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ABSTRACT

Accessing an ever increasing number of emails, possibly on
small mobile devices, has become a major problem for many
users. Email summarization is a promising way to solve this
problem. In this paper, we propose a new framework for
email summarization. One novelty is to use a fragment quo-
tation graph to try to capture an email conversation. The
second novelty is to use clue words to measure the impor-
tance of sentences in conversation summarization. Based on
clue words and their scores, we propose a method called
CWS, which is capable of producing a summary of any
length as requested by the user. We provide a comprehen-
sive comparison of CWS with various existing methods on
the Enron data set. Preliminary results suggest that CWS
provides better summaries than existing methods.

Categories and Subject Descriptors
H.2.8 [Database applications]: [Data mining]

General Terms
Algorithms
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1. INTRODUCTION

With the ever increasing popularity of emails, email over-
load becomes a major problem for many email users [17].
Users spend a lot of time reading, replying and organiz-
ing their emails. To help users organize their email fold-
ers, many forms of support have been proposed, including
spam filtering[10], email classification[18] and email visu-
alization[14]. In this paper, we discuss a different form of
support - email summarization. The goal is to provide a con-
cise, informative summary of emails contained in a folder,
thus saving the user from browsing through each email one
by one. The summary is intended to be multi-granularity
in that the user can specify the size of the concise summary
(e.g., depending on how much time the user wants to spend
on the folder). Email summarization can also be valuable for
users reading emails with mobile devices. Given the small
screen size of handheld devices, efforts have been made to
re-design the user interface. However, providing a concise
summary may be just as important.
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Email summarization is challenging in at least the follow-
ing aspects. Many emails are asynchronous responses to
some previous messages and as such they constitute a con-
versation, which may be hard to reconstruct in detail. A
conversation may involve many users, many of whom may
have different writing styles (e.g., short vs long sentences,
formal vs informal). Finally, hidden emails may carry im-
portant information to be part of the summary. As defined
in [3], a hidden email is an email quoted by at least one email
in the folder but is not present itself in the user’s folders.

Several recent attempts have been made to capture con-
versations by email threading. Many email programs pro-
vide features to group emails into threads using headers[6].
Research studies by Rambow et al.[9], Wan et al.[15] and
Lam et al.[4] go further by using features defined on the
threads to generate summaries. While a more detailed com-
parison will be discussed later, we believe that threading at
the granularity level of emails is not sufficient and can be
significantly refined. Furthermore, none of these approaches
handle hidden emails.

In this paper, we claim the following contributions.

In Section 3, we propose using the fragment quotation
graph to capture conversations. Based on an analysis of the
quotations embedded in emails, the graph provides a fine
representation of the referential structure of a conversation.
The graph is also capable of dealing with hidden emails.

In Section 4, we propose an email summarization method,
called ClueWordSummarizer (CWS), based on a novel con-
cept called clue words. A clue word from a node is a word
(modulo stemming) that appears also in its parent node(s)
and/or child node(s) in the quotation graph. It is important
to note that a clue word takes into account simultaneously
(part of) the content and the structure of the quotation
graph. Moreover, CWS can produce summaries of any size
as requested by the user.

It is an open question how human would summarize email
conversations. Thus, in Section 5, we present results of a
user study on summarizing 20 conversations from the Enron
data set. Not only does this study provide a gold standard
to evaluate CWS and other summarization methods, but it
also sheds light on the importance of clue words and hidden
emails to human summarizers.

In Section 6, we evaluate the effectiveness of CWS on the
Enron data set. We compare CWS with other summariza-
tion approaches. Our preliminary results show that both
the quotation graph and clue words are valuable for sum-
marizing email conversations.
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2. RELATED WORK

Email summarization can be viewed as a special case of
multi-document (MD) summarization. Radev et al. de-
velop MEAD which gives a score to each sentence based on
its similarity to the TFIDF centroid of the whole document
set and other properties such as position in a document,
sentence length and inter-sentence similarity [7]. Erkan et
al.[5] develop the LexPageRank to rank sentences based on
the eigenvector centrality. They compute a sentence link-
age matrix as the sentence similarity and use this matrix
with the well-known PageRank algorithm. Wan et al.[16]
generate an affinity graph from multiple documents and use
this graph for summarization. They consider both the in-
formation richness and the sentence novelty based on the
sentence affinity graph. However, MD summarization meth-
ods, when applied to emails, do not take into account the
key differences between emails and conventional documents.
Key differences include the referential structure of conversa-
tions, the existence of hidden emails and the high variability
of writing styles. Section 6 will compare CWS with MEAD
for email summarization.

Rambow et al. apply a machine learning approach to
email summarization [9]. They use RIPPER as a classi-
fier to determine which sentences should be included in a
summary. Features used for learning include linguistic fea-
tures, and features describing the email and the threading
structure. Such an approach requires a large number of pos-
itive examples and cannot produce summaries with varying
length based on the users request. It is also not clear how
this approach can handle hidden emails. Section 6 will com-
pare CWS with RIPPER.

Wan et al. study decision-making summarization for email
conversations [15]. Email threading is used. Among the var-
ious sets of features explored, their experiments show that
a centroid based method is effective.

In our earlier studies, we focus on the re-construction of
hidden emails [3, 2]. The focus here is completely differ-
ent in generating summaries of conversations, regardless of
whether there are hidden emails or not. In [3, 2], we use a
precedence graph to re-construct hidden emails. The frag-
ment quotation graph here is different in at least two ways.
First, the nodes are different as a fragment quotation graph
creates nodes for both new and hidden fragments. More im-
portantly, the edges in a precedence graph capture textual
ordering of the nodes within one hidden email, whereas the
edges in a fragment quotation graph reflect the referential
relationship among multiple emails.

As for extracting conversations, Yeh et al. study how
to use quotation matching to construct email threads [6].
Their experiments show a higher recall than the header-
based threading method. This supports our use of the quota-
tion graph as a representation of email conversation. Shrestha
et al. propose methods to automatically identify the question-
answer pairs from an email thread [11]. Their method may
be useful in building the conversation structure for the pur-
pose of email summarization. Agrawal et al. extract social
networks from newsgroups [8]. Stolfo et al. study the behav-
ior model of email users based on the social network analysis
among email correspondences [12]. They develop an email
mining toolkit and use it to identify target emails without
analyzing the email content.

92

Session: Mining Textual Data

3. BUILDING THE FRAGMENT
QUOTATION GRAPH

For any given email folder, there may be multiple email
conversations. To capture these different conversations, we
assume that if one email quotes another email, they be-
long to the same conversation. We use a fragment quota-
tion graph to represent conversations. A fragment quota-
tion graph G = (V, E) is a directed graph, where each node
u € V is a text unit in the email folder, and an edge (u,v)
means node u is in reply to node v. We are aware that this
framework cannot represent every kind of email conversa-
tions. For example, there are cases where the original email
is not quoted by the replies, and there are cases where the
quotation is irrelevant to the topic discussed. Nonetheless,
we believe that fragment quotation graphs can be applied
to many practical situations.

3.1 Identifying Quoted and New Fragments

Quotation identification is itself a research problem [13].
Here we assume that there exist one or more quotation
markers (e.g., “>") that are used as a prefix of every quoted
line. 'We define the quotation depth of a line as the num-
ber of quotation markers “>” in the prefix. The quotation
depth reflects the number of times that this line has been
quoted since the original message containing this line was
sent. A quoted fragment is a maximally contiguous block of
quoted lines having the same quotation depth. A new frag-
ment is a maximally contiguous block of lines that are not
prefixed by the quotation markers. In other words, an email
can be viewed as an alternating sequence of quoted and new
fragments, or vice versa.

For convenience, we use M;.quote and M;.new to denote
the set of quoted and new fragments in email M, respec-
tively. We use M;.frag to denote the sequence of fragments,
both quoted and new ones. The order of the fragments is
in accordance to their textual order in M;. We denote the
quotation depth of fragment F' as F.qt Depth. The quotation
depth of a new fragment is defined as 0.

3.2 Creating Nodes

Given an email folder F'dr = {M,..., M,}, we construct
a fragment quotation graph G as follows. After the afore-
mentioned identification of quoted and new fragments in
each email M; in Fdr, the first step is to identify distinct
fragments, each of which will be represented as a node in
the graph.

Note that when a user quotes an email, the user might
perform various actions, as she can edit the fragments as free
text. She can quote the exact sequence verbatim; or she can
delete some parts of it. For example, a new fragment from
an earlier email can be of the form NFy = (F1, F», F3). Ina
latter email, a quoted fragment may be QF> = (F1, F3). In
another email, it may appear as QF3 = (Fi, Fu, F3), where
fragment Fy was quoted from yet another email. The point
is that a fragment can be quoted by many emails, with each
user possibly performing different edits to it. The goal of
the task here is to avoid as much duplication as possible in
the quoted and new fragments.

To do so, quoted and new fragments from all emails in Fdr
are matched against each other to identify overlaps. We say
that there is an overlap between two fragments if there is a
common substring that is sufficiently long. In this process,
fragments may be split. Using the above examples, when
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>>a
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>c >>d > h
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>>>3a >>e

(a) Conversation involving 6
Emails
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(b) Fragment Quotation Graph

Figure 1: A Real Example

QF; is matched against QF>, the fragments Fi, Iy, F3 are
identified (assuming that they are longer than the overlap
threshold). QF1, QF> are then replaced by Fi, F», F3. And
when QF3 is processed, Fjy is identified as well. This also
shows how hidden fragments (e.g., F4) can be identified.

At the end of this process, every distinct fragment is repre-
sented as a node in the fragment quotation graph G. Note
that while the processing is quadratic with respect to the
number of emails in F'dr, this is designed to be as accurate
as possible to extract the conversations. Indexing techniques
similar to those developed in [2] [6] can be used to signifi-
cantly reduce the processing time.

Figure 1(a) shows a real example of a conversation from
a benchmark data set involving 6 emails. For the ease of
representation and space limit, we do not show the original
content and abbreviate them as a sequence of fragments. In
the fragment identification step, all new and quoted frag-
ments are identified. For instance, F3 is decomposed into 3
fragments: new fragment ¢ and quoted fragments a and b
(i.e., different quotation depth). Similarly, 4 fragments are
identified from each of F4, F5 and Eg. Then in the node
creation step, overlaps are identified, fragments are split if
necessary (e.g., fragment gh in Es split into g and h when
matched with Eg), and duplicates are removed. At the end,
10 distinct fragments a,...,j give rise to 10 nodes in the
graph shown in Figure 1(b). Note that amongst all the
fragments quoted, f never appears as a new fragment, and
is hence labeled a hidden fragment.

3.3 Creating Edges

In general, it is difficult to determine whether one frag-
ment is actually replying to another fragment. In this paper,
we make the following simplifying assumption. We assume
that any new fragment is a potential reply to neighboring
quotations — quoted fragments immediately preceding or fol-
lowing it. In that case, an edge is added between the two
corresponding nodes in the fragment quotation graph. Re-
call that in the fragment identification step, an email is de-
composed into an alternating sequence of new and quoted
blocks. For example, Eg in Figure 1(a) is decomposed into
quoted g, new %, quoted h and new j. In general, partly be-
cause of possible differences in quotation depth, a block may
contain multiple fragments. Thus, for the general situation
when @S, precedes N.S, which is then followed by QSy, we
create an edge (v, u) for each fragment u € (QS,UQSy) and
v eENS.

Let us consider E3 in Figure 1(a). There are the edges
(¢,b) and (c,a). As will be pointed out later, Figure 1(b)
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only shows the minimum equivalent graph with all the re-
dundant edges removed. Thus, because of the edge (b,a),
the edge (¢, a) is not included in Figure 1(b). Similarly, for
FEs, there are two edges from node ¢ to g and h, while there
is only a single edge from j to h. Other edges are added
for the same reason — except for the edges involving hidden
fragment f.

For a hidden fragment, additional edges are created within
the quoted block, following the same neighboring quotation
assumption. For instance, because of Es, edges are added
from f to d and e.

We use the minimum equivalent graph as the fragment
quotation graph, which is transitively equivalent to the orig-
inal graph. Recall that a folder may contain emails involved
in multiple distinct conversations. In the fragment quota-
tion graph, each of these conversations will be reflected as
weakly connected components.

Figure 1(b) shows the fragment quotation graph of the
conversation shown in Figure 1(a) with all the redundant
edges removed. In contrast, if threading is done at the coarse
granularity of entire emails, as adopted in many studies, the
threading would be a simple chain from Fg to Es, Es to
FE4 and so on. This example clearly shows the advantage of
using fragment quotation graphs.

4. EMAIL SUMMARIZATION METHODS

Once the fragment quotation graph corresponding to a
conversation is extracted, the remaining task is to identify
the most informative sentences to be included in the sum-
mary. In this section, we first present a novel method called
ClueWordSummarizer. Then we briefly describe how two
existing approaches, MEAD and RIPPER, can be applied
to a fragment quotation graph.

4.1 Clue Words

It is well known in linguistics that coherent text tends
to be lexically cohesive. Words related to the current topic
tend to reoccur more frequently in successive utterances. In
our preliminary analysis of email folders, we found this to
be true also for fragments in the quotation graph. That is
to say, some words in a fragment reoccur in the fragments
replying to it. We call those words clue words.

A clue word in node (fragment) F is a word which also
appears in a semantically similar form in a parent or a child
node of F in the fragment quotation graph.

Note that the definition of a clue word is established by
examining the textual content of a fragment. At the same
time, a clue word takes into account of the referential re-
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lationship between two nodes connected by an edge. Thus,
we believe that clue words are important for summarizing
email conversations.

(@)

Below are the proposed discounts we discussed with Ken Lay this
afternoon:

If the midpoint (value between PG&E and Enron settlement offers) is
acceptable from a liquidity and P+L standpoint, propose countering at
a discount of $123 million (move half way to midpoint) to provoke a
counter offer. Intent is to settle at midpoint discount of $161

million. The Excel file is attached.

®) !
Ken Lay called Rick Buy and | up to his office talk about settlement

just now. He would like to settle for liquidity/good news. Rick
Buy is going to discuss with Whalley.

Figure 2: Example of Clue Words

Figure 2 shows a real example of two nodes from a con-
versation in the Enron data set. Fragments (a) and (b) are
two adjacent nodes with (b) as the parent node of (a). Be-
tween the two nodes, there are 5 clue words Ken, Lay, settle,
discuss and liquidity. Note that clue words do not need to
reoccur verbatim. The clue words “discussed” and “settle”
in (a) reoccur as “discuss” and “settlement” in (b). There
are also synonyms, such as “discuss” in (a) and “talk” in
(b).

From a preliminary analysis, we observe 3 major kinds of
reoccurrence:

e the same root(stem) with different forms, e.g., “settle”
vs. “settlement” and “discuss” vs. “discussed” as in
the example above.

e synonyms/antonyms or words with similar/contrary
meaning, e.g., “talk” vs. “discuss” and “peace” vs.

« eh]

‘war

e words that have a looser semantic link, e.g., “deadline”
with “Friday morning”.

In our experimentation, we observe that stemming oc-
curs the most frequently among the three types discussed
above. Thus, in this paper, we only apply stemming to the
identification of clue words. We use the Porter’s stemming
algorithm to compute the stem of each word, and use the
stems to judge the reoccurrence.

Several studies in the NLP literature have explored the
reoccurrence of similar words within one document due to
the text cohesion. The idea has been formalized in the con-
struct of lexical chains, i.e., sequences of semantically related
words appearing in sequences of contiguous sentences within
a document. Some approaches use lexical chains to generate
single-document summaries [1]. While clue words and lex-
ical chains both rely on lexical cohesion, the two concepts
are quite different with respect to the kind of linkages con-
sidered. For lexical chains, the concept of “chain” is based
on similarities between lexical items in contiguous sentences
within a single document. In contrast, for clue words, the
linkage is based on the existing conversation structure which
is represented by the quotation graph. In other words the
“chain” in clue word is not only “lexical” but also “con-
versational”, and typically spans over several emails (i.e.,
documents).
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Input: fragment quotation graph G = (V, E), summary length k
Output: a sequence of sentences SUM = [s1;...;Sk].

1. For each node u € V, let u.StemSet denote the multiset of all
words’ stems in u.

For every sentence s € u, do the following:

Tokenize s into a sequence of words W.
Remove all stop-words from W.

For each word w € W compute its stem wstem with
Porter’s stemming algorithm.

(d)

2. For each sentence s in each node u € V, compute the
ClueScore(s) as follows:

Insert wgtem into u.StemSet.

For each non-stop word w, compute ClueScore(w,u) as the
number of occurrence of wgtem in all z.StemSet, where x are
u’s parent or child nodes.

The ClueScore of sentence s is computed as follows:

ClueScore(s) = >

wes ClueScore(w, u)

3. Rank all sentences according to their ClueScore and select the
top-k ones as SUM.

Figure 3: Algorithm CWS

4.2 Algorithm CWS

Algorithm ClueWordSummarizer (CWS) uses clue words
as the main feature for email summarization. The assump-
tion is that if those words reoccur between parent and child
nodes, they are more likely to be relevant and important to
the conversation. A skeleton of algorithm CWS is presented
in Figure 3.

In order to evaluate the significance of the clue words
quantitatively, CWS uses ClueScore(CW, F) to represent
the importance of a clue word CW in fragment F:

ClueScore(CW,F) = Z freq(CW, parent(F)) +

parent(F)

> freq(CW,child(F))

child(F)

where freq denotes the frequency the clue word appearing
in a fragment. The above formula generalizes to the sentence
level:

ClueScore(s) = Z ClueScore(CW;, F)

CW,€s

where s is a sentence in fragment F'.

For the example in Figure 2, consider the ClueScore for
the sentence: “If the midpoint ... counter offer.” in fragment
(a). ClueScore(“liquidity”) = 1 and ClueScore( “settlement”)
= 2 because “liquidity” appears once and “settlement” ap-
pears twice in fragment (b). Thus, the ClueScore of this
sentence is 3.

To select sentences to be included in a summary of k sen-
tences, algorithm CWS first tokenizes each sentence in ev-
ery node into a multiset of words. After the stop words
are removed and the stem of words are obtained, the above
ClueScore formulas are applied first to words then to sen-
tences. CWS selects the sentences with the highest ClueScore
to return as the summary.

4.3 MEAD: a centroid-based multi-document
summarizer
Algorithm CWS described above uses the ClueScore to
evaluate the importance of each sentence based on the quo-
tation graph. Since the ClueScore is computed based on the
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reoccurrence of the clue words in the parent and child nodes,
it may tend to capture more local salience and miss more
global salience related to the whole conversation. So it is
reasonable to assume that additional information is needed.
To satisfy these needs we explore using MEAD, a centroid-
based multi-document summarizer to generate email sum-
maries.

As the first step, MEAD computes the centroid of all
emails in one conversation. A centroid is a vector of words’
average TFIDF values in all documents. MEAD compares
each sentence s with the centroid and assigns it a score as the
sum of all the centroid values of the common words shared
by the sentence s and the centroid. C(s) =3, c, Cuw

In addition to the centroid, MEAD also uses other fea-
tures (e.g., the sentence position and the similarity to the
selected sentences) to compute the sentence score, MEAD-
Score. Then all sentences are ranked based on the MEAD-
Score, and the top ones are included in the summary. The
details can be found in [7].

Compared with MEAD, CWS may appear to use more
“local” features. But notice that locality in CWS is defined
with respect to the quotation graph. That is, two sentences
with clue words are not textually proximal to each other,
but are brought together in a parent and a child node in
the quotation graph. Because of this, CWS may achieve
a good compromise between local and global information,
which may explain its promising performance described in
Section 6.

4.4 Hybrid ClueScore with MEADScore

As stated above, ClueScore and MEADScore tend to rep-
resent different aspects of the importance of a sentence. So
it is natural to combine both methods together. In order to
avoid either one score overwhelming the other, we standard-
ize both scores as follows. We compute o.¢r, the standard
deviation of the centroid of all words, and use %‘?d(w
as the centroid to compute the hybrid score. Simcilarly,
we also standardize the ClueScore for each word w € F

S M, where o.ue 18 the standard deviation of

all positi\clleueC’lueScore(w7 F) for all words in every fragment
F. For the ease of representation we still use the previous
symbol to represent both standardized scores.

We use the linear combination of ClueScore and MEAD-
Score together as the hybrid score of the sentence s. Let
a € [0,1] denote the percentage of ClueScore in the final
result. When a = 0 or 1, it is pure MEADScore or pure
ClueScore respectively.

LinearClueMEAD(s) = a * ClueScore(s) + (1 — «) x*
MEADScore(s).

4.5 Summarization Using RIPPER

In [9], Rambow et al. propose to use machine learning
to extract representative sentences from the original emails
to form a summary. They use the RIPPER system to in-
duce a classifier for determining if a given sentence should
be included in the summary. RIPPER is trained on a corpus
in which each sentence is described by a set of 14 features
and annotated with the correct classification (i.e., whether
it should be included in the summary or not). The features
describing each sentence comprise linguistic features (e.g.,
similarity to the centroid) and features describing the email
and the threading structure, (e.g., number of recipients of
the email containing the sentence). They use 3 incremental
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feature subsets out of the 14 features, starting with 8 ”basic”
linguistic features. Then they add successively 2 (”basic+”)
and 4 ("basic++”) additional structural features. In the
end, the results with all features show that including ad-
ditional features based on the emails and thread structure
does improve classification accuracy.

We have adopted the framework proposed in [9] with only
the following exception. Since some of the features used in
[9] are based on the email thread structure and our algo-
rithm is based on the fragment quotation graph, We needed
to slightly change some features to fit the quotation graph.
For example, the number of direct response to an email
is replaced by the number of direct response to the frag-
ment(node), in which sentence s is contained.

5. RESULT 1: USER STUDY

In order to compare different approaches of email sum-
marization a gold standard is needed. In practice, for com-
paring extractive summarizers, we need to know what sen-
tences a human summarizer would extract as most impor-
tant from a target email corpus. Notice that having such
a gold standard may also allow us to verify our assump-
tions on what information and algorithms an effective ex-
tractive email summarizer should rely on. In particular, we
verify whether some important sentences do come from hid-
den emails and whether ClueScore correlates with sentence
importance. A few gold standards have been developed in
previous work [9] [15], but unfortunately they are not pub-
lic. In addition, their gold standards only involve 2 human
summarizers. It is not clear whether personal preferences
are avoided in those gold standards. So we build our own in
a user study described in the following.

5.1 Dataset Setup

We collected 20 email conversations from the Enron email
dataset as the testbed and recruited 25 human summarizers
to review them. The 20 email conversations were selected
as follows. From the 10 largest inbox folders in the Enron
email dataset, we discovered 296 email conversations. Since
we are studying multiple email summarization in a conversa-
tional context, we required that each conversation contained
at least 4 emails. Thirty eight conversations satisfied this
requirement. Moreover, we wanted to study the effect of
conversation structure, i.e., the fragment quotation graph.
The selected emails also need to represent different types of
conversation structure. According to our preliminary study,
we found that the email threads could be divided into two
types. One is the single chain type, and the other is the
thread hierarchy type. In order to cover both structure in
the context of email summarization, we randomly select 4
single chains and 16 trees, which is close to their ratio in the
38 conversations.

Secondly, we recruited 25 human summarizers to review
those 20 selected email conversations. All 25 human sum-
marizers were undergraduate or graduate students in Uni-
versity of British Columbia. Their majors covered various
disciplines including Arts, Law, Science and Engineering.
Since many emails in the Enron dataset relate to business
and law issues, the variety of the human summarizers, es-
pecially those with business and legal background are of an
asset to this user study.

Each summarizer reviewed 4 distinct conversations in one
hour. In this way, each email conversation were reviewed
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by 5 different human summarizers. For each given email
conversation, human summarizers were asked to generate a
summary by directly selecting sentences from the original
emails in that conversation. The generated summary con-
tained about 30% of the original sentences. The selected
sentences need to represent the major ideas of the original
email conversations. The human summarizers were told that
they need to select those sentences in a way that, by reading
the generated summary, the readers did not need to refer to
the original emails in most cases.

Moreover, human summarizers were asked to classify each
selected sentence as either essential or optional. The essen-
tial sentences are crucial to the email conversation and have
to be extracted in any case. The optional sentences are not
critical to the conversation but are useful to help readers un-
derstand the email conversation if the given summary length
permits. By classifying essential and optional sentences, we
can distinguish the core information from the supporting
ones. Moreover, the summarization accuracy changes a lot
with different summarization length. With the choice of
essential and optional, we ask the human summarizers to
include about 30% of the total sentences. Thus, we can an-
alyze the result and find the most convincing sentences that
most human summarizers agrees on.

5.2 Result of the User Study

As we all know, summarization is a subjective activity.
Different people make different choices. We cannot expect
all summarizers agree to each other on all sentences. In
addition, according to the design of the user study, essen-
tial sentences are more important than the optional ones.
Thus, we give more weights to the essential selections. We
assign a GSValue for each sentence to evaluate its impor-
tance according to human summarizers’ selection. The score
is designed as follows. For each sentence s, one essential se-
lection has a score of 3, one optional selection has a score
of 1. Suppose k. summarizers classify s as “essential”, and
ko summarizers classify s as “optional”. The GSValue of
sentence s is 3 * ke + ko. The reason that we choose 3 as
the coefficient for essential selection is that we assume that
two essential selections are more important than five op-
tional selections. In this way, we can reduce the side effect
bringing in by the 30% summarization length for each user.
Thus, the GSValue of a sentence ranges from 0 to 15. If
a sentence has a GSValue no less than 8, we take it as an
overall essential sentence. The GSValue of 8 corresponds
to 2 essential and 2 optional selections. Table 1 shows the
possible cases of overall essential sentences. Intuitively, we
can see that an overall essential sentence requires that at
least 4 human summarizers select it in their summary and
at least 2 select it as essential. It is obvious that the overall
essential sentence are considered important by most sum-
marizers. Out of the 741 sentences in the 20 conversations,
88 are overall essential sentences which is about 12% of the
overall sentences. In addition, this also reveals that in gen-
eral only about 12% sentences are agreed by most human
summarizers.

With the scoring system discussed above, we study the
human summarizers’ selection in detail with respect to the
following two aspects: hidden emails and significance of clue
words.

Hidden emails - We sort all sentences by their GSValue
and about 17% sentences in the top-30% sentences are from
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GSValue | possible selections

8 “2 ess + 2 opt”

9 “2 ess + 3 opt” or “3 ess”
10 “3 ess + 1 opt”

11 “3 ess + 2 opt”

12 “4 ess”

13 “4 ess + 1 opt”

14 impossible score

15 “5 ess”

Table 1: GSValues and Possible Selections for Over-
all Essential Sentences

hidden emails. In addition, among the 88 overall essen-
tial sentences, about 18% sentences are from hidden emails.
This clearly shows that the hidden emails do carry crucial
information and have to be considered by the email summa-
rization system.

Significance of clue words - In the user study, we find
that among the overall essential sentences in the gold stan-
dard, the clue words are very popular. Recall that the clue
words are chosen based on the fragment quotation graph,
this validates our hypothesis that the conversation struc-
ture(fragment quotation graph) plays an important role in
the email summarization.

After we got the ClueScore of all the sentences, we study
whether ClueScore is consistent with users’ judgment. We
do this by comparing the average ClueScore of overall es-
sential sentences in the gold standard with the average of
all other sentences. Figure 4 shows how significant the
ClueScore is for the overall essential sentences. This figure
is the histogram of the distribution of the ratios. The x-axis
is the ratio which ranges from 0 to 18, and the y-axis is the
number of conversations in that range. There are 3 conver-
sations with a ratio of 1, meaning that there is no difference.
At the other extreme, there is one conversation with a ratio
of 16. For the remaining conversations, the ratio falls within
[2,8]. The average ratio is 3.9. This suggests that ClueScore
is significantly different between sentences in the gold stan-
dard and those that are not. Though there exist non-gold
standard sentences whose ClueScore is very high, and there
are gold standard sentences whose ClueScore is very low, in
general the higher the ratio, the more likely a sentence with
a high ClueScore is included in the gold standard. This sug-
gests that CWS which uses ClueScore to rank sentences can
lead to better precision and recall.

6. RESULT 2: EMPIRICAL EVALUATION
OF CWS

The User Study provides us with a gold standard (GS),
which identifies the overall essential sentences(i.e., GSValue
> 8) in the corpus. We apply three summarization meth-
ods to the 20 conversations and compare their result with
G'S. We use precision, recall and F-measure to evaluate the
accuracy of those three summarization methods.

6.1 Comparing CWS with MEAD and RIP-
PER

We start by applying the summarization approach based
on RIPPER to our dataset. We try two different ways to
train RIPPER and compare it with MEAD and CWS.
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Figure 4: Ratio of ClueScore of Gold Standard Sen-
tences and Non-Gold Standard Sentences

6.1.1 Sentence-level training

In sentence level training, we put all the sentences in the
20 conversations together. We use k-fold cross validation to
train and test RIPPER, where k varies from 2 to 20. For
each value of k, we repeat the experiment 10 times and take
the average.

As described before, there are 3 feature sets: “basic”, “ba-
sic+” and “basic++". Figure 5 shows that additional fea-
tures generally improve the accuracy. However, too many
features may reduce the accuracy in some cases. This is
different from the result in [9], where the full feature set
(“basic++7) gets the highest accuracy. For the results of
RIPPER reported hereafter, it is based on using the feature
set “basic++".
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Figure 5: F-measure of RIPPER with 3 Feature Sets

Table 2 shows the precision of the summaries generated by
all three methods. The reason why only precision is shown is
that RIPPER surprisingly only selects 2% of the sentences to
be included in a summary. For such a low percentage, recall
is not informative. Remember that CWS and MEAD are
capable of generating summaries of any length requested by
the user, we force MEAD and CWS to produce summaries
of the same length, so as to provide a fair comparison. To
make CWS and MEAD function properly when all the sen-
tences from the 20 conversations are pooled together, statis-
tical standardization is applied to the ClueScore of sentences
within each conversation before they are pooled. In this way,
we avoid selecting too many sentences from one conversation
simply because the ClueScore in one conversation is signif-
icantly higher than the rest. The first column of the table
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sentence-level | conversation-level
RIPPER: 0.2 0.225
MEAD: 0.33 0.4
CWS: 0.4 0.35

Table 2: Precision of the Three Methods

in Table 2 shows that even when CWS is forced to restrict
the summary to a length of 2%, CWS still offers a precision
doubling that of RIPPER. MEAD does surprisingly well as
compared with RIPPER.

6.1.2 Conversation-level training

In the experiment above, we train and test RIPPER by
randomly selecting sentences in all conversations. This may
not be accurate because the test set itself does not repre-
sent a conversation. Thus, to complement the sentence-
level training above, we perform a separate experiment using
conversation-level training. We apply a 20-fold cross valida-
tion as follows. In each round, we select 19 conversations as
the training set and the remaining one conversation as the
test set. This is repeated 20 times, with every conversation
selected once as a test set.

As for CWS and MEAD, we force them to generate ex-
actly the same number of sentences as selected by RIPPER.
As is often the case for many conversations, RIPPER does
not select any sentence. Whenever that happens, to allow
the comparison to be completed, we force CWS and MEAD
to return a single sentence with the highest score.

The experiment shows that out of the 20 conversations,
RIPPER does not generate any summary for 12 conversa-
tions, and picks 9 sentences from the remaining 8. Five
out of those 9 sentences belong to the gold standard. In
contrast, CWS and MEAD selects 7 and 8 gold standard
sentences out of 20 conversations respectively. The second
column of the table in Table 2 summarizes the precision.

When compared with the results reported in [9], the rela-
tively poor performance of RIPPER on the Enron data set is
surprising in two ways. First, on the ACM data set used in
[9], RIPPER could achieve a summary length around 20%.
Furthermore, in [9], RIPPER easily outperforms centroid
methods, like MEAD. We believe that there are two possible
explanations. First, for our testbed, there are 20 conversa-
tions with 110 emails. In contrast, the ACM dataset con-
tains 1600 emails. Secondly, the gold standard is obtained
differently. In our user study, each conversation is reviewed
by 5 human summarizers, and each summarizer directly se-
lects essential and optional sentences. The gold standard
sentences need to be selected by at least 4 summarizers and
at least 2 of them select it as an essential sentence. Thus,
the gold standard sentences are highly consistent among the
summarizers. The side effect is that only 12% sentences are
selected as overall essential in the gold standard sentences.
This is different from the gold standard in [9], where two
human summarizers write their own summaries for all the
conversations. The gold standard is generated by comparing
the similarity of each sentence to the generated one.

To verify the validity of the latter explanation, we relax
the threshold for the gold standard and see whether RIP-
PER selects more sentences. When we reduce the GSValue
threshold from 8 to 6, there are 19% gold standard sen-
tences. The summary length of RIPPER increases to 8%.
When we further reduce the threshold to 4, there are 30%
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Figure 6: Box-plot for MEAD (M) and CWS(C) with
sumLen = 15%

gold standard sentences, and the summary length of RIP-
PER increases to about 25%. Because the training data
is randomly selected, the number of positive examples in
the training data generally agrees with the gold standard
percentage. This shows that RIPPER is sensitive to the
availability of positive examples.

From the above experiments, we can conclude that both
CWS and MEAD have the following two advantages over
RIPPER. First, they can guarantee to generate a summary
for each conversation according to the need of the user. Sec-
ond, CWS and MEAD show a better accuracy even when
they are restricted to match the summary length of RIP-
PER.

It is a natural idea to include ClueScore as another feature
to the existing RIPPER feature set. Our experiment shows
that there is little improvement and in some cases, it may be
even worse. For lack of space, we do not include the details.

6.2 Comparing CWS with MEAD

In the previous experiments, in order to match the sum-
mary length of RIPPER, we restrict the summary length
of CWS and MEAD to a very low 2%. Below we compare
CWS and MEAD at various lengths. The default percent-
age we pick is 15%, as this roughly corresponds to the gold
standard percentage.

Figure 6 shows the box-plot of the effectiveness of CWS
and MEAD when the summary length is 15%. This fig-
ure describes the statistic distribution of the two methods
across all 20 conversations. The x-axis represents different
evaluation measures in precision, recall and F-measure for
MEAD and CWS, e.g., Precision(M) means the precision of
MEAD with 15% summary length. The y-axis shows the
values in decimals. The line in the middle of the box is the
median(med) of all the values. The upper and lower edge
of the box show the 75% and 25% of percentile of the data.
The range between them is called an interquartile. The dot
line outside the box shows the range of the data outside the
interquartile. The length of the dot line is no more than the
range of the interquartile. The data points beyond two tails
are called outliers, which are drawn as circles. This figure
also shows that both the median and the box of CWS is
higher than that of MEAD respectively. And hence, CWS
appear to be more accurate than MEAD with the summary
length of 15%.

We also compute the student t-test for the accuracy of
MEAD and CWS. The p-value we get for precision, recall
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Figure 7: Accuracy of CWS and MEAD with Vari-
ous sumlLen

and F-measure is marginally significant at 0.077 for preci-
sion, significant at 0.049 for recall and marginally significant
at 0.053 for F-measure. Thus, we have at least 90% confi-
dence that the mean of precision, recall and F-measure of
MEAD and CWS differ when sumLen = 15%.

In the experiments above, we only compare the accuracy
of MEAD and CWS with a fixed summary length. In the fol-
lowing, we compare both methods using different summary
lengths. Figure 7 shows the recall and F-measure for both
methods under different summary length varying from 8%
to 40%. In Figure 7(a) and Figure 7(b), the recall and F-
measure of MEAD and CWS both improve with an increase
of summary length. Thus, RIPPER may be missing “the
boat” for not being able to produce summaries of varying
lengths. When the summary length is no more than 30%,
CWS seems to have a higher recall and F-measure than
MEAD, while MEAD appears to be higher in recall and
F-measure when the summary length is greater than 30%.
The highest difference, which is greater than 0.1, takes place
when summary length is 15% for all accuracy measures in-
cluding precision, recall and F-measure. We can also see
that the highest average F-measure seems to occur when
the summary length is 30%.

Note that when the requested summary length is larger,
the summarization task is easier. In this case, both methods
appear to be fine. However, for shorter summaries, which
is a harder summarization problem, CWS dominates, espe-
cially when the summary length is close to the size of the
gold standard. Recall that CWS focuses on the local im-
portance (wrt. the quotation graph), and MEAD focuses
on the global importance. This result may reflect the rela-
tive importance of local and global importance with different
summary lengths.
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6.3 Effectiveness of the Fragment Quotation

Graph

As a sanity check, we try two randomized selection algo-
rithms to compare with CWS and MEAD. First, we try to
randomly select k% sentences from each conversation and
compute the precision, recall and F-measure. This method
is labeled as “Random-sent” in Figure 8. Clearly, it shows
that CWS dominates such a random approach. For that
matter, combining Figure 8 with Figure 7(b) indicates that
MEAD also dominates this random approach.

The second random approach is more intelligent. Here we
create a random graph Grandom and replace the fragment
quotation graph, in the hope of evaluating the utility of a
fragment quotation graph. The random graph contains ex-
actly the same set of nodes as the fragment quotation graph,
but the edges are randomly generated. We guaranteed that
the minimum equivalent graph of G, 4ndom contains the same
number of edges as the fragment quotation graph. For each
fragment quotation graph we generate 3 random graphs and
use the average as the accuracy.
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Figure 8: F-measure of CWS and Two Random Al-
ternatives

Figure 8 shows the accuracy of CWS under the fragment
quotation graph and the random graph shown with the label
“Random-graph”. The gap between “Random-graph” and
“Random-sent” indicates the contributions of node identifi-
cation and ClueScore. In all cases, the gap is significant.

The gap between “Random-graph” and CWS indicates
the importance of the edges of the fragment quotation graph.
In all cases, CWS gives a higher value. Interestingly, com-
bining Figure 8 with Figure 7(b) indicates that “Random-
graph” outperforms MEAD in some cases. This set of ex-
periments clearly shows the value of the fragment quotation
graph for summarizing conversations.

6.4 Examining Individual Conversations

In addition to measuring the average accuracy, Figure 9
shows the accuracy of CWS in each conversation when the
summary length is 15%. The x-axis is the 20 conversations,
and the y-axis is the accuracy in terms of precision, recall
and F-measure. There are 5 conversations where the sum-
mary contains no overall essential sentence. Among those
5 conversations, MEAD cannot select any overall essential
sentences in 4 of them either. Table 3 shows the total num-
ber of sentences, number of gold standard sentences and
their GSValue for the 5 conversations. Among the 5 con-
versations, we can see that they either have a smaller num-
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folder name # of sent. | # of GS sent. | GSValues
buy-r.0 25 4 9,9,8,8
buy-r.4 15 1 8
dasovich-j.3 40 1 9

nemec-g.6 23 2 11, 8
shackleton-s.2 50 5 13,10, 9,9, 9

Table 3: Zero Selection Folders

ber of sentences, or have few GS sentences(dasovich-j.3 has
only one). Notice that those gold standard sentences have
relatively smaller GSValues even for those selected as GS
sentences. We can conclude that even human summarizers
are not consistent on their summary of those conversations.
This shows that email summary is a challenging job when
the summary length is short due to the characteristic of
emails, e.g., the email length.
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Figure 9: Accuracy of CWS on Individual Folders

6.5 Hybrid Methods

In this section, we study whether the linear combination
of ClueScore and MEADScore can improve the accuracy.
Figure 10 shows the change of the F-measure with differ-
ent percentage of ClueScore (from 0% which corresponds
to pure MEAD to 100% which corresponds to pure CWS).
This figure shows that, when the summary length is less or
equal than 20%, the linear combination cannot improve the
accuracy of CWS (pure 100% CWS is the max). In con-
trast, when the summary length is greater than 20%, there
is benefit to combine MEAD and CWS together (the max
is between 0% and 100%). Notice that the accuracy usually
get its maximal value when the percentage of ClueScore is
80%. In other words, CWS can benefit from a little bit of
MEAD when the summary is relatively long.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we study how to generate accurate email
summaries. We analyze the characters of emails and study
the email conversation structure, which we argue have not
been sufficiently investigated in previous research on email
summarization. We build a novel structure: the fragment
quotation graph, to represent the conversation structure.
This graph includes hidden emails and can represent the
conversation in more details than a simple threading struc-
ture. Based on the fragment quotation graph, we also de-
velop a new summarization approach CWS to select impor-
tant sentences from an email conversation. Our experiments
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Figure 10: Average F-measure of Linear Combina-
tion of CWS and MEAD

with the Enron email dataset not only indicate that hidden
emails have to be considered for email summarization, but
also shows that CWS can generate more accurate summaries
when compared with other methods.

The CWS approach relies on a simple algorithm and is
very easy to implement. Yet, it appears to work better
than other existing approaches. Since CWS is built on the
fragment quotation graph, we believe this can be at least
partially attributed to the use of the fragment quotation
graph. Our experiments on the random graphs also support
this. Others have also argued that the conversation struc-
ture is very important for email summarizations, we claim
that it should be paid even more attention. Furthermore, we
believe that it is promising to combine the CWS methods
together with other methods.

Our future plan includes improving the fragment quo-
tation graph generation with more sophisticated linguistic
analysis. For example, we can use some linguistic analysis
to decide whether we need to add an edge or not.

In order to verify the generality of our findings, we are
also working on evaluating our methods with different real-
life data sets; creating the gold standard for a large real-
life data set requires a lot of effort. Last but not least, we
want to explore how to combine CWS with several machine
learning algorithms. The low selection rate of RIPPER does
not mean that the features are not useful. In a preliminary
study, we find that different classifiers have very different
selection rates and accuracy. We will look into this issue in
the near future.
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