
Explorations in the Use of Semantic Web Technologies for
Product Information Management

Jean-Sébastien Brunner 1, Li Ma 1, Chen Wang 1, Lei Zhang1,
Daniel C. Wolfson 2, Yue Pan 1, Kavitha Srinivas 3

brunner@cn.ibm.com, malli@cn.ibm.com, chwang@cn.ibm.com, lzhangl@cn.ibm.com,
dwolfson@us.ibm.com, panyue@cn.ibm.com, ksrinivs@us.ibm.com

1 IBM China Research Laboratory
ZhongGuanCun Software Park #19

Dong Beiwang road, ShangDi
Beijing 100094, China

2 IBM Software Group
11400 Burnet Rd.

Austin, TX 78758-3415
USA

3 IBM Watson Research Center
 P.O.Box 704,

Yorktown Heights, NY 10598
 USA

ABSTRACT
Master data refers to core business entities a company uses
repeatedly across many business processes and systems (such as
lists or hierarchies of customers, suppliers, accounts, products,
or organizational units). Product information is the most
important kind of master data and product information
management (PIM) is becoming critical for modern enterprises
because it provides a rich business context for various
applications. Existing PIM systems are less flexible and scalable
for on-demand business, as well as too weak to completely
capture and use the semantics of master data. This paper
explores how to use semantic web technologies to enhance a
collaborative PIM system by simplifying modeling and
representation while preserving enough dynamic flexibility.
Furthermore, we build a semantic PIM system using one of the
state-of-art ontology repositories and summarize the challenges
we encountered based on our experimental results, especially on
performance and scalability. We believe that our study and
experiences are valuable for both semantic web community and
master data management community.

Categories and Subject Descriptors
E.2 [Data Storage Representations]

H.3 [Information Storage And Retrieval]

General Terms
Performance, Design, Experimentation.

Keywords
Ontology, Semantic Web, Master Data Management, Product
Information Management, Modeling.

1. INTRODUCTION
With increased market competition, modern companies have
become seriously dependent on their information at hand, such
as customer data and product information. If such information
were to be complete and accurate, companies can make business

decisions agilely and correctly. Typically, however, such
information is incomplete and inconsistent across many
systems. As an example, a single product can have different
codes and descriptions in the various markets it is sold in, and a
single customer can have different IDs in various systems. This
situation mainly results from the lack of global standards (or
insufficient application of standards), as well as the fact that
data is captured many times, in many different systems. This
causes recurrent data alignment issues which hinder smooth and
effective Inter-Market Supply operations. Therefore, it is
critically important to maintain a single group of core entities
across many systems within an enterprise to improve business
efficiency and customer satisfaction.
Core business entities a company uses repeatedly across many
business processes and systems are called master data [24].
Master data refers to lists or hierarchies of customers, suppliers,
accounts, products, or organizational units. Product information
is the most important kind of master data and product
information management is becoming critical for modern
enterprises because it enables companies to centralize, manage
and synchronize all product information with heterogeneous
systems and trading partners [10]. Recently, well-known data
management solution providers, such as IBM, Oracle and SAP,
have released their master data management (MDM) solutions
[15][27][29], especially on customer data integration (CDI) and
product information management (PIM). But, there are some
open technical challenges, as reported in [24][10], for instance,
federation and identity management. The most critical challenge
is that MDM solutions need to be built on an enterprise-wide
master data model which provides a logical model for
aggregating and reconciling the various data sources that
comprise a master data record. This common master model
should be flexible to deal with business changes and expressive
enough to represent the semantics of master data. Based on this
flexible and expressive data model, a scalable and high
performance MDM hub should be developed.
In this paper, we explore the use of semantic web technologies
for product information management and believe similar
technologies can be used for customer data integration. We
investigate the use of ontology for expressive PIM
representation and modeling, and build a PIM prototype on top
of one of the state-of-art ontology repositories. Moreover, we
summarize the challenges we encountered based on our
experimental results. We believe that our study and experiences

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to classroom
use, and personal use by others.
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

WWW 2007 / Track: Semantic Web Session: Applications

747

are valuable for both semantic web community and MDM
community. The rest of this paper is organized as follows.
Section 2 introduces semantic PIM, including ontology’s value
for PIM . Section 3 details ontology modeling for PIM data
representation. Section 4 describes the architecture of our
developed prototype system. Experimental results on a real
customer data set are reported in Section 5. Section 6 presents
discussions and future work. Section 7 concludes this paper.

2. ONTOLOGY’S VALUES FOR
PRODUCT INFORMATION
MANAGEMENT
A flexible and expressive enterprise-wide data model is the key
to efficient Product Information Management. In this section,
we interpret the value of ontologies for PIM representation.
An ontology is often defined as an explicit specification of
shared conceptualization, and is a key structure for knowledge
representation, especially to represent complex or changing
data. Here we focus on standardized means of knowledge
representation, such as recommendations developed by the
World Wide Web Consortium: the Resource Description
Framework (RDF)[22], the RDF Schema (RDFS) [3], and the
Web Ontology Language (OWL) [31] which correspond to three
nested ontology models. As the cornerstone of information
representation and exchange, RDF defines a simple model
extended by RDFS which introduces class support. OWL
introduced some axioms based on description logic (DL)
paradigm, giving the possibility of rich and flexible class
definitions.
Product information is subject to continuous changes due to the
introduction of new products, evolution of products, changes in
the organization due to internal reorganization or fusion-
acquisition (fusion of product lines, organization of hierarchies
or policies). Such changes are often difficult to capture in
traditional relational databases, and it is our conjecture that they
can be more accurately captured by a declarative ontology.
The ontology’s values presented in this section are illustrated on
Figure 1, based on a real example of Electronic Consumer
products defined using OWL constructs.
RDF uses the concept of Universal Resources Identifiers (URIs)
as Web-based identification scheme, which make ontologies
inter-operable and facilitate integration and communications of
several core-ontologies. In practical terms, it leads to two
distinct advantages: on the one hand, it allows one to refer to
industry specific standards; and on the other hand it allows
synchronization of product information management utilities to
other core business entities, such as customer data integration
(CDI).
RDFS defines the data in the form of a labeled edge graph, but
also provides the ability to define class inheritance. It enables
the definition of a hierarchical model that is easy to understand
and close to both business objects and OO classes (such as in
Java). RDF features are then predominant in PIM models using
category trees. If a catalog defines a “Computer” category as a
class, and then defines “Laptop” as its subclass, the “Laptop”
will have automatically the properties “CPU speed” and
“Memory” and can add new properties such as “Screen Size”.

OWL allows the definition of richer properties and
relationships. In OWL, relationships are divided into two types
(Object Properties defining relationships between individuals
and Datatype Properties defining a literal value). In OWL, it is
possible to define an Object Property as symmetric, functional,
inverse functional, or transitive. OWL Object Properties are
then suitable to describe the complex relationships among
products and between products and other entities in the product
information. Followings are some examples of product
relationships that require such complex relationships include:
packaging, substitution, cross-sell, up-sell. Transitivity could
ensure the exact semantics of the substitution relationship.

The expressivity of OWL allows the definition of logical classes
(intersection, union and complement operators), which enables
automatic classification for product items. OWL Restrictions
support the creation of dynamic categorization of product
lines, as shown in examples below.
In PIM, logical classes will often use intersection, such as the
definition of new product categories which intersects two others.
For examples, smartphones products, which gather
characteristics of PDA and phones are a good example: any
product which is simultaneously a PDA and a phone is then a
smartphone.
Dynamic categories use OWL restrictions as basis and can
represent complex and potentially evolving categories. Here are
some examples:
- Minimum cardinality restriction can define an “outdated

products” category which gathers all products replaced by at
least one other product;

- AllValue restriction on “made by” property to “metal” class
can define a “metallic products” category;

- SomeValue restriction on “composed of” to “battery” can
define a “battery powered products” category;

- HasValue restriction on “made by” property to “aluminum”
individual can define a “aluminum products” category.

Such restrictions are also used to define specific product
templates. For example an “IBM LCD Display” can be
described using the following restrictions: {color=black,
manufacturer=IBM, power=110-240V, etc}. This avoids any
unnecessary duplication in the data and simplifies the
maintenance of data.
The flexibility, expressivity and ease of integration that
ontologies provide make them excellent candidates for product
information modeling.

3. ONTOLOGY MODELING FOR PIM
Based on the requirements of PIM expressed by real customers,
we propose here a multi-layer model for product information
representation through OWL ontology language. Since OWL is
a MOF 2 compliant model [28], we can express OWL in term of
this OMG recommendation [23]. This layered-model,
illustrated on Figure 2 relies on MOF meta-meta model, its
meta- level (M2) is based on OWL-DL ontology language,
enriched for practical use by meta-modeling features and N-ary
relationship specific support. Based on this meta-level, the other
layers express definition of product information. Models using
meta-modeling can be difficult to express in term of MOF
layers, but it is possible to comprehend them using two kinds of
instantiation as introduced in [2]. So, from Figure 2, it can be

WWW 2007 / Track: Semantic Web Session: Applications

748

observed that instantiation is used for two purposes. First, to
cross the MOF layers and link objects to their classifier (labeled
as meta-model instantiation on the figure), and secondly to
instantiate some semantic objects (labeled as model
instantiation) by using meta-modeling inside the M1 level.
These layers are described in more details in the following.

3.1 Meta Model Based on OWL
3.1.1 A Practical Choice of OWL Dialect
The OWL language became a widely used knowledge
representation language due to its powerful expressivity and
answers to many requirements expressed for PIM modeling, as
argued in section 2. In fact it is divided into three sub-languages
with growing expressivity and complexity of reasoning: OWL
Lite, OWL DL and OWL full.
OWL Lite, offering the minimum expressivity of OWL, cannot
support some constructs like hasValue, disjointWith which can
express valuable information in the product information. At the
opposite OWL full offers a comprehensive modeling
possibilities but lead to computational problems for reasoning.
For PIM modeling and reasoning, we found that only a subset of
OWL DL is needed. Practically the needs of reasoning can be
constrained to a subset of DL for most of PIM requirements. A
subset, known as OWL DLP (Description Logic Program) [12]
represents a good trade-off regarding this context. As a
consequence the reasoning capabilities will be mainly based on
DLP. Nevertheless, more expressivity can be used in the
modeling to define a complete and accurate model, as we can
see in later sections

3.1.2 Meta Modeling
Within the different OWL dialects, only OWL full allows meta-
modeling, but this language is intractable, resulting in limited
use for meta-modeling in practical ontology models. Yet, in real
business models, meta-modeling is often needed because the
distinction between classes and instances is not always trivial to
model the real world [30][32].
As an illustration in PIM, we can take a simple model defining
the concept of Laptop, Categories and Products. The common
way to structure this model is to define Laptop as an instance of
Categories. In such a model, Laptop can be described by values
(e.g. contact information of this Category, whether it is possible
to sell this category online, accounting information, etc.). But
using this model, it is not possible to define a particular product,
such as “My Laptop”, as instance of Laptop category, because
this one is already defined as instance. So in many models,
categories are just defined as classes with limited capabilities to
avoid recourse to meta-modeling.
In our model, we chose to allow this meta-modeling, notably to
support rich Category description and also to give more details
on Properties.
Additionally, there is a limitation in the MOF2 semantic which
makes impossible to have an object instantiating two classifiers
at the same time. As a consequence, some simple workarounds
are needed to allow OWL full meta-modeling style [28]. As
represented on Figure 2 it consists in adding some association
classes at M2 level.
The computational problem raised by the introduction of meta-
modeling can be solved by the use of punning semantics, which
insures that the different aspects of entities (Individual, OWL
Class) are considered separately, as described in section 6.1.1.

Cross sell
item

Upsell
item

Replacement
Item

transitivetransitive
Computable Relationships

Automatic definition of inverse relations :

Replaced by <-> Replaces

Composed
of

External entities

Manufacturer

Material

Outdated Items

Promoted Items

Dynamic categories

Metallic products

Products containing
batteries

Aluminum products

««allValuesFromallValuesFrom»» Contains Contains
comes from Metalcomes from Metal

««someValuesFromsomeValuesFrom»» Composed of Composed of
Comes from BatteryComes from Battery

Contains Contains ««hasValuehasValue»» aluminumaluminum

Cardinality restriction:Cardinality restriction:
Has 1 or more Replacement item

Cardinality restriction:Cardinality restriction:
Has 1 or more promotion

PIM categoriesPIM categories

PDA Phone

Expressive
category definition

IntersectionIntersection

Disjoint classesDisjoint classes

New relations
Made by

Contains

Figure 1. PIM modeling using OWL expressivity

WWW 2007 / Track: Semantic Web Session: Applications

749

3.1.3 Located Properties
In product information management, some N-ary relationships
are often used to describe the variability of information.
Properties can be time-dependant, such as a price which can
vary periodically. Location is another important feature in PIM
since many properties, such as price, or shipping can be
location-dependant. Location dependant properties exist also to
support the local legislations or regional specificities in a global
product information management solution. For instance, the list
of components of a product or its manufacturer can evolve from
one country to others. At a larger scale, the prices can vary not
only according to the countries or the regions but also according
to the specific retailers. Taking the example of the retailing
giant Wal-Mart: up to 142,000 different products can be sold in
one of their 6500 stores. In this context nearly one billion prices
could be stored and retrieved, but in order to avoid redundant
entries, some prices can be deducted from the hierarchical
location structure. Indeed price policy is often structured by
countries, regions and areas. Due to tree structure of these
locations, the price can then be inherited from the parent
location, or overridden in the case the retailer has a non-
standard price policy. This involves the use of hierarchy-based
conditions in the n-ary relationships.
Some other knowledge representation paradigms, such as F-
logic[17], a frame-based language, allow the definition of
complex and non-monotonic inheritance more naturally.
However, since is not a W3C standard, we did not focus on this
paradigm, to insure a better interoperability with other systems.
Regarding OWL, it defines only binary relationships but allows
modeling any N-ary one using several techniques [13]. In this
case we can use a tree to model the locations while property
values and locations are stored in an intermediate class.
Therefore modeling such relations is not a problem, but the
implementation of located property behavior is out of scope of
OWL and needed to be addressed by the application layer. To
improve this point, we added a native support to store and
retrieve efficiently the values of these properties. This is
described in section 6.1.2.

3.1.4 Class Variables
In Oriented-Object modeling, programmers have the possibility
to use class variables, also known as static variables in some
languages. These variables have the special feature to have their
value shared by all instances of the same class. For instance, if
you define a given type of bank account, you can set directly the
interest rate of all its instances by changing this unique property
value.
In OWL, this could be done using a “hasValue” restriction to
the property “interest rate” for the class “Saving Account”. As a
consequence, the reasoning will propagate this value to all the
instances of this account. This kind of value propagation avoids
users to maintain unnecessary data and allows instantaneous
query on the characteristics of the products.
Whereas this feature is defined in OWL DL modeling
capabilities, it is out of scope of DLP semantics used for
reasoning. In consequence it required a specific support in the
reasoning engine.

3.2 Product Information Management
Model
Since every industry and customer has their own specific model,
the intrinsic definition of products and their relationships are
very different and prevent the development of a generic data-
model. Based on our experience with representing products for
many customers, we therefore defined a simple but effective
meta-model to allow companies define their own model.
The Product Information Management model is an ontology
representing the core elements of PIM data models. This
ontology, mainly composed of meta-classes, is expressed in
terms of our meta-model based on OWL and so belongs to M1
level and needs to be customized by a company model in order
to be used. We present hereafter only several entities of this
model.
Catalog: A meta-class defining the concept of catalog; the
instantiation at the company model level of the catalog meta-
class will also be a class. An instance of this meta class is
structured by one or several hierarchies, and will define the
properties applied to all products it contains.
Category Tree: A meta-class for category trees; its instances are
used to give a structure to the catalogs instances and then to
classify products.
Instances of these meta-class hierarchies will be the category
trees used in the company model.
Category: A meta-class for categories. This meta-class allows
defining categories with some specific properties, such as the
“Laptop” category given as example. These instances will have
some valued properties describing them in more details and, at
the same time, will be used to classify products and define new
properties for these products. A particular product “My Laptop”
will be consequently an instance of an instance of this meta-
class, as illustrated on the Figure 2.
Categories are then structured thanks to the specialization
(subclass Of) relation. This specialization is compatible with the
concept of categories which are defined from the most general
one to the most specific ones.
Organization-Location Tree: This meta-class is conceptually
very similar to the Category Tree meta-class since it is used to

Figure 2. Model stack for Product Information
Management, in comparison to MOF levels.

meta-model instanciation
model instanciation

WWW 2007 / Track: Semantic Web Session: Applications

750

define hierarchies. But here, Location or Organization nodes
replace Categories.
Organization or Location nodes: These nodes are used to create
the nodes of the Organization-LocationTree. In this case, the
exact semantics of the tree is different since the tree is
structured by a “part of” relation: a location is a part of the
parent location. But conceptually, the subclass relation can also
be used since we may need to define some attributes at a given
level and, thanks to the inheritance tree, the children will have
the same attributes.

PIM model also defines some regular OWL Class providing
common PIM entities needed to describe products, such as
Packaging, Suppliers, Manufacturers, etc.

As an instance of this model, the company model will be
insured to follow this PIM model and be compliant with tools
included in our PIM framework.

3.3 Company Model
The company model is the data model defined by the company
to model its own business; it defines notably instances of
catalogs, category trees and their categories, as well as
properties of all these objects.
Defined in OWL as instance of the provided PIM model, this
model bears the semantics of PIM objects, while being highly
flexible. This model can be edited by a generic ontology-editor
supporting meta-modeling or by a workbench we developed
specifically to edit OWL file on top of our PIM meta-model.
Finally the data, at the M0 level, will use all classes available in
upper layers. Data will instantiate classes from the company
model, and also some classes directly defined in the PIM model.
Products instances, one of the most important data in PIM, will
instantiate simultaneously the instance of Catalog and the
instance(s) of Categories they belong to; as a consequence they
will benefit from their respective properties.

4. ARCHITECTURE
In this section we present the architecture of our prototype
system on top of an ontology repository. This prototype is
structured around two main components, as illustrated in Figure
3. One is a modeling workbench, and the other is an ontology
repository.
This architecture was designed to be simple but inter-operable.
It is notably built on OWL and SPARQL, making the data easily
accessible by a wide-range of programs.

4.1 Product Information Ontology
Workbench
Various ontology editors were developed to create and edit
OWL ontology, such as Protégé 2000 [19] and SWOOP [16].
Although they are helpful in ontology development, we
observed that they are not easy to comprehend by business
users, who are more used to modeling languages such as UML.
Additionally, OWL editors such as Protégé or SWOOP are
inadequate for meta-modeling, especially, for classes which are
at the same time defined as OWL individuals, as described in the
previous section. Because oriented-object modeling (such as
UML) is widely accepted and understood in the business world,

this workbench uses some similar way to define model using
OWL. But in such case, meta-modeling is not easy to represent
when designing a model.
There is some interesting work [20] about the use of UML to
clearly represent the meta-modeling layers, and to define the
depth to which a model element can be instantiated. This
approach also elegantly defines which properties are applied to
instances and which properties are applied to classes. Such a
representation can make the modeling task clear and accurate
and allows the correct design of user interfaces dealing with
OWL meta-classes. As a result, properties can be clearly defined
as properties describing the class, or properties describing the
instances, and eventually as properties describing the instances
of these instances.

We developed a Product Information Ontology Workbench
based on these requirements for modeling and meta-modeling.
This workbench is able to load and save OWL (from file or from
our repository), and it uses the PIM meta-model we developed
(described in section 3) to create company defined models. Most
of the complexity of OWL is hidden in order to highlight the
business concepts: hierarchies, categories of products, locations,
relationships, etc. Additionally, the meta-modeling and DL-
specific constructs are defined in an intuitive way according to
our meta-model. For instance, for a IndividualOWLClass, we
can view and edit simultaneously both its class and instance
aspects. OWL restrictions are also created by specific wizards
when needed.

4.2 Ontology Repository
In the particular context of product information management,
models often include many different categories of products
organized in taxonomies. Typically, different products will
define very different properties. For example a computer will be
notably described by “CPU speed” and “Memory” whereas a
camera will be described by “Number of pixels” and “Zoom”. A
catalog can thus define several thousands of properties. A
persistent store based on a “horizontal table”, i.e., a table that

Model Data

PIM Ontology

Data model editor

Data editor

Modeling
Workbench

Importation scripts

Model
From Scratch

Reference
Ontology

RDF Triples

OWL doc

OWL doc

Consistency
check S

PA
R

Q
L

Q
ue

ry
 E

ng
in

e

Facts

Inferred

Ontology Repository

Rule engine

OWL
reasoner

Connection to other
applications

Figure 3. Semantic PIM architecture

WWW 2007 / Track: Semantic Web Session: Applications

751

defines as many columns as properties in the model, cannot be
used for two main reasons. The first one is that relational
databases have a limitation to the number of possible columns in
a table (generally 1012). The second reason is that among all
columns, only a small percentage will be valued for one specific
type of category, making this table very sparse. Using a
different table for every product category is also possible but
leads to a lack of flexibility since a modification to the product
catalog will need an update to the database schema. This
problem, shared by both e-commerce and product information
management has been already studied [1] and was solved by the
use of a generic vertical table that stores all possible property
values (as illustrated on Table 1). As a result, such a schema
stores some triples (product, property, value), similar to RDF
triples: (S,P,O) for Subject, Predicate (also called property),
Object (target of the relationship, or value). This storage style is
implemented in commercial products such as Websphere
Commerce or Websphere Product Center, but these products
usually does not use open standard like OWL, which limits the
expressivity and evolution of the model.
In the past years, several ontology repositories have been
developed, either based on traditional relational databases
management systems (RDBMS) such as Sesame [4] or Jena [6];
or repositories that have developed their own ontology schema
(e.g. native ontology store, OWLIM [18], HSTAR [7]). The first
family – also known as triple stores - leverages the benefit of
RDBMS and benefits from additional features such as
concurrency and transactional support, while the second kind
adopts a native schema, closer to ontology and performs faster
operations on ontology objects.
Coincidently, most PIM repositories and ontology triple stores
use vertical schema in RDBMS.
Table 1 illustrates the vertical storage model where the principle
is to use a main table storing the RDF triples on the form
(S,P,O). Such a table can contain all the properties of all
products and does not need any modification of the table
structure in case a new property is needed.

Table 1. Example of vertical table

We based our Semantic PIM repository on a new version of
Minerva [33] an ontology repository previously developed by
our team. This new version, named SOR (Scalable Ontology
Repository), is enhanced for PIM. Contrary to other RDBMS
approaches which persist OWL ontologies as a set of RDF
triples and do not consider specific process for complex class
descriptions generated by class constructors (Boolean
combinations, various kinds of restrictions, etc), our repository
takes into account the specificities of OWL ontology and PIM
requirements from its conception.

The first reason is to improve the reasoning on large number of
instances managed in PIM. TBox reasoning, that is to say the
reasoning on terminology box including classes and properties, is
implemented by a DL reasoner (Pellet and Racer are currently
supported) which can provide complete and sound DL reasoning.
Considering the limited scalability of a DL reasoner on ABox
(Assertion Box, including assertions about data) reasoning, SOR
translates OWL semantics into a set of rules which can be easily
implemented using SQL statements on RDBMS, thus supporting
DLP expressivity in ontologies. This greatly improves the
scalability of SOR. The benefit of our database schema is that all
predicates in the body and head of the ABox inference rules have
their separate tables in the database. Therefore, these rules can be
easily translated into sequences of relational algebra operations.
For example, the rule Type(x,C) :- Rel(x,R,y), Type(y,D),
SomeValuesFrom(C,R,D) 1 has four predicates in the head and
body using three different types; and so results in three tables:
Relationship, TypeOf and SomeValuesFrom. Then a rule can be
implemented using SQL select and join operations among these
three tables. This effective integration of ontology inference and
storage using DL-reasoner for TBox and DLP expressivity for
ABox reasoning is expected to significantly reduce inference
costs. SPARQL queries are supported to query ontologies in SOR.
SPARQL queries are firstly translated into a single SQL statement
which is evaluated on both explicit assertions and inferred results
materialized in the persistent store, benefiting of decades of DB
optimization.
SOR is used to store both model and data, to perform consistency
check (e.g. see whether some DB-style constraints are infringed,
as described in [26]), perform reasoning and allow queries on top
of this data model.

5. EXPERIMENTAL RESULTS
Beyond expressivity, the other main point for PIM ontology
storage was to scale it to millions of products (hundreds of
millions of RDF triples).
In order to scale-up the ontology repository for PIM, we
performed several experiments to measure the scalability of our
ontology repository, Minerva, which thus far has the best
performance on the extended ontology benchmark [21].
The experiments conducted here used real customer data,
containing 4.2 millions of product items, which is about 120
millions of triples (4M data set). The product information we
used contains an Electronic Part catalog and was converted to
ontology format and stored in our ontology repository. The
characteristics of products in this catalog are the following:

- 53 data type properties;
- 4 object properties (“parentPart”, “hasManufacturer”,

“hasSupplier”, “editedBy”), linked to classes Product,
Manufacturer, Supplier and Editor respectively;

- Products are organized into 20 categories.
This model is pretty simple compared to the PIM expressivity
previously described, but enabled to measure performances on
this core product information.

1 SomeValuesFrom(C,R,D) signifies that a particular class C

may have a restriction on a property R that at least one value
for that property is of a certain type D.

Subject Predicate Object

Product1 Reference 1001

Product1 Price 490

Product1 DisplayType VGA

Product2 Reference 1002

Product2 Price 365

WWW 2007 / Track: Semantic Web Session: Applications

752

The experimental environment is a blade server with an Intel
Xeon 2.8 GHz CPU and 4 GB RAM.

Table 2. Representative queries used in the experiments

Query
SPARQL

Queries on properties
Q1 Retrieve one product according to its ID

SELECT * WHERE {?x pim:PartKey '34389'}
Q2 Retrieve all products made by a given supplier

SELECT ?x WHERE {?x pim:hasSupplier pim:SUP1}
Queries involving relationships
Q3 Retrieve all products whose parent is made by a given

supplier
SELECT * WHERE {?x pim:hasParent ?y . ?y

pim:hasSupplier pim:SUP2}
Q4 Q3 extended with a filter

SELECT * WHERE {?x pim:hasParent ?y . ?y
pim:hasSupplier pim:SUP3 . ?x pim:SCode ?b

FILTER (?b != 'N')}
Queries where predicate (property) is a variable
Q5 Retrieve all information about a given product

SELECT * WHERE {?x ?y ?z . ?x pim:PartKey
'34389'}

Q6 Retrieve all products and relationships to a given
company

SELECT * WHERE {?x ?y pim:ABC}
Queries on the class structure (intersections)
Q7 Retrieve all products belonging at the same time to

category C1 and C2
SELECT ?x {?x a pim:C1 . ?x a pim:C2}

Q8 Class intersection and manufacturer != supplier
SELECT ?x {?x a pim:C3 . ?x a pim:C4 . ?x

pim:hasSupplier ?y . ?x pim:hasManufacturer ?z
FILTER (?y != ?z)}

For the experiments, we used the queries listed in Table 2. They
represent a representative set of query patterns that could be
performed on the given catalog. Other queries using the same
patterns but different constraint values were used to confirm
these results.
The query time, increasing in polynomial time according to the
size of data set, could reach previously hundreds of seconds, and
even more, in Minerva as shown on Table 3.
From these results we can see that Minerva had some
difficulties on such a large dataset, especially when the number
of joins involved in the query increased. In order to improve
these results and be able to use Semantic Technologies for
storing product information management, we are developing a
new version of Minerva, called SOR, which contains some
substantial changes in the schema. This version is still in
development but we wanted to highlight the huge performance
gains we have currently obtained and measured on this large
scale data set, queried by some customer representative queries.
Optimization schemes used in SOR include: creating Multiple

Dimension tables to reduce IO costs, separating object relations
with data type attributes in the physical schema, optimized
index for representative queries, and the use of efficient hash
codes to improve string search. The right column of Table 3
demonstrates the overall benefic of these improvements, with
several typical query times below 1 second on the full data-set.
Nevertheless, even if all query runtimes were improved, we can
see performance on some queries patterns (involving a variable
predicate or class intersections) still need to be improved.

Table 3. Comparison on ontology storage before and after
improvements (4M data set)

Query Result Runtime (ms)
 size Minerva SOR

Q1 1 245,812 146

Q2 137

162,172 21

Q3 6,181

245,594 646

Q4 1,341

19,430 484

Q5 33

3,233,633 16

Q6 386,038 364,586 18.088

Q7 19 18,375 4,709

Q8 25 330,845 16,755

6. REMAINING CHALLENGES AND
FUTURE WORK
Using the model described in the section 3, with meta-modeling
and expressive OWL axioms, it is difficult to use any current
top-of-the-box ontology repository which are limited in
expressivity or and in scalability. That is why we investigated
how to improve our previous ontology repository to efficiently
store and retrieve PIM data. Regarding reasoning capabilities,
even if meta-modeling is not used in the reasoning, the large
scale of data involved in PIM also needed some specific
consideration described in this section.

6.1 New features
6.1.1 Meta-Modeling.
Compared to current ontology repositories, which usually
support some subset of OWL DL expressivity, we argued in
section 3 that there is a need to develop a support of meta-
modeling to store product information. The needed semantics
for meta-modeling can be Contextual semantics [25] which
corresponds to a new OWL proposal known as OWL 1.1
[8][14]. In practical terms, in this meta-modeling – also called
punning – the same URI can be used simultaneously for an
individual, a class, or a property while entities remain
intrinsically different. Thus, no aspect of the use of the URI as
an individual has any effect on the meaning of the URI as a
class. As proved in [8], this absence of interaction between the

WWW 2007 / Track: Semantic Web Session: Applications

753

polymorphic forms is required by classical first order
(description) logic fragments of OWL-Lite or OWL-DL and
then allows reasoning.
It has to be observed that this semantics has some limitations, in
particular in its application with rules. Actually rules applied to
a class do not affect their instance interpretation. Taking an
example with the following simple knowledge base:

ElectronicProduct(Software)
 ElectronicProduct (C) ∧ C(I) → SoldOnLine(I)
In the second assertion, C is firstly interpreted as an Individual,
and then as a Class. In term of punning semantics, they are
considered as two different objects, which make more difficult
the combination between a generic rule language, such as
SWRL, OWL[25].
As a conclusion contextual semantics gives the possibilities to
enrich models without the need of complete re-implementation
of reasoners, but in the meantime the extension to business rules
will be more difficult.
For now reasoning on meta-modeling aspects is not
implemented and rule support is not a priority in our product
information model; allowing to use this semantics easily in
SOR.

6.1.2 N-ary Relationship.
As N-ary relationships are often used in PIM, they need a
specific support to improve storage and search efficiency. The
case of located-in property described in section 3.1.3, which can
need the definition of one billion values, pushed the need of
specific storage. In order to avoid duplication of entities and so
letting user only maintain the valuable information contained in
the model, the storage takes full advantage of the tree structure
of locations, combining hierarchy information to retrieve the
information at the run-time.
This process requires an extension to the repository schema, and
we are currently investigating a novel schema for storage and
retrieval of N-ary relationships. It will use an extension of
SPARQL supporting this specific storage and the propagation of
values along hierarchies. This is some examples of the queries
this repository can support:
To retrieve prices defined in a 3-ary relatationship (with
location tree):
SELECT * WHERE {[hasLocation USA] ?product
hasPrice ?price}

To retrieve prices defined in a 4-ary relatationship (with
location tree and timestamp):
SELECT * WHERE {[hasLocation USA]
[inCatalog fall2005]?product hasPrice
?price}

Note that in the current implementation; only one of the
conditions of the n-ary relationship could have a tree structure.

6.1.3 Support of Dynamic Queries.
One significant advantage of using OWL restrictions for product
category definition is that it allows the automatic classification
of product items using ontology reasoning. Very often, users
want to retrieve products satisfying a certain set of conditions in
query time (such as, “find all batter-powered items”). But
unfortunately, there is no such a category in predefined product

ontologies. So, users can define a new category represented by
an OWL restriction on the fly -such as, battery-powered items
are defined as someValuesFrom(composedOf, Battery)- and
make use of ontology reasoning to classify products
automatically. This feature, showing the dynamic capability of
semantic PIM representation, is highly attractive to business
users. But, implementing runtime ontology inference on a large
scale of master data is not trivial, and is still a critical challenge.
Currently, we integrate IBM SHER reasoning engine [11] into
our prototype system for dynamic queries. The preliminary
results are promising and encouraging. We will continue to
work on scalable ontology inference for dynamic queries.

6.1.4 Utility Functions
Utility Functions, as well as versioning of the ontology and its
data or fine-grain access control, represent an important issue to
meet business requirements.
These features may be crucial for adoption of semantic web
techniques for product information management. Although
transaction and concurrency is currently widely supported due
to the underlying DBMS, support of access control and
versioning requires specific efforts to deal with OWL data.
Integration of these functions will affect storage, query and
reasoning systems implemented in the repository, and hence is a
key issue to explore.

6.2 Scale Up the Repository
6.2.1 Query Runtime.
While we demonstrated the value of ontology modeling for
product information management, our performance is still
unacceptable for very large data sets.
One major issue is the large size of the vertical table containing
the triples, which in PIM case can reach more than hundreds of
millions of records. This becomes a major issue in case of
complex queries, even using several indexes. Several techniques
such as the one described in [1] are currently being implemented
to scale up the vertical storage and we already have promising
results, but we are still working on a release of a highly scalable
ontology repository, supporting large-sized ontology with
millions of products.

6.2.2 Loading Time.
Another open challenge is the improvement of the loading time,
especially for mass imports. The measured loading time in the
current repository is at most 1000 triples by second; at this
speed it takes several days to load the whole data set.
Preprocessing of customer data, optimization of ontology
storage and fine tuning of RDMS will be an important focus for
us to solve this issue.

7. CONCLUSIONS
This work shows the values of using ontologies and more
specifically OWL to efficiently model product information. Use
of ontologies allows capturing semantic relations between
business objects. Business users can define their own model,
customized for their particular business, using the defined meta-
model.
Moreover, it appears that such practical utilization of semantic
web technologies exceeds the expressivity and reasoning

WWW 2007 / Track: Semantic Web Session: Applications

754

capabilities of most of current ontology solutions, and in
consequences, limits the current modeling capabilities. From
this assessment we developed a new architecture integrating
notably a specific editor, repository and reasoner enhanced for
PIM model and data.
This new architecture demonstrated its added-value compared to
existing solution, In particular the work on our new ontology
repository, SOR, gave some very encouraging results and shows
that performances can be significantly improved in order to use
semantic web technologies for large data sets. However, our
experiments also pointed that we still need to focus efforts to
scale up ontology repositories before they can be used for PIM
and MDM at a very large scale and allow runtime reasoning,
notably for automatic classification. Scaling up repositories will
allow the use of Semantic Web technologies in high-scale
applications and will promote their use in product information
management and other business core data.

8. REFERENCES
[1] Agrawal, R., Somani, A. and Xu, Y. Storage and Querying

of E-Commerce Data, VLDB, 2001.
[2] Atkison, C. and Kuhne, T. Model-Driven Devlopment: A

Metamodeling Foundation, IEEE Software, Sept/Oct 2003.
[3] Brickley, D. and Guha, R.V. RDF vocabulary description

language 1.0: RDF schema. W3C recommendation, Feb
2004.

[4] Broekstra, J., Kampman, A., and Van Harmelen, F.
Sesame: A generic architecture for storing and querying
RDF and RDF schema. ISWC, 2002.

[5] de Bruijn, J., Franconi, E. and Tessaris, S. Logical
Reconstruction of normative RDF. Proc. of the Workshosp
on OWL Experiences and Directions (OWLED 2005).

[6] Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D.,
Seaborne, A. and Wilkinson, K. Jena: implementing the
semantic web recommendations. WWW 2004.

[7] Chen Y., Ou J., Jiang Y., and Meng X. HStar - a semantic
repository for large scale OWL documents. ASWC 2006

[8] Cuenca-Grau, B. OWL 1.1 Web Ontology Language
Model-Theoretic Semantics, Editor Draft

[9] Customer Data Integration: Market Review & Forecast for
2005-2006, A CDI Institute MarketPulse™ In-Depth
Report.

[10] Gartner Reports, Magic Quadrant for Product Information
Management, 2006.

[11] Fokoue, A., Kershenbaum, A., Ma, L., Schonberg, E. and
Srinivas K. The summary ABox: Cutting Ontologies Down
to Size. ISWC 2006, 343-356.

[12] Grosof, B., Horrocks, I., Voltz, R. and Decker, S.
Description Logic Programs: Combining Logic Programs
with Description Logic. WWW, 2003.

[13] Hayes, P. and Welty, C. Defining N-ary Relations on the
Semantic Web, W3C Working Group Note 12 April 2006

[14] Horrocks, I., Kutz, O., and Sattler, U. The Even More
Irresistible SROIQ, KR 2006, 57-67

[15] IBM Websphere Product Center, http://www-
306.ibm.com/software/integration/wpc/, 2004

[16] Kalyanpur, A., Parsia, B., Sirin, E., Cuenca-Grau, B. and
Hendler J. Swoop - a web ontology editing browser,
Journal of Web Semantics 4 (1), 2005.

[17] Kifer, M., Lausen, G. and Wu, J. Logical Foundations of
Object-Oriented and Frame-Based Languages. Journal of
the ACM, 1995.

[18] Kiryakov, A., Ognyanov, D., and Manov, D. OWLIM – a
pragmatic semantic repository for OWL. WISE
Workshops, volume 3807 of Lecture Notes in Computer
Science, 182–192. Springer, 2005

[19] Knublauch, H., Fergerson, R.W., Noy, N.F. and Musen,
M.A. The Protégé OWL Plugin: An Open Development
Environment for Semantic Web Applications. ISWC, 2004.

[20] Kuhne, T. and Atkinson, C. The essence of multilevel
metamodelling. In UML 2001, Number 2185 in Lecture
Notes in Computer Science, 19-33. Springer, 2001.

[21] Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y. and Liu, S.
Towards a complete OWL ontology benchmark. ESWC,
125–139, 2006.

[22] Manola, F. and Miller, E. RDF primer. W3C
recommendation, Feb 2004.

[23] Meta Object Facility (MOF) 2.0, OMG Document:
formal/2006-01-01, http://www.omg.org/cgi-
bin/doc?formal/2006-01-01

[24] Morris, H.D. and Vesset, D. Managing Master Data for
Business Performance Management: The Issues and
Hyperion' s Solution, IDC white paper, 2005.

[25] Motik, B. On the properties of meta-modeling in OWL,
ISWC 2005

[26] Motik, B., Horrocks, I. and Sattler, U. Integrating
Description Logics and Relational Databases, Technical
Report, University of Manchester, UK, 2006.

[27] Oracle Data Hub,
http://www.oracle.com/data_hub/index.html, 2005.

[28] Ontology Definition Metamodel (ODM) Request for
Proposal, OMG Document: ad/2003-03-40,
http://www.omg.org/cgi-bin/doc?ad/06-05-01.pdf , 2006.

[29] SAP Master Data Management,
https://www.sdn.sap.com/irj/sdn/developerareas/mdm,
2005

[30] Schreiber, G. The Web is not well-formed. IEEE Intelligent
Systems, 17(2):79-80, 2002.

[31] Smith M.K., Welty C. and McGuinness D.L. OWL web
ontology language guide. W3C recommendation, Feb 2004

[32] Welty, C. and Ferrucci, D. What’s in an Instance?
Technical report, Rochester Polytechnic Institute Computer
Science Dept., 1994.

[33] Zhou, J., Ma, L., Liu, Q., Zhang, L., Yu, Y. and Pan Y.
Minerva: A scalable OWL ontology storage and inference
system. In Proc. of ASWC, 429-443, 2006.

WWW 2007 / Track: Semantic Web Session: Applications

755

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

