we partitien
page into fragments, look up the hashes of the fragmentsein th
hash table, and then index only those fragments that do bt fin
a match while discarding the others. In addition, we update o
insert the appropriate records in the various tables. Asndex
the new fragments, we generate postings that are first @serto
a main-memory structure and later periodically merged disi-
based structures. One nice feature of the approach, andtagea
over Landmarks [23], is that we do not even have to fetch the old
version of the page from disk.

This leads to a very simple protocol for the case where, say, a
crawler needs to update a remote index over a network. In the
first phase, we send only the MD5 hashes of the fragments, and

pages where those fragIDs are later reused — we can find the do+the index replies with a bit vector indicating which hashesnid

cIDs and thus fragIDs of those later pages through a looktg in
the fragment reuse table. If reuse is concentrated on a fagyv fr
ments that are reused by many other pages, then we can ts8ll ge
reasonable amount of skipping in the index, but in other case
end up traversing all postings. In general, when we find aiqpst
that is later reused, we creatdieket that stores the information in
the posting itself and the pages where the fragID is reused nd
we put these tickets into a priority queue organized by thelo
of the next reuse. As we later visit postings that match aticke
update and eventually erase the ticket.

A few remarks about the costs of this scheme. Forward skips
in DAAT processing can save a significant amount of CPU time
as we can avoid uncompressing all postings (but the impoetan

a match. In the second phase, we send only those fragments tha
did not find a match. We note that this protocol is of course ver
close torsync [37], LBFS[25], and similar schemes for distributing
redundant data sets. In general, our approach naturallpices
with transmission and storage schemes based on block-linse e
ination of redundancies, with interesting implications fossible
applications in storage and file systems.

Finally, we can also support updates where a new version re-
places an older version. In this case, in addition to crgatiew
postings for new fragments, we also need to delete old fratgne
that are not used by any page anymore. This is done most effi-
ciently by first adding a “delete fragment” command to a main-
memory structure, and propagating the deletion to disknduttie

of this aspect may be more modest for very recent schemes suchhext periodic merge of the updates onto disk. One assumjstion
as [15] that can decompress postings at a rate of several GB pe this approach is of course that we can hold a strong enough has

second). On the other hand, skipping seems to rarely savie amic
disk transfer times given current disk performance charastics,

value for each fragment in memory; our experiments inditiaae
this is realistic for many scenarios. (If no incremental aied are

as skips are rarely long enough to skip a large enough chunk of performed, then of course the hash table is not needed atraigd

data on disk. (In our experiments, the query processor engded
almost always fetching all the list data). There is addaidime
and space overhead due to the priority queue; however, wéind
most sharing is fairly local, i.e., between pages on the ssitee
and thus the queue stays fairly small most of the time.
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query processing.)

5.4 Application Scenarios

We now briefly summarize a few of the scenarios and applica-
tions that are covered by our framework.
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e Archival Search: This is the main focus of our presenta-

tion here, where for each page we have a number of different

versions.

e Redundant Web Collections: Pages from the same site, or
even from different sites, often share common blocks of data
that can be eliminated with our approach.

e Email and Personal Files: As also observed in [7], large
amounts of email data, and collections of personal files, als
frequently contain significant amounts of common data.

e \ersioning File Systems:As indicated in the previous sub-
section, our techniques are uniquely suited for integnatio
with versioning file systems that keep all versions of files,
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Figure 6.1: Increase in the number of URLS and versions versus

or with any storage systems that use block-wise redundancy crawl week.

elimination when storing data. Another interesting agplic
tion in this direction might be for use in revision controksy
tems for code or documents.

e Distributed Indexing: As also discussed, our approach al-
lows efficient updating over a network. This includes index-
ing in distributed/P2P systems as well as functionalitieshs

as the “search across machines” feature in Google Desktop

Search that synchronizes indexes across machines.

6. EXPERIMENTAL EVALUATION

We now present our results from a preliminary experimenal-e
uation of our approach. We first describe the data sets, ifznade
the amount of redundancy detected by our schemes, and then pr
vide some limited results for an actual compressed indexctsire
and query processor implementing our framework.

Data Sets: The main data set for our evaluation was extracted
from a set of19 weekly crawls of several hundred large sites dur-
ing Spring 2006 that was made available by the Stanford WebBa
project. Each crawl consisted of abauimillion pages that were
obtained by starting from the same set of seed pages in e&ch si
However, due to changes in the site structure over time,réiis
sulted in somewhat different sets of URLSs that were crawiezhich
week. Thus, the set does not contaihversions of each page, or
even most pages.

We preprocessed the set by removing all pages that we cotild no

effectively parse (mostly pages primarily or completelyiash or
Javascript), and by removing all exact duplicates amongvéine
sions. Exact duplicates are easily handled with existingrtEjues
and thus not a good measure of the efficacy of our approacls. Thi
left us with a total of 6,356,374 versions of pages from 2,383
distinct URLs. Thus, on average there were oRly versions of
each page, though some pages have more versions while niany ot
ers have only one.

We show the cumulative distributions of the number of URLs
and number of versions over th® weeks in Figure 6.1. As we
see, about0% of the URLs and 5% of the total data (versions) is
concentrated in the crawl for the first week, while aftervgandw
versions and URLSs arise at some smaller but fairly constst r

Number of Distinct Fragments and Term Positions: We first
look at the resulting numbers of fragments and the amoung-of r
dundancy that we observed in the collection. In Figures 6@ a
6.3, we see the reduction in the number of fragments andrtotat
ber of term positions that occurs when we eliminate dupidetg-
ments under a local sharing policy. For the first crawl, whbeze
are no different versions of the same URL, the ratio is (ofrseyu
essentiallyl.0, with very minor savings due to fragments repeated
within the same version of a page. When we use data frortoall
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weeks, betweed0% (w = 300) and50% (w = 100) of all frag-
ments (Figure 6.2) and positions (Figure 6.3) are elimihafehe
results in Figure 6.3 are abolffc worse than those in Figure 6.2 as
small fragments are slightly more likely to occur repeated|

LU0 yeeeseeeeess

o

©

o
T

——w=100

— =w=200

——w=300

o

©

S
T

o

3

o
T

o

o

o
T

# of Distinct Frags / # of All Frags
o
o
o
T

N
>
s}

123456 7 8 910111213141516171819
Version Num

Figure 6.2: Cumulative percentage of unique fragments versus week
of crawl.
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Figure 6.3: Cumulative percentage of positions within unique frag-
ments versus week of crawl.

Next, we compare local versus global fragment sharing igalic
in Figure 6.4. We see that for our data set there is a signifaxduti-
tional benefit due to sharing between different pages. Fondaw
size ofw = 50, we observe almost a factor #fin reduction in the
number of fragments, while even far = 300 we get a factor of
2.5, when compared to an index with no redundancy elimination.

Figure 6.5 shows the results as a fraction of the correspgndi
numbers from a standard index, for both the number of fragenen
and the number of positions. We see significant benefits tdvail
sharing over local sharing, and for local sharing over naisba
that increase as we decrease the windowsizZ@/e note in particu-
lar that global sharing benefits more than local sharing fsoraller
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Figure 6.4: Comparison of the number of unique fragments under
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window sizes, and thus the difference between the two metimd
creases for smalb. This agrees with our expectation that different
versions of the same page are more similar, and have largek<l
of common content, than similar but different pages. (Rebak
the difference between local and global sharing is due taest
not available in other versions, but only in other pages.)
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Figure 6.5: Relative reduction in the number of fragments and posi-
tions compared to a standard index, for different sharing pdicies and
window sizes.

Compressed Size and Query Performancéie now show some
preliminary results on the actual compressed index sizetaad
cost of processing queries. All subsequent results are feina
dow size ofw = 100 on thel9 crawls, and were performed on a
machine with &.2 Ghz Pentium-4. We experimented with two dif-
ferent index compression techniques, the simple byteadig/ar-
byte method [31], and the very recent word/bit-aligned Savh
technique in [1]. Both schemes were reimplemented andwgref
optimized by us, resulting in decompression speeds of ket
and350 million integers per second for var-byte, and betweéf
and400 million integers per second for Simple-9. Overall, Simple-
9 consistently outperformed var-byte in terms of decongioes
speed. As observed in [1], decompression speed varies based
the sizes of the numbers involved. For our standard indexolwe
served decompression speeds close to the upper limits mdres
for docIDs and frequencies (which tend to be smaller valuss)
closer to the lower limit for position information (whichsal dom-
inates the size of the index overall). We note that these eusnb
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slightly shift as we move from doclIDs to fraglDs with largexs
but smaller frequency and position values.

#of Frags | # of Posits | Index Size (GB)
(millions) (billions) [ var-byte [ Simple-9 | S9 no Pos]|
No Sharing 121.48 6.100 13.03 10.51 2.23
Local Sharing 63.89 3.271 7.34 5.23 2.68
Global Sharing 38.74 2.126 5.01 3.59 1.84

Table 6.1: Comparison of resulting index sizes for a standaf
index and for fragment-based indexes with local and global
sharing. Shown from left to right are the number of fragments,
total number of positions stored, index size under var-byte
compression, index size under Simple-9 compression, anciex
size under Simple-9 when no position information is stored.

In Table 6.1, we compare the resulting index sizes for a stahd
index, an index with local sharing, and an index with glolyars
ing. We note that Simple-9 achieves a smaller compressedtsin
var-byte, and that the advantage becomes more pronouncks fo
cal and global sharing. The reason is that var-byte canrbiex
the smaller frequency and position values in indexes withlland
global sharing, as it must use at least one byte for everyevélat
is compressed. For Simple-9, we observe a reduction in iatex
by a factor of2 for local sharing, and almostfor global sharing,
over a standard index. We also note that benefits are muclesmal
and in many cases nonexistent, for index structures thadtstore
position information; for local sharing, we see an incraasadex
size while for global sharing we get a small benefit. This issur-
prising since a fragment-based index essentially stong®ajmate
position information (i.e., in which fragment a term ocquisat is
not available in a standard index without positions. Howefa
sets with enough redundancy (many versions or very simigegp)
our approach would also give significant benefits.

Next, we look at the performance of a prototype that impleisien
query processing on fragment indexes. We limit ourselvas he
to local sharing and the var-byte compression scheme. The in
verted index resides on disk, and the query processor usesna m
memory cache of siz&l 2 MB for index data. We then issud@00
queries selected at random from a publicly available tréddhe
Excite search engine, starting with an empty cache. (Reegoce
should be slightly better when starting with a hot cachebl@é.2
shows that disk accesses during query processing decrgade b
most50%, which is slightly better than the reduction in index size
for var-byte from Table 6.1. The reason is that the reducddxn
size also results in a higher hit ratio in the list cache, agladt per-
centage of the index now fits in memory. Total wall clock tire i
also reduced significantly, though not as much as 1/0. We marte
that we are using a somewhat older version of our query psoces
and that optimizations would decrease these numbers saahewh

[ Setup [ Million Frags | Block Reads] Time (s) |
[ NoSharing | 12148 | 71608 | 374 |
| Local Sharing | 63.89 | 38881 | 295 |

Table 6.2: Number of fragments, number of 64KB blocks retrieved
from disk, and wall clock time for processing 1000 queries, for a stan-
dard index and an index with local sharing of fragments.

Finally, in Table 6.3 we show the cost savings during index up
dates when compared to the baseline method of insertingoeesth
ing. We see that each new version of a page results in aa6ut
new positions, compared to abo®i0 for the baseline method.
Overall, we believe that our results indicate the poteritialsig-
nificant performance improvements with our framework.
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[ Crawl | New Versions[ New Posits per Versiof Same for Standard Index

17 279K 219.66 924.56
18 227K 228.71 960.93
19 248 K 254.01 995.59

Table 6.3: Cost of index updates per new version of a page, for ver-
sions arriving during the 17th to 19th crawl. We compare the aerage
number of new position values per version that need to be inded with
local sharing, and the number of postings that would be geneatted us-
ing a standard index.

7. CONCLUDING REMARKS

In this paper, we have presented a new framework for index-

ing and query processing on textual collections with sigaift
amounts of redundancy. This includes as important casédsarc
collections containing many versions of documents, anceiggn
collections of web pages, emails, or personal files that kawee
amount of redundancy. Our preliminary evaluation showedoit
tential for significant benefits, but there are several wayfsitther
optimize our methods. For example, a new content-deperiient
partitioning approach proposed in [35] might give slighphove-

ments in the trade-off between the number of fragments aad th

amount of redundancy detected.

There are a number of intriguing possibilities for futuregarch.
It would be nice to combine our framework with the approadhes
[7, 16] to further improve compression. In general, it sedhad

redundancies between versions or pages provide a new af@nue

further improvements in index compression, similar to thig in
document and file compression that have been obtained fraialgl
redundancy elimination techniques (see, e.qg., [22]).

We are particularly interested in exploring applicatioristte
approach in file and storage systems (including versionlagyis-
tems and revision control systems). We observe that stmpgie
tems typically perform redundancy elimination in a manteit is
completely transparent to the higher levels, and our indgsip-

proach would thus have to be implemented at the lower lewels f

best performance. Extensions to regular expression seauld
also be of interest.

Finally, it might be interesting to reexamine the query pssing
issue in the case of significant global sharing. It could fz th

this case, a pure DAAT approach is not the best due to the extra

complexity, or that the ideas from [7] are more appropridnt
unrestricted sharing.
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APPENDIX: DAAT Query Processing

To implementdocument-at-a-time (DAAT) query processing, it is

useful to consider each inverted list as an input streamctirabe

accessed using the following operations:
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e openList(t) opens the inverted list for termmand returns a
pointer/cursoip for this streamcloseList(Ip) closes the list.

e nextGEQ(Ip, K) advances cursadp forward to the next posting
with docID > k, and returns its doclD. Returns MAXDOCID
if none exists.

e getPost(Ip) returns the complete posting pointed at/py

The algorithm for DAAT query processing is illustrated ire tfol-
lowing snippet of code. Here, it is assumed that the term&eén t
query are sorted from shortest to longest. For each querfirste
open all the lists, and then first access the shortest lidt{rean try

to find matching elements in the longer lists. If an elemefdusd

to occur in all lists, then its score is computed. We note ¢ipetr-
ationnextGEQ() completely hides any details of the internal index
organization, such as layout, caching, and compressiohaudst

for (i = 0; i < numterms; i++) 1lp[i] = openLlist(qterm[i]);

for (docid = 0; docid < MAXDOCID; docid++)

{
/* get next element from first (shortest) list */
docid = nextGEQ(1lp[0], docid);

/* see if you find entries with same docID in other lists */
for (i = 1, d = docid; (i < numterms) && (d == docid); i++)
d = nextGEQ(lp[i], docid);

if (d > docid) /* docid not in intersection; continue */
docid = d-1;
else /* docid in intersection; compute score */
{
for (i = 0; i < numterm; i++) p[i] = getPost(lp[i], did);

computeScore (p, numterm) ;
}

}
for (i = 0; i < num; i++) closelList(lp[i]):;

Figure 8.1: Code from an simple implementation of document-
at-a-time query processing.



