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ABSTRACT 

Search engine advertising has become a significant element of the 

Web browsing experience. Choosing the right ads for the query 

and the order in which they are displayed greatly affects the prob-

ability that a user will see and click on each ad. This ranking has a 

strong impact on the revenue the search engine receives from the 

ads. Further, showing the user an ad that they prefer to click on 

improves user satisfaction. For these reasons, it is important to be 

able to accurately estimate the click-through rate of ads in the 

system. For ads that have been displayed repeatedly, this is empir-

ically measurable, but for new ads, other means must be used. We 

show that we can use features of ads, terms, and advertisers to 

learn a model that accurately predicts the click-though rate for 

new ads. We also show that using our model improves the con-

vergence and performance of an advertising system. As a result, 

our model increases both revenue and user satisfaction. 

Categories and Subject Descriptors 

I.2.6 [Artificial Intelligence]: Learning. H.3.3 [Information 

Storage and Retrieval]: Information Search and Retrieval. 

General Terms 

Algorithms, Measurement, Performance, Economics, Experimen-

tation. 

Keywords: click-through rate, sponsored search, paid search, 

Web advertising, CTR, CPC, ranking. 
 

1. INTRODUCTION 
Most major search engines today are funded through textual ad-

vertising placed next to their search results. The market for these 

search advertisements (sometimes referred to as “paid search”) 

has exploded in the last decade to $5.75 billion, and is expected to 

double again by 2010 [17]. The most notable example is Google, 

which earned $1.63 billion in revenue for the third quarter of 

2006 from search advertising alone [2] (a brief summary of the 

history of sponsored search can be found in [7]). 

Though there are many forms of online advertising, in this paper 

we will restrict ourselves to the most common model: pay-per-

performance with a cost-per-click (CPC) billing, which means the 

search engine is paid every time the ad is clicked by a user (other 

models include cost-per-impression, where advertisers are charged 

according to the number of times their ad was shown, and cost-

per-action, where advertisers are charged only when the ad dis-

play leads to some desired action by the user, such as purchasing a 

product or signing up for a newsletter). Google, Yahoo, and Mi-

crosoft all primarily use this model.  

To maximize revenue and user satisfaction, pay-per-performance 

systems must predict the expected user behavior for each dis-

played advertisement and must maximize the expectation that a 

user will act (click) on it. The search system can make expected 

user behavior predictions based on historical click-through per-

formance of the ad. For example, if an ad has been displayed 100 

times in the past, and has received 5 clicks, then the system could 

estimate its click-through rate (CTR) to be 0.05. This estimate, 

however, has very high variance, and may only reasonably be 

applied to ads that have been shown many times. This poses a 

particular problem when a new ad enters the system. A new ad has 

no historical information, so its expected click-through rate is 

completely unknown.  

In this paper, we address the problem of estimating the probability 

that an ad will be clicked on, for newly created ads and advertis-

ing accounts. We show that we can use information about the ad 

itself (such as the length of the ad and the words it uses), the page 

the ad points to, and statistics of related ads, to build a model that 

reasonably predicts the future CTR of that ad. 

2. MOTIVATION 
The key task for a search engine advertising system is to deter-

mine what advertisements should be displayed, and in what order, 

for each query that the search engine receives. Typically, advertis-

ers have already specified the circumstances under which their ads 

may be shown (e.g., only for certain queries, or when certain 

words appear in a query), so the search engine only needs to rank 

the reduced set of ads that are matches. 

As with search results, the probability that a user clicks on an 

advertisement declines rapidly, as much as 90% [5], with display 

position (see Figure 1). Thus, it is most beneficial for the search 

engine to place best performing ads first. Note that, because the 

probability of clicking on an ad drops so significantly with ad 

position, the accuracy with which we estimate its CTR can have a 

significant effect on revenues. 

The number of eligible advertisements matching a given query 

usually far exceeds the number of valuable slots. For example, 
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most users never go 

beyond the first page of 

search results, in which 

case the number of ads 

displayed is limited to the 

set shown on the first 

page (this number tends 

to range between 5 and 8 

for the most common 

search engines). Even 

within the first page, the 

significant decrease in 

CTR by ad position 

means that ads in very low positions have less impact. 

In order to maximize ad quality (as measured by user clicks) and 

total revenue, most search engines today order their ads primarily 

based on expected revenue:  

adadad CPCclickprevenueE  )(][  

(The most notable exception to this is Yahoo, which orders ads 

based on advertiser bid alone, but plans to switch to using ex-

pected revenue soon). The CPC for an ad is its bid (in a first price 

auction) or the bid of the next-highest bidder (in a second-price 

auction), optionally normalized by ad performance. The details of 

the relation between CPC and bid are not important to this paper, 

but are the study of many works on search engine auction models 

[8][12]. 

Thus, to ideally order a set of ads, it is important to be able to 

accurately estimate the p(click) (CTR) for a given ad. For ads that 

have been shown to users many times (ads that have many im-

pressions), this estimate is simply the binomial MLE (maximum 

likelihood estimation), #clicks / #impressions. (In this paper, we 

assume that over time each ad converges to an underlying true 

click-through rate. We ignore ads that exhibit periodic or incon-

sistent behavior for the purposes of this paper, although the work 

could be extended to such cases.) However, because the CTR for 

advertisements is relatively low, the variance in this estimate is 

quite high, even for a moderate number of impressions. For ex-

ample, an ad with a true CTR of 5% must be shown 1000 times 

before we are even 85% confident that our estimate is within 1% 

of the true CTR. In general search advertising, the average click-

through rate for an ad is estimated to be as low as 2.6% [4].  

The time over which the system converges reflects a large amount 

of search monetization. For example, an ad with a cost per click of 

$1.60 (an average rate on Google [4]) would require $80 of click-

through behavior to experience 50 clicks. Any error in the click-

through rate estimation during that time will result in suboptimal 

ranking and thus lost revenue for the search engine and lower 

traffic for the higher performing ads. 

The search advertising market has grown significantly in recent 

years; there are many new advertisers that enter the market each 

day. Simultaneously, existing advertisers frequently launch new 

advertising campaigns. Many advertisers create new campaigns 

each month, some even every day; others create side-by-side or-

ders for testing purposes in order to optimize their ad perfor-

mance. All of these practices result in an increasing number of ads 

to be ranked for each query.  

Additionally, existing ads are sometimes targeted to new queries. 

Some advertisers attempt to increase their return on investment by 

targeting thousands of infrequently searched terms. There has 

been a significant increase in keyword volume for PPC cam-

paigns: In one study, the number of keywords per campaign per 

month increased from 9,100 in September 2004 to 14,700 by 

March of 2005, and was expected to grow to as many as 17,300 

by September 2005 [4]. 

As a result, there is a large inventory of ads for which the search 

engine has no prior information. These ads need to be ranked with 

other, already established ads. An incorrect ranking has strong 

effects on user and advertiser satisfaction as well as on the reve-

nue for the search engine. Thus, for ads that are new, or have not 

been shown enough times, we must find a way to estimate the 

CTR through means other than historical observations. This is the 

goal of the system described in this paper: to predict, for new ads 

and new advertisers, the probability that an ad will be clicked. 

(from here on, an ad will refer to a combination of a particular ad 

presentation from a particular advertiser, for a particular bid 

term). 

Previous research by Regelson and Fain [19] estimates the CTR 

of new ads by using the CTRs of existing ads with the same bid 

terms or topic clusters. Our experience shows that even within the 

same term there can be a large variation in ad performance (in 

some cases, the CTR of the best ad can be ten times that of the 

average ad). To account for these within-keyword variations, it is 

important to incorporate features that depend on more than just 

the terms the ad was bid on; our model naturally incorporates 

such features, as we demonstrate in later sections. 

The remainder of the paper is as follows. First, we discuss the 

search advertising framework. The next two sections describe our 

data and model. Sections 6-9 introduce term, ad, order, and exter-

nal features to the model. In Section 10, we discuss the results and 

make observations about the model performance and properties. 

We conclude with a summary of contributions and future work. 

3. SEARCH ADVERTISING FRAMEWORK 
Whenever an ad is displayed on the search results page, it has 

some chance of being viewed by the user. The farther down the 

page an ad is displayed, the less likely it is to be viewed. As a 

simplification, we consider the probability that an ad is clicked on 

to be dependent on two factors: a) the probability that it is viewed, 

and b) the probability that it is clicked on, given that it is viewed: 

 ),|(),,|(),|( posadseenpseenposadclickpposadclickp   

(Note that we are assuming that the probability that it is clicked 

on but not viewed is zero). We also make the simplifying assump-

tions that the probability an ad is clicked is independent of its 

position, given that it was viewed, and that the probability an ad is 

viewed is independent of the ad, given the position, and indepen-

dent of the other ads shown: 

)|(),|(),|( posseenpseenadclickpposadclickp   

Let the CTR of an ad be defined as the probability it would be 

clicked if it was seen, or p(click | ad, seen). From the CTR of an 

ad, and the discounting curve p(seen | pos), we can then estimate 

the probability an ad would be clicked at any position. This is the 

value we want to estimate, since it provides a simple basis for 

comparison of competing ads. 

For any ad that has been displayed a significant number of times, 

we can easily estimate its CTR. Whenever the ad was clicked, it 

was seen. Whenever the ad was not clicked, it may have been seen 

with some probability (Figure 2 shows a heat map of search page 

viewership intensity for different ad position). Thus, the number 

of views of an ad is the number of times it was clicked, plus the 

Search

Result 1

Result 2

Result 3

…

Ad 1

Ad 2

Ad 3

Ad 4

CTR

 

Figure 1. The CTR of an ad typi-

cally decreases with lower-

positioned ads, due to reduced 

visual attention. 
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number of times it was estimated to have been seen but not 

clicked. The relative probability of an ad being seen at different 

positions can be experimentally measured by presenting users 

with the same ad at various positions on the page. The CTR of the 

ad is simply the number of clicks divided by the total number of 

views.  

Our goal is to create a model which can predict this CTR for new 

ads. In the next sections, we first present the data we used to train 

and test the model, followed by details on the model itself. 

4. DATA SET 
We collected information on a set of active ads in the Microsoft 

Web search engine. Each ad contains the following information: 

 Landing page: The URL that a user is redirected to upon 

clicking the ad. 

 Bid term (“keywords”): The query for which this ad should 

be displayed (this may be multiple words, e.g., “machine 

learning books”).  

 Title: The ad title, shown to the user. 

 Body: The text description of the ad. 

 Display URL: The URL shown to the user at the bottom of 

the ad. 

 Clicks: The number of times the ad has been clicked since it 

was entered into the system. 

 Views: The number of times the ad has been seen since it 

was entered into the system, as described in section 3. 

The data set used is a significant sample of search ads. It includes 

10,000 advertisers, with over 1 million ads for over a half million 

keywords (with over 100,000 unique ad texts). 

Note that the same ad content may appear for different bid terms. 

In fact, the user interface for the ad system encourages this: Ac-

count holders create an “order”, which is the ad information, and 

an associated collection of terms for which the ad should be dis-

played. We consider each pairing of the ad text with a term to be a 

unique ad, as the CTR for different terms varies significantly. 

Also, advertisers may specify whether an ad is displayed under the 

rules of exact match, or broad match. In the exact match case, the 

user query must exactly match the bid terms. In the broad match 

case, the bid terms can be related more loosely, such as being a 

subset of the query words. In this paper, we consider all clicks and 

views regardless of match type, and thus are attempting to predict 

the ad’s CTR across all match types. 

From the data, we have a number of ads, with the observed CTR 

for each. For each ad, our goal is to predict its CTR as if we did 

not know about it or any of the other ads entered by the same 

advertiser.1 In order to prevent train-test contamination, we thus 

split our data on an advertiser-level (that is, all ads by the same 

advertiser went into the same split). We randomly placed 70% of 

the advertisers in the training set, 10% in the validation set, and 

20% in the test set. 

We also eliminated “premium” advertisers, which are advertisers 

with accounts that are professionally managed. This was done for 

two reasons. First, their advertisements often exhibit different 

trends from the general population (i.e., they have a different 

mean CTR and generally lower variance between ads), indicating 

they should be modeled separately. Second, in this paper we 

wanted to focus on advertisers for whom we have little or no ex-

perience or data, which constitute the majority of advertisers in 

self-serve systems, such as Microsoft’s adCenter or Google’s 

AdWords, where individuals can create accounts and post adver-

tisements. Additionally, we limited the data to 1000 randomly 

selected ads per advertiser, to ensure significant variation. 

The purpose is to estimate the true CTR of an ad, but all we ac-

tually know is the observed number of clicks and views an ad 

received, which leads to an empirical CTR. For ads with too few 

views, the empirical CTR may be wildly different from the true 

CTR, leading to much noise in the training and testing process. 

We thus filtered out any ads that had less than 100 views. (The 

choice to filter at a threshold of 100 is a balance between wanting 

less noise in the training and testing process – which argues for 

requiring more views, and reducing the bias that occurs when only 

considering ads that have been shown many times – which argues 

for requiring fewer views). 

5. MODEL 
Since our goal is to predict a real-value (the CTR of an ad), we 

cast it as a regression problem – that is, to predict the CTR given a 

set of features. We chose to use logistic regression, which is ideal-

ly suited for probabilities as it always predicts a value between 0 

and 1: 







i

iiZ
adfwZ

e
CTR )(     

1

1  

where fi(ad) is the value of the ith feature for the ad, and wi is the 

learned weight for that feature. Features may be anything, such as 

the number of words in the title, the existence of a word, etc. 

(They will be described in more detail in the next sections.) 

                                                                 

1 This restriction is because our goal is to consider each ad and 

account as completely novel to the system. In future work, we 

would like to look at estimating the CTR for ads in already-

established accounts  

 

Figure 2. Eye scan activity on search results page [5] 
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The logistic regression was trained using the limited-memory 

Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method [16]. We 

used a cross-entropy loss function, with zero-mean Gaussian 

weight priors with a standard-deviation of . The best  was cho-

sen on the validation set from the values [0.01, 0.03, 0.1, 0.3, 1, 3, 

10, 30, 100]. In all experiments, =0.1 was the best. As is com-

monly done, we also added a bias feature that is always set to 1. 

For each feature fi, we added derived features of log(fi+1), and fi
2 

(the purpose of adding one before taking the log is so as to natu-

rally handle features whose minimum value is 0, such as counts). 

We also normalized the features to have zero mean and unit stan-

dard deviation (the means and standard deviations were measured 

on the training set and then applied to both the training set and 

test set). Some features had significant outliers, so any feature 

value that was more than five standard deviations from the mean 

was truncated to five. These modifications to standard logistic 

regression were found to improve performance on the held-out 

validation set. 

Our measure of performance is the average KL-divergence [13] 

between the model’s predicted CTR and the true CTR on the test 

set (lower is better). The KL-divergence is simply the log-

likelihood of the model, minus the entropy of the test set. (This 

also represents the number of bits needed to encode the result of 

one view of an ad, using the model to predict whether the ad 

would have been clicked or not). A perfect model would score 0. 

Our baseline model is to simply predict the average CTR on the 

training set. In all tables, we additionally provide the mean 

squared error (MSE) as a metric. Since the model is trained to 

optimize the KL-divergence, we report the % reduction in error on 

it. All of the improvements in this paper were found to be statisti-

cally significant (p < 0.01). 

In preliminary experiments, we also measured the performance 

using boosted regression trees (we used MART: multiple additive 

regression trees [9]). They were found to have no significant im-

provement over logistic regression. Thus, for ease of interpreta-

tion and simplicity, we continued with logistic regression for the 

remainder of the experiments (we present only the logistic regres-

sion results here). 

In the next section, we will discuss the first set of features, in-

tended to capture the CTR variance inherent in the terms. 

6. ESTIMATING TERM CTR 
As discussed earlier, there is significant variation in the average 

CTR for different bid terms. Thus, when predicting the CTR for 

an ad, we expect that the CTR for other ads with the same, or 

possibly related, terms would be useful.  

6.1 Term CTR 
The first of our features is the CTR of other ads (not including 

those of the current advertiser) that have the same bid term. In 

order to handle ads whose term has not been seen before, we 

smooth these probabilities to the mean ad CTR (measured on the 

training set): 

)(

)()(
)(0

term

termterm

adN

adCTRadNCTR
adf








  

where N(term) is the number of ads with the given bid term (ig-

noring word order), CTR(term) is the average CTR for those ads, 

and CTRis the mean CTR for all ads in the train set.  sets the 

strength of the prior, in terms of number of views, and was set to 1 

in our experiments (the results were relatively insensitive to varia-

tions in ). We also provide the logistic regression with Nterm as a 

feature. These two features will be called the Term CTR feature 

set.2 

The results are given in the first two rows of Table 1. In the first 

row is the baseline model, which has only one feature: CTR. The 

second row shows that with the Term CTR features, we achieve a 

13% reduction in error.3 

6.2 Related Term CTR 
As with Regelson and Fain [19], we wanted a way to take advan-

tage of other ads that have related terms. For example, if the ad in 

question has bid on “red shoes”, and another ad has bid on “buy 

red shoes”, one would suspect that the CTR for the latter would 

be useful in predicting the CTR of the former. Rather than cluster-

ing terms, as they did, we took the approach of considering ads 

with subsets and/or supersets of the bid term. 

Let Rmn(t) be the set of ads whose terms are the same as t when 

one removes m words from t and n words from the ad term (ignor-

ing word order), and have at least one term in common. That is: 

























 

and      :

and  0

)(

ntad

madtad

tad

t

term

term

term

m nR
 

For example, if t is “red shoes”, then an ad for “buy red shoes” 

will appear in R01, an ad for “shoes” will be in R10, and an ad for 

“blue shoes” will be in R11. Note that R00 is the set of exact-match 

ads, Rm0 is any ad whose terms are missing m words (vs t), and 

R0n is any ad that has n extra terms. We also let m or n take the 

value , which means “any value”. Hence, R0(t) is any ad whose 

terms are a superset of t, regardless of how many extra words it 

has. 

Given Rmn, we compute the following features for a given ad: 





)()(

1
)(

termx

x

mn

mn

mn

CTR
term

termCTR
RR

 

which is the average click through rate of the set of related ads. As 

with the Term CTR feature set, we smooth CTRmn(term) using the 

                                                                 

2 Since logistic regression estimates the logit of the click-through-

rate as a weighted sum of features, we actually provide it with 

the logit of the smoothed term CTR. 

3 On the validation set, we also tried weighing the contribution of 

each ad to the Term CTR by its number of views. The principle 

was that more views would result in a more accurate Term CTR. 

Unfortunately, because of the inherent bias that more views im-

plies a better ad, this reduced the predictability of the model. 

Table 1: Term and Related Term Results 

Features MSE 

(x 1e-3) 

KL Divrg. 

 (x 1e-2) 

% Imprv. 

Baseline (CTR) 4.79 4.03 - 

Term CTR 4.37 3.50 13.28% 

Related term CTRs 4.12 3.24 19.67% 
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Figure 4. Frequency of advertisement word unigrams, sorted 

by overall frequency. The light and dark gray lines give the 

relative frequency of unigrams in low and high CTR ads. 

 

average: 
mnCTR , and take the logit of the probability. We also 

provide the count as a feature: 

)()( termRtermv mnmn   

We compute these features for m,n  {0,1,2,3,}. 

The results for adding the related terms are given in the third row 

of Table 1. As can be seen, adding the related term CTRs im-

proves performance by an additional 6%, bringing the total error 

reduction to nearly 20% from the baseline. 

7. ESTIMATING AD QUALITY 
In the previous section, we tackled the problem of estimating the 

CTR of an ad based only on its terms. However, as we discussed 

earlier, even within a term there is significant variation in ad CTR. 

For example, the maximum CTR for an ad for digital cameras is 

more than 3 times greater than the average, and the maximum 

CTR for an ad for surgery is over 5 times higher than average as 

illustrated in Figure 3.  

 

In this section, we ask the question: can we use features of the ad 

itself to come up with an even better estimate for a given ad’s 

CTR? The work of Jansen and Resnick [11] suggests that Web 

searchers consider the summary, the title, and the URL of an ad-

vertisement in deciding whether to click it. Besides these, what 

exactly causes a person to decide to click on an ad (or not)? We 

hypothesize at least four rough categories of influence on the user: 

 Appearance: Is the ad aesthetically pleasing?  

 Attention Capture: Does the ad draw the user in?  

 Reputation: Is the advertiser a known or reputable brand? If 

the user is not familiar with the advertiser, would they guess 

that the advertiser is a good brand? 

 Landing page quality: Though the landing page is only seen 

after the user has clicked the ad, we hypothesize that many 

ad clicks go to advertisers that a user is already familiar with 

(such as eBay, Amazon, etc). Thus, the quality of the landing 

page may be indicative of the probability the user will click 

the ad. And it is likely to result in repeat visits from users 

searching for new products. 

 Relevance: How relevant is the ad to search query term 

 

For each category, we derived a number of features that we hoped 

would be indicative of the quality of the ad for that category. For 

example: 

 

 Appearance: How many words are in the title? In the body? 

Does the advertisement have good capitalization? Does it 

contain too many exclamation points, dollar signs, or other 

punctuation? Does it use short words or long words? 

 Attention Capture: Does the title contain action words such 

as “buy”, “join”, “subscribe”, etc.? Does the body? Does the 

ad provide numbers (such as specific discounts, prices, etc)?  

 Reputation: Does the display URL end with .com (similarly 

for .net, .org, .edu)? How long is it? How many segments are 

in the display URL (e.g., books.com is generally better than 

books.something.com)? Does it contain dashes or numbers? 

Because good, short, .com domain names (such as single-

word names) can be expensive, some of these features can be 

seen also as estimating how well-established and/or large the 

advertiser is. 

 Landing page quality: Does the page contain flash? What 

fraction of the page is covered with images? Is it W3C com-

pliant? Does it use style sheets? Is it covered with ads?  

 Relevance: Does the bid term appear in the title exactly? Do 

any subsets of the term appear in the title? In the body? What 

fraction of the body?  

 

In all, we have 81 features across these five categories. Clearly, 

some features could be placed in multiple categories, such as the 

number of dollar signs in the ad, which may increase its “attention 

capture” but decreases its appearance.  

We also add unigram features: For each of the most common 

10,000 words in the ad title and ad body of the training set, we 

add a feature which takes the value 1 if the word exists in the ad 

and 0 otherwise4. These features are intended as an automatic way 

to capture some of the same influences that our manual features 

do. For example, it may find certain words that increase the atten-

tion capture of an ad that we may not have thought of. Figure 4 

shows how significant the skew in unigram frequency skew can be 

for good vs. bad ads. The figure illustrates unigram word frequen-

cies for all ads, ads with a CTR that is less than half of the average 

CTR, and ads with a CTR that is more than twice the average. For 

                                                                 

4 We also tried using the number of times the word occurred, or 

the log thereof, instead of the binary existence of the word. This 

did not improve the results. Using bigrams and trigrams also did 

not show significant improvement. 

0
digital

cameras

financing gifts lawyers mortgage research surgery

Words

C
T

R

 

Figure 3. CTR variance across all ads for several keywords. 

Horizontal bars show average CTR; the bottom of the vertical 

bar is the minimum CTR, and the top is the maximum CTR. 
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instance, from the figure it can be seen the term “shipping” occurs 

much more commonly in high-CTR ads than over all ads. 

We will refer to this set of features as the Ad Quality Feature Set. 

In Table 2, we give results for this feature set. As can be seen, it 

significantly improves performance, reducing the error by another 

4% to a total of 23.45%. 

A natural question is how much does each feature contribute to 

the gain. To determine this, we first removed the unigram fea-

tures. To our surprise, this eliminated roughly three quarters of the 

performance gain (see Table 2, fourth row). With the non-unigram 

ad quality features alone, we only see a 1% improvement in model 

accuracy over the related term CTRs. This was surprising because 

we expected many of the manual features, particularly those to do 

with reputation, to strongly affect user CTR.  

8. MEASURING ORDER SPECIFICITY 
Finally, we wanted to look at how the CTR of an ad may vary 

depending on what variety of terms it was originally associated 

with. Recall that when an advertiser wishes to create advertise-

ments, they enter an order, which is the text, title, etc, and a set of 

terms used to establish relevance to the user query. This generates 

N ads, one for each term in the order. The order text may also 

contain a parameter that could be filled in with the term. For ex-

ample, an advertiser may enter an order of 

Title: Buy shoes now,  

Text: Shop at our discount shoe warehouse! 

Url: shoes.com 

Terms: {buy shoes, shoes, cheap shoes}.  

This will result in three ads, all with the same title and text, but 

with different bid terms. Each pairing of the title/text/URL with a 

term is considered one ad, and thus far, we have considered each 

of these ads independently. However, we need not (since we have 

split our data by advertiser, all of the ads for a given advertiser 

appear in either our train or our test sets, thus there is no train-test 

contamination). In the above order, the advertiser is targeting shoe 

shoppers specifically. In some cases, the ads may be more broadly 

targeted. For example:  

Title:  Buy [term] now,  

Text:  Shop at our discount warehouse! 

Url: store.com 

Terms: {shoes, TVs, grass, paint}.  

Because the second order generates less targeted ads (they are 

advertising a general store, to a broad variety of users, rather than 

a specific service, namely shoe selling), we might expect them to 

have a lower CTR than the ads generated by the first order. 

In an attempt to capture how targeted an order is, we measure the 

category entropy of the terms. To categorize a term, we perform a 

Web search for it and run a text classification algorithm on the 

resulting result snippets (We use a naïve Bayes, trigram classifier 

trained on the Look Smart Directory structure). This classifies 

each term into one of 74 categories. We measure the entropy of 

the distribution of categories of the order bid terms, and use that 

as a feature for the model. Note that an advertising system with 

this feature would only need to query the search engine whenever 

an order is submitted that has novel terms; the load on the search 

engine is thus kept to a minimum. 

We also add in a feature which is simply the number of unique 

terms in the order. Together with the entropy feature, this consti-

tutes the order specificity feature set. The results give a significant 

lift. The order specificity feature set improves performance by 

another 5.5% (see Table 3), which is more than the improvement 

gain by the ad quality features (including unigrams). All together, 

the model reduces the prediction error by over 29%.  

To study which of the two order specificity features was most 

useful, we tested the order entropy feature and order term count 

feature separately. With only the category entropy feature, the 

model achieves a 26.37% improvement over baseline (vs. 28.97% 

with both features and 23.45% with neither), thus indicating that 

both features provide significant gains. 

9. EXTERNAL SOURCES OF DATA 
We do not need to restrict ourselves to features that can be com-

puted using the ad data (and ad landing pages) alone. Given an ad 

term, we could, for instance, look it up in an encyclopedia to see 

if it’s a commonly known term or not, find synonyms of the terms 

in a thesaurus, etc. To this end, we added two more features to our 

model: the approximate frequency of the term occurring on the 

Web, and the approximate frequency with which search engine 

users query for the term.  

For the first, we queried the search engine and noted the number 

of pages it claimed would contain the ad’s term. Note that this is 

only an approximation; more advanced techniques have been 

proposed [14][15], but would have been infeasible to do for every 

ad in our data set.  

As with Regelson and Fain [19], we found a relation between the 

frequency of an ad term as a search query and the CTR of the ad. 

This relation is shown in Figure 5 (note that the graph is not pre-

cisely comparable to that of Regelson and Fain, since the data 

available is slightly different). Thus, our second feature is the 

frequency with which users query for the ad term, based on a three 

Table 3: Order Specificity results 

Features MSE 

(x 1e-3) 

KL Divrg. 

 (x 1e-2) 

% Imprv. 

Baseline (CTR) 4.79 4.03 - 

CTRs & Ad Quality 4.00 3.09 23.45% 

 +Order Specificity 3.75 2.86 28.97% 

 

 

Table 4: Search Engine Data results. AQ means the Ad 

Quality feature set, and OB means the Order Specificity. 

Features MSE 

(x 1e-3) 

KL Divrg. 

 (x 1e-2) 

% Imprv. 

Baseline (CTR) 4.79 4.03 - 

 +Search Data 4.68 3.91 3.11% 

CTRs & AQ & OS 3.75 2.86 28.97% 

 +Search Data 3.73 2.84 29.47% 

 

Table 2: Ad Quality Results 

Features MSE 

(x 1e-3) 

KL Divrg. 

 (x 1e-2) 

% Imprv. 

Baseline (CTR) 4.79 4.03 - 

Related term CTRs 4.12 3.24 19.67% 

 +Ad Quality 4.00 3.09 23.45% 

 +Ad Quality 

  without unigrams 

4.10 3.20 20.72% 
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month period of search query logs. Additionally, we binned each 

feature into one of twenty bins. That is, each was converted into 

twenty binary features where only one of the twenty was set to 

true for each ad – the one that specifies the value range the feature 

falls in. The bin boundaries were set so that each bin had an equal 

number of ads. 

Together, we call these the Search Data feature set. The results 

are summarized in Table 4. It is interesting to note that, while the 

search data does provide a useful improvement of 3% over the 

baseline, it shows almost no improvement (0.5%) when added to 

the feature sets discussed earlier. This implies there is overlap 

between some of the other features and the search data features. 

This is not an uncommon occurrence, and is also the case with 

many of the other features we have presented in this work. 

10. DISCUSSION OF RESULTS 

10.1 Utility of Features 
The results we gave above, for the contribution of each feature 

set, were done in the context of having the related term CTRs and 

(sometimes) other feature sets. One interesting question is, how 

good is each feature set when considered purely in isolation. We 

measured the % reduction in KL-divergence (as in the previous 

tables) for each feature set when used without any additional term 

or related term CTRs, and no other feature sets. The improve-

ments are: 12.0% for the ad quality feature set (10.2% for the 

unigram features alone), 8.9% for the order entropy set, and 3.1% 

for the search data set. As expected, if we include the term CTR in 

the baseline, we get similar, though reduced, improvements for 

each feature set.  

Since the model is a logistic regression, we can see which features 

received the highest weight, and which have the lowest weight (or 

highest negative weight). These are given in Table 5. Note that the 

weight of a feature does not necessarily directly indicate its signi-

ficance, because the features are not independent. For instance, 

the termLength feature (number of characters in the term) and the 

termNumWords feature (number of words in the term) are ob-

viously very strongly correlated. If an important “feature” is ac-

tually the average length of each word, then the model might give 

termLength a high positive weight, and termNumWords a high 

negative weight to approximate this. However, it still can be inter-

esting to observe the model weights to draw qualitative conclu-

sions. 

It is also interesting to look at the unigram features that have 

highest and lowest weight (see Table 6). Qualitatively, the terms 

in the top ten seem to indicate more established entities: official, 

direct, latest, and version (If they use the word version, then at 

least there is more than one version of their product). The words 

in the bottom ten appear to be attempts to grab the consumer with 

deals: quotes, trial, deals, gift, compare (as in, compare different 

insurance companies, mortgages, etc). Qualitatively, then, it ap-

pears that consumers prefer to click on ads from more reputable, 

established entities, and tend to avoid clicking on ads with various 

free offers and trials.  

Though it is interesting to determine the best features, and how 

much each feature may overlap with other features, we believe 

that ultimately, the best practice is to include as many feature sets 

as possible in the final model. Doing so provides additional ro-

bustness in adversarial situations (estimating ad CTR is adversari-

al because the advertiser wants us to estimate as high a CTR as 

possible, so they can be placed higher on the page). By including 

multiple overlapping features, an adversary must attack more 

features. Further, an adversarial attack may be easier to detect as 

feature sets that used to agree in CTR prediction begin to diverge 

significantly for advertisers that are attacking only a subset of the 

features used by the model. 

10.2 Evolution After Initialization 
Our model is able to predict the CTR of an ad with some accura-

cy. One question we might ask is, after how many ad views will 

the empirically observed clicks provide as good of an estimate of 

CTR as our model.  

 

1 2 3 4 5 6 7 8 9 10

 

Figure 5. Relative average CTR for ads displayed for each 

query frequency decile (in decreasing order), aggregated 

across all ranks. 

 

Table 6: Unigrams with highest (and lowest) weight. 

Top ten unigrams  Bottom ten unigrams 

official  body  quotes title 

download title  hotels title 

photos body  trial  body 

maps  body  deals  body 

official title  gift  body 

direct  body  have text 

costumes title  software title 

latest  body  engine body 

version  body  compare title 

complete body  secure body 

 

Table 5: Non-unigram features with highest (lowest) weight 

Top ten features  Bottom ten features 

log(#chars in term)  log(# terms in order) 

v12  log(v0) 

v22  sqr(p00) 

log(order category entropy)  sqr(order category entropy) 

log(#most common word)  log(#chars in landing page) 

sqr(#segments in displayurl)  log(a01) 

sqr(#action words in body)  a13 

p10  sqr(p0) 

p  log(#chars in body) 

log(v00)  sqr(#chars in term) 
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Assume that the predicted CTR and observed CTR are combined 

using the standard technique: 

views

clicksp
p








 0ˆ  

Where p̂  is our best estimate of the true underlying CTR of the 

ad, p0 is the prior CTR predicted by the model, clicks is the num-

ber of times the ad has been clicked, and views is the number of 

times the ad has been viewed.  sets the strength of the prior, in 

terms of the equivalent number of views. This combination rule 

imagines that we have shown the ad  times and seen it clicked 

p0 times in addition to the actual empirical number of clicks and 

views. 

We now can ask the question, what is the expected absolute error 

in the best-estimate CTR ( p̂ ) if we show the ad views times: 





views

clicks

CTRpviewsCTRclickspviewserrE
1

ˆ),|(]|[  

P(clicks|CTR,views) is just the binomial distribution, and we use 

the absolute error in CTR as our error measure (note that this is 

not the same as the error measure our model optimizes; the results 

may be better if our model explicitly optimized mean absolute 

error). The results are given in Figure 6. On the y-axis is the ex-

pected error, in terms of absolute difference from the ad’s true 

CTR. The x-axis is the number of times the ad is viewed.  

As can be seen, the baseline and model predictions differ noticea-

bly until around 50 to 100 ad views. Such a difference can result 

in ads being displayed in the wrong order, causing a reduction in 

revenue. This means that, though the effect may be diminishing, 

the model provides an advantage in CTR estimation for up to 100 

ad views, or 200-300 search result pages (recall that, because the 

probability that an ad is viewed decreases rapidly with position on 

the page, the number of times an ad is actually displayed is many 

times the number of times it was viewed). For a system with mil-

lions of ads, incorrectly ordering them for the first 200-300 times 

each is displayed can result in a significant loss of revenue and 

user dissatisfaction. 

10.3 Ads with Many Views 
The choice of 100 views as a minimum cutoff for an ad to be in 

the data set was motivated by a desire for a reasonable level of 

confidence in the observed CTR for the ads used as examples. In 

some systems, however, it may be desirable to train on ads that 

have had a higher number of views. A higher cutoff produces 

training data with less noise, because the estimated CTR values 

are more accurate, but the examples may be biased away from the 

behavior of new ads. When we restrict the data to ads with at least 

1000 views, the model achieves even more significant gains in 

CTR estimation accuracy, as shown in Table 7. 

The strong performance of the system for ads that have been 

viewed many times indicates that the model extends well to ad 

populations of higher quality. The high cutoff implies that the ads 

chosen do not include ads that were estimated as low-value by the 

advertising system, since such ads would not be allowed to gather 

so many impressions. This is supported by our observation that 

the average CTR of ads with over 1000 views was over 40% 

greater than the average CTR of ads with at least 100 views.  

11. DISCUSSION AND FUTURE WORK 
While we find the results given here compelling, we acknowledge 

that current work in this area in a relatively early stage – it is both 

subject to the idiosyncrasies of the advertising and search system 

that was studied and not approachable by many researchers. In 

future work, it would be very desirable to settle on some standard 

data sets (and possibly testing frameworks), in order to increase 

the ease of comparison and repeatability characteristic of more 

mature areas of study. 

One significant direction of future work is in making the CTR 

estimate dependent on the user’s query. In this paper, we have 

been predicting the query independent CTR of an ad. In the case 

of exact matching, the bid term is identical to the user query. 

However, in the case of broad matching, the query may have 

some looser relation to the bid term (such as being a superset or 

containing synonyms of the bid terms). In this case, knowing what 

the query is may give additional insight into the expected CTR for 

each ad. The same model presented here could be used, with addi-

tional query-dependent features such as the similarity between the 

query and the bid term, number of words in the query, how many 

of those words appear in the ad text or landing page, etc. 

We would also like to reproduce the term clustering techniques of 

Regelson and Fain [19] as additional features in the logistic re-

gression; they are likely to provide additional information about 

related ads that is not captured by our related terms feature set. It 

would also be interesting to compare the two approaches by hav-

ing just one, the other, or both in the model. 
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Figure 6: Expected mean absolute error in CTR as a function 

of the number of times an ad is viewed.  

Table 7: Comparison of results for a model trained and 

tested on ads with over 100 views vs. over 1000 views. 

 %Imprv 

Features >100 views >1000 views 

Baseline (CTR) - - 

+Term CTR 13.28 25.22 

+Related CTR 19.67 32.92 

+Ad Quality 23.45 33.90 

+Order Specificity 28.97 40.51 

+Search Data 29.47 41.88 
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The model predicts the expected CTR for a new ad. Rather than 

using this for ad ranking purposes, we could also use it to inform 

advertisers what they should change about an ad they are creating 

in order to increase its CTR. For example, our model may show 

that their title is too short, or that they might want to remove the 

word “deals”, etc. Bartz et al [3] propose suggesting terms to the 

advertiser in hopes of increasing their coverage and/or decreasing 

their cost per click. 

We would also like to incorporate more features into our model. 

Those found to be useful for the static [20] and dynamic ranking 

[1] of Web pages might prove particularly beneficial. In particu-

lar, data on how often users have visited the ad’s landing page or 

its domain (similarly, the display URL and its domain), how long 

they remain on that page, whether they click “back” or a link off 

of the page, etc. could prove useful. 

Another source of information could be human judges. We would 

like to see if a brief (5 second) “instinctive” judgment by a person 

could be a useful feature to our model. Since the decision to click 

or not is based on even less than this amount of time on behalf of 

the end user, we belief such quick human judgments could pro-

vide significant value to the model, while incurring a low over-

head cost. 

Finally, we wish to consider more than just new ads and new ad-

vertisers. Over time, we can accumulate information about the 

general quality of an advertiser (this could be either independent 

or dependent of the terms that the advertiser has bid on). A time-

dependent model such as this could be kept up-to-date with in-

formation about all advertisers, ads, terms, clicks, and views, and 

would have the power to update its the estimated CTR of all ads 

any time an ad is shown. 

12. CONCLUSIONS 
A good initial estimate of an advertisement’s click-through rate is 

important for an effective online advertising system. We have 

presented a logistic regression model that achieves a 30% reduc-

tion in the error of such estimates. The error reduction comes from 

reducing two primary sources of variance: the variance in CTR 

across terms, and the variance in CTR within a term. For the for-

mer, the model contains information about ads that have related 

terms. For the latter, it contains information about the ad’s quali-

ty, content, and how broadly it was targeted. The model is easy to 

understand, quick to train, and efficient enough to be used by any 

of the major search engines as an integral part of their advertising 

system. 
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