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ABSTRACT

Traffic classification is the ability to identify and categorize
network traffic by application type. In this paper, we con-
sider the problem of traffic classification in the network core.
Classification at the core is challenging because only partial
information about the flows and their contributors is avail-
able. We address this problem by developing a framework
that can classify a flow using only unidirectional flow infor-
mation. We evaluated this approach using recent packet
traces that we collected and pre-classified to establish a
“base truth”. From our evaluation, we find that flow statis-
tics for the server-to-client direction of a TCP connection
provide greater classification accuracy than the flow statis-
tics for the client-to-server direction. Because collection of
the server-to-client flow statistics may not always be feasible,
we developed and validated an algorithm that can estimate
the missing statistics from a unidirectional packet trace.

Categories and Subject Descriptors

C.2.2 [Computer-Communications Networks]: Network
Protocols; C.4 [Computer Systems Organization]: Per-
formance of Systems

General Terms

Algorithm, Measurement, Performance

Keywords

Traffic classification, Machine learning, Clustering

1. INTRODUCTION

In recent years, Peer-to-Peer (P2P) file-exchange appli-
cations have overtaken Web applications as the major con-
tributor of traffic on the Internet. Recent estimates put the
volume of P2P traffic at 70% of the total broadband traf-
fic [3,22]. P2P is often used for illegally sharing copyrighted
music, video, games, and software; P2P traffic can cause
network congestion and performance degradation of tradi-
tional client-server applications such as the Web. The legal
ramifications of this traffic combined with its aggressive use
of network resources has necessitated a strong need for iden-
tification of network traffic by application type. This task,
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referred to as traffic classification, is a pre-requisite to many
network management and traffic engineering problems.

The classical traffic classification approach of mapping
traffic to applications based on port numbers is now inef-
fective [18,19,22,30]. This ineffectiveness arises because
applications such as network games, multimedia streaming,
and Peer-to-Peer file sharing use dynamic ports for com-
munication. Some P2P applications are also masking their
identity by using port numbers reserved for other applica-
tions. For example, KaZaA is known to use port 80, which
is reserved for Web traffic.

An alternative approach is payload-based analysis where
packet payloads are searched for characteristic signatures of
known applications [4, 15,24, 30]. Application-layer analysis
of packet contents is employed by some commercial band-
width management tools [2,26]. This general approach, how-
ever, poses several technical challenges. First, these tech-
niques identify only traffic for which signatures are available;
maintaining an up-to-date list of signatures is a daunting
task. Second, these techniques typically require increased
processing and storage capacity. Solutions such as captur-
ing only a few payload bytes are not as effective because
many applications intentionally use variable-length padding
to obscure application signatures. Finally, these techniques
fail to detect encrypted traffic; many P2P applications are
now moving towards using encryption.

The diminished effectiveness of the aforementioned tech-
niques motivate use of flow statistics for classifying net-
work traffic [1,25,29]. There are at least three reasons why
this approach is recommended. First, different applications
manifest dissimilar behaviors and thus exhibit different flow
statistics. For instance, a large file transfer using FTP would
have higher average packet size and smaller mean packet
interarrival time than an instant messaging client sending
short, occasional, messages to other clients. Second, al-
though obfuscation of flow statistics is also possible, it is gen-
erally much harder to implement. Third, classification based
on flow statistics can benefit from the large body of work on
scalable flow sampling/estimation techniques [5,7,8,13,21].

In this paper, we propose and evaluate a machine learn-
ing approach for identifying and grouping network traffic
according to traffic classes (e.g., Web, P2P, FTP, Others)
at egress and ingress points of core networks. Recent traf-
fic classification efforts, including those that leverage flow
statistics, are developed and evaluated assuming that the ob-
servation point is the network edge, where packet transmis-
sions in both directions of a flow can possibly be observed.
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At egress/ingress points of a network core, observing both
directions of a flow may not be possible because of routing
asymmetries. This poses two challenges. First, important
statistics for the satisfactory classification of a flow may not
be available. Second, classification can only use per-flow in-
formation and cannot rely on additional information such as
communication pattern between hosts.

In light of the above, our goal is to achieve rich traffic
classification using only unidirectional flow records. Specifi-
cally, we propose and evaluate a clustering based framework
for classifying network traffic using only unidirectional flow
statistics. Our work is facilitated by recent full-payload In-
ternet packet traces. We identified the applications corre-
sponding to individual flows in the traces and used these
pre-classified traces as the “base truth” to evaluate the clas-
sification accuracy of our approach.

One of the objectives of this work is to study the influence
of directionality of flow statistics in classifying traffic. From
our performance evaluation, we find that flow statistics for
the server-to-client direction of TCP connections achieve, on
average, classification accuracies of 95% for flows and 80%
for bytes; in contrast, using the client-to-server flow statis-
tics yields, on average, classification accuracies of 93% for
flows and 60% for bytes. Based on our results, we hypothe-
size that statistics for the server-to-client direction can bet-
ter discriminate between flows than statistics for the client-
to-server direction, since for many common network appli-
cations the flow of application payload data is greater in the
server-to-client direction.

The server-to-client statistics of a flow may not always be
available at the network core. Motivated by our observations
regarding the predictive power of server-to-client statistics,
we developed and verified an algorithm that uses the packets
seen along one direction of a flow to estimate statistics for
the direction that is not observed.

To the best of our knowledge, this is the first work to
explore traffic/flow classification using unidirectional flows
(as typically seen at the network core). In this paper, we
summarize our experience with a clustering-based classifica-
tion framework. Because server-to-client statistics are typ-
ically available at the network edge, our approach can also
be applied to classify traffic at the network edge. The
contributions of this paper are summarized as follows:

e We propose and evaluate a machine learning based
classification technique that only takes flow statistics
as input.

e The comparison of predictive capability of different
unidirectional flow statistics (e.g., packets originating
only from the client, server, and combinations of both).

e We develop an algorithm capable of estimating statis-
tics from an unidirectional traces such as number of
bytes and the number of packets of the unseen por-
tions of the flow.

e We briefly discuss the longevity of the models used in
our classifier, and the possible modifications that can
be made to use our classifier in real-time.

The remainder of this paper is structured as follows. Sec-
tion 2 describes the classification framework considered in
this paper. Section 3 describes our methodology. Results
for classification with unidirectional statistics are provided
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in Section 4. The flow statistics estimation algorithm, its
validation, and the classification results obtained with esti-
mated statistics are presented in Section 5. Section 6 dis-
cusses the longitudinal accuracy of our classification models,
and possible modification for real-time classification. Sec-
tion 7 overviews related work in light of ours. Section 8
concludes the paper.

2. MACHINE-LEARNED CLASSIFICATION

The goal of traffic classification is to map network flows
into predefined application types or traffic classes. In this
paper, our goal is to achieve traffic classification using only
unidirectional flow statistics as input.

Formally, the traffic classification problem can be defined
as follows: Given a set of flows X = {f1, f2, -, fn}, where
each flow vector f; is characterized by a set of p at-
tributes {x;1, zi2, -+, Tip}, and a set of traffic classes C' =
{C1,Ca,--- ,Cpn}, the goal of traffic classification is to de-
fine a mapping f : X — C such that each flow f; is as-
signed to only one traffic class [9]. Examples of flow at-
tributes include average packet size, average flow duration,
and flow size, whereas examples of possible traffic classes
include Web, Peer-to-Peer, and FTP.

Machine learning techniques can be used to solve the afore-
mentioned traffic classification problem. In the model build-
ing step, training data (e.g., a collection of flow records) are
used to learn the characteristics of the (desired) classes; this
step provides the basis for designing a classifier. The remain-
der of this section discusses details of the model building and
classifier design.

2.1 Model Building

Machine learning techniques for model building may be
broadly categorized as either supervised or unsupervised [9].
Supervised learning produces a model that fits the training
data, where the training data is labeled a priori. In contrast,
unsupervised learning uses unlabeled training data to find
similarities or patterns among objects in the data set.

Typically, model building is achieved using supervised
learning techniques. In the traffic classification context,
however, we believe that unsupervised learning can offer cer-
tain advantages compared to supervised learning approaches.
A key benefit is that new applications can be identified by
examining the flows that are grouped to form a new clus-
ter. The supervised approach can only classify traffic for
which it has labeled training data, and cannot discover new
applications [11].

In this paper, we consider a specific type of unsupervised
learning called clustering [9]. Clustering is the partitioning
of previously unlabeled objects into disjoint groups, referred
to as “clusters”, such that objects within a group are sim-
ilar according to chosen criteria. Formally, the clustering
of training flows can be described as follows: Given a set
of training flows D = {t1,t2, - ,tn} and the desired num-
ber of clusters, k, the task of clustering is to define a map-
ping f : D — {1,2,--- ,k} where each flow is assigned to
only one cluster Y;, 1 < i < k, such that D = U§=1Yj and
Y,NnY; =0,Vi=#j[9,16,17].

The goal of clustering is to group together objects that are
similar. This grouping is achieved using a similarity metric.
In the machine learning literature, several similarity metrics
have been defined. Without loss of generality, we use the
Euclidean distance to measure the similarity between two
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flow vectors f; and f;:

The smaller the Euclidean distance between two flow vectors
is, the greater is the similarity between them.

There are many different clustering algorithms in the lit-
erature [16,17]. In this paper, we use the K-Means [9] al-
gorithm. Our choice of K-Means is guided by our previous
work [10] where we found that K-Means is one of the quick-
est and simplest algorithms for clustering of Internet flows;
furthermore, our work also showed that K-Means can gen-
erate very “pure” clusters (i.e., clusters that consist largely
of a single application type).

The K-Means algorithm belongs to the partition-based
class of clustering algorithms. The algorithm begins by ran-
domly choosing cluster centroids x;, ¢ = 1,2,--- , k, from
within the training samples. The flows in the training data
set are then partitioned into the nearest cluster centroids
using the Euclidean distance metric. K-Means iteratively
computes new centroids of the clusters that are formed and
then repartitions the flows based on the new centroids. This
process continues until a convergence criterion is met. In our
implementation, the convergence criterion is to minimize the
sum of the squared error for the clusters. The complexity of
the clustering step is O(knm) where k is the number of clus-
ters, n is the number of training flows, and m is the number
of iterations.

There are some known difficulties with K-Means. For in-
stance, the algorithm often finds a local optimum instead
of a global optimum. This necessitates running K-Means
multiple times to obtain a reasonable partition of the train-
ing flows, as done in this work. In practice, partitioning of
the training flows is expected to be undertaken infrequently,
and we do not expect this problem to significantly add to the
cost of model building. In our experiments, we find that the
classification models generated by running K-Means multi-
ple times have similar performance. We also note that our
overall approach is not specific to K-Means. Other cluster-
ing algorithms may be used; investigation of classification
performance with other algorithms is left for future work.

In most classification problems, selection of features (or
attributes) plays an important role. Many statistics can
be obtained from a flow. Following extensive experimenta-
tion with over 25 different statistics using standard feature
selection algorithms [14], we reduced the set of flow fea-
tures to the following: total number of packets, mean packet
size, mean payload size excluding headers, number of bytes
transferred, flow duration, and mean inter-arrival time of
packets. Due to the heavy-tailed distribution of many of
these features, we found it necessary to transform the flow
features [28]. Our experiments with many commonly used
transformations indicated that logarithmic transformations
yield the best results.

2.2 Classifier

Our classifier is distance-based [9]. A new flow is assigned
to the cluster to which it is most similar. The K-Means
algorithm produces clusters that are spherical in shape and
thus well-represented by the cluster centroids. Thus, a new
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flow f is assigned to cluster Y; such that:

Y; = argmin sim(ﬁ Xj)'
J

The above is equivalent to maximum likelihood cluster as-
signment for partitions generated by the K-Mean algorithm.
The complexity of classification of each flow is O(k), where
k is the total number of clusters.

The aforementioned operation automatically assigns flows
to the clusters. To assign traffic classes to flows, a mapping
between clusters and traffic classes is required. Clearly, the
task of mapping the clusters obtained in the model building
step to the traffic classes requires identification of (some of
the) individual flows in the training data set. Training flows
may be labeled using techniques including payload analy-
sis, port-based analysis, heuristics, expert knowledge, exper-
imentation, manual classification, or a combination thereof.

Identification of training flows is expected to be time con-
suming; however, we also expect that once completed, the
training data set can be used for a reasonably long period of
time. Furthermore, it may not be necessary to identify each
flow in the training data set. We have found that clustering
generates partitions with high purity and thus identification
of a small portion of the flows in a cluster may be suffi-
cient to map a cluster to a traffic class with a high degree of
confidence [10]. In this work, we assume that labels for all
training flows are available, and map a cluster to the traffic
class that makes up the majority of flows in that cluster.
Our ongoing work is studying issues pertaining to labeling
clusters and mapping clusters to traffic classes [12].

3. EXPERIMENTAL METHODOLOGY

This section outlines our experimental methodology. Sec-
tion 3.1 describes the empirical traces used in this work.
Section 3.2 discusses the process by which we established
base truth for the traces. The testing scenarios are outlined
in Section 3.3. Section 3.4 defines the performance metrics
used in this study.

3.1 Empirical Traces

To facilitate our work, we required traces of recent Inter-
net traffic. Although the classification framework requires
only transport-layer information, application-layer informa-
tion is required to validate the results. Thus, we decided
to collect full packet traces from a monitor attached to our
campus Internet link.

We collected eight 1-hour traces between April 6-9, 2006.
Specifically, we collected traces on (Thursday) April 6 from
9-10 am and 9-10 pm, on (Friday) April 7 from 9-10 am and
9-10 pm, on (Saturday) April 8 from 9-10 am and 9-10 pm,
and on (Sunday) April 9 from 9-10 am and 9-10 pm. We were
limited to capturing only one hour of continuous full-packet
traces owing to the disk capacity of our network monitor.
Nevertheless, we expect our traces to cover some typical
cases such as the noticeable differences in usage between the
morning and evening hours, and the noticeable differences
in usage between weekdays and weekends.

Of the total trace data collected, approximately 85% of
the packets, and approximately 90% of the bytes were trans-
ferred using TCP. Thus, we focus exclusively on applications
that use TCP for the remainder of the paper. Classification
of UDP flows is left for future work.

A TCP flow, also referred to as a connection, consists of
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a bi-directional exchange of packets between two hosts. The
start of a flow is determined when SYN/SYNACK packets
are received. Flows are (typically) terminated when either a
FIN or RST packet is received; in addition, we assume that a
flow terminates if it was idle for 900 seconds. For each flow,
we designate the host that initiated the connection (i.e., sent
the SYN packet) as the client, and the host that responds to
the connection initiation (i.e., sends the SYNACK) as the
server.

3.2 Establishing Base Truth

We classify the TCP flows in the traces using a three
step process that consists of payload-based signature match-
ing, heuristics, and HTTPS identification. The heuristics
and HTTPS identification steps deal with encrypted traffic
that cannot be identified using payload signature matching.
Manual classification served as a validation tool for our clas-
sification process.

Our payload-based classification uses many of the same
methods and signatures described by Sen et al. [30] and
Karagiannis et al. [20]. We augmented some of their P2P
signatures to account for protocol changes and some new
P2P applications. This step uses Bro [27], whose signature
matching engine generates a signature match event when the
packet payload matches a regular expression that is specified
for a particular rule.

Some P2P applications are now using encryption. For
example, BitTorrent is using a technique called Message
Stream Encryption (MSE) and Protocol Encryption (PE).
The MSE/PE technique uses a Diffie-Hellman exchange that
is combined with the infohash of the torrent to establish the
key for the connection.! After this exchange has occurred,
the clients use RC4 to encrypt the data packets.

We developed a heuristic to identify some of the afore-
mentioned encrypted P2P traffic. Specifically, we maintain
a lookup table of IP address and port number tuples from
flows that have recently been identified as using P2P. If a
flow is unlabeled and there is a match in our P2P lookup
table, we label it as possible P2P. This mechanism works
on the basis that some P2P clients use both encryption and
plaintext. In general, heuristics such as these may be used
to assign labels to any encrypted P2P flow in the training
data set.

We also analyzed unlabeled traffic on port 443, to de-
termine whether or not this traffic is indeed HTTPS. This
verification was done using an experimental version of Bro
with this detection capability. In addition, automated ran-
dom checks were performed to determine whether or not
flows labeled as HT'TPS involved at least one host that was
a Web server. These tests, however, were not done in an
exhaustive fashion.

Table 1 summarizes the classification results for our traces.
Over 29 different protocols were identified; these include
BB, BitTorrent, DirectConnect, eDonkey, FTP, Gnutella-
based P2P programs (e.g., LimeWire, BearShare, Gnucleus,
Morpheus, FreeWire), GoToMyPC, HTTP, ICQ, IDENT,
IMAP, IMAP SSL, JetDirect, KaZaA, MySQL, MSSQL,
MSN Messenger, MSN Web Cam, NNTP, POP3, POP3
SSL, RTSP, Samba, SIP, SMTP, SOAP, SpamAssassin, SSH,
SSL, VNC, and Z3950 Client. We grouped these proto-
cols according to application categories. For example, the
P2P category includes positively identified P2P traffic from

"http://en.wikipedia.org/wiki/protocol_encryption
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Table 1: Summary Statistics of the Empirical Traces

Traffic Class Flows | % Flows Bytes | % Bytes
‘Web 2,791,301 55.7% 59.6 GB 40.6%
EMAIL 299,736 6.0% 7.4 GB 5.0%
DATABASE 218,324 4.4% 0.1 GB 0.1%
P2p 201,231 4.0% 53.2 GB 36.2%
P2P (Encrypted) 11,746 0.2% 3.1 GB 2.1%
OTHER 12,130 0.2% 2.3 GB 1.6%
CHAT 10,680 0.2% 0.3 GB 0.2%
FTP 4,636 0.1% 4.3 GB 2.9%
STREAMING 1,107 0.0% 1.6 GB 1.1%
UNKNOWN (NP) 932,897 18.6% 0.1 GB 0.1%
UNKNOWN (443) 366,347 7.3% 4.5 GB 3.1%
UNKNOWN/(Others) 161,492 3.2% 10.3 GB 7.0%
Total 5,011,627 100.0% | 146.8 GB 100.0%

protocols including BitTorrent, Gnutella, and KaZaA. En-
crypted P2P flows identified using heuristics are labeled P2P
(Encrypted). The OTHER category contains various identi-
fied applications that were not part of a larger group and did
not account for many flows. The tables also list three cat-
egories of UNKNOWN flows. The UNKNOWN(NP) refers
to flows with no payloads. Most of these are failed TCP con-
nections, while some are port scans. The UNKNOWN/(443)
are flows on port 443; they are likely to be HTTPS traffic.
The third category is simply labeled as UNKNOWN (Others)
to reflect the fact that we were not able to determine the
applications that generated this traffic.

From the table, we see that Web and P2P traffic account
for a majority of the campus Internet traffic. Note that
although P2P accounts for only 4% of the flows, it still ac-
counts for approximately 36% of the total bytes transferred.

In our classification experiments, we classify flows into one
of the 8 traffic classes shown in Table 1. For the purpose
of classification, P2P and P2P (Encrypted) are grouped to-
gether to form the P2P traffic class. We exclude all unknown
flows as we do not have base truth for these.

3.3 Testing Scenarios and Data Sets

The empirical traces at our disposal have both directions
of a flow. Our goal is to study how the directionality (i.e.,
client-to-server or server-to-client) of a flow impacts classi-
fication results. We generated from each empirical trace a
“server-to-client” data set and a “client-to-server” data set
that for each flow in the trace records only the packets seen
in the server-to-client direction or the client-to-server direc-
tion, respectively. To represent the typical case of traffic
seen at the network core, we selected for each flow in an em-
pirical trace either the client-to-server direction packets or
the server-to-client direction packets. We refer to this third
category of data sets as “random directionality”.

3.4 Performance Metrics

We use four metrics in our evaluation, namely flow accu-
racy, byte accuracy, precision, and recall.

Flow accuracy is the number of correctly classified flows
divided by the total number of flows in the test data set.
Byte accuracy is the amount of correctly classified bytes di-
vided by the total number of bytes in the test trace. Both
metrics are important to maximize because having a few
flows misclassified could result in a many bytes being clas-
sified incorrectly.

While these traditional metrics are useful, the accuracy
measures neglect the fact that there might be consequences
associated with incorrect classification of a flow. For ex-
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Figure 1: Classification accuracy (all traces).

ample, classification of Web flows as P2P might result in
blocking or lower priority assignment for the Web flows. We
use precision and recall to quantify the impacts of incorrect
classification.

Precision of a traffic class is defined as the ratio of the
number of true positives to the sum of true and false posi-
tives for the class under consideration. If there is risk associ-
ated with misclassification of flows, a higher precision value
is desired. Recall measures the fraction of relevant flows in a
traffic class that have been correctly classified. It is defined
as the ratio of the number of true positives to the sum of
true positives and false negatives for the class under consid-
eration. A high recall value implies that there are very few
relevant flows that are misclassified as another traffic type.
For example, if we want to assign high priority to Web flows,
we need to achieve high recall values for this traffic class.

4. CLASSIFICATION RESULTS USING UNI-

DIRECTIONAL FLOWS

This section evaluates the effectiveness of using different
unidirectional data sets in our classification framework. As
discussed in Section 3.3, we consider three test scenarios:
data sets containing only client-to-server packets, data sets
containing only server-to-client packets, and data sets that
contain a random mixture of each directionality.

From each data set, we generated 10 different training
data sets, each generated by selecting 64,000 random sample
flows. A sample size of 64,000 represents a good compromise
between the model’s ability to represent different applica-
tions and the computational cost of building the model.?
After the clustering was complete, we used each of these

2Note that the number of flows in a test data set typically
ranges between 500,000 to 1,000,000.
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models in our classifier for classification of the entire respec-
tive data set. We report the average results and the 95%
confidence intervals for the 10 models.

The K-Means algorithm requires the number of clusters
as an input. Here we describe how we selected k; in general,
k can be considered a tuning knob that needs adjustment
based on the type of traffic we are trying to classify. In our
experiments, we found that both flow and byte accuracies
improved as we increased k from 25 to 400. The flow accu-
racy shows an incremental improvement of 5% to 8% for all
three types of data sets. However, in terms of byte accuracy,
the classification using server-to-client data sets shows the
greatest improvement, from 59% accuracy to 80%. With
the client-to-server data sets the improvement in byte accu-
racy is only 10%, and with the random data sets it is only
5%. The improvement witnessed with the server-to-client
data sets is because P2P traffic is being correctly identified.
When the value of k used is 25, P2P flows are almost always
incorrectly classified as Web because there is only a single
cluster representing P2P. However, when k increases to 400
there are normally 12 to 15 clusters representing P2P, and
the byte accuracy, on average, improves to 80%. In gen-
eral, we expect k to be larger than the number of traffic
classes or applications we are trying to classify. For exam-
ple, we expect to form more than one cluster for Web traffic
to capture its various characteristics, including well-known
heavy-tailed file transfer sizes. With larger values for k£ we
are able to capture more of the application characteristics
within our clusters in the model. For the remainder of the
evaluations, we used k equal to 400.

Figure 1 shows the classification accuracy results for data
sets derived from each trace. Overall, we found that the
server-to-client data sets consistently give the best classi-
fication accuracy achieving, on average, 95% and 79% in
terms of flows and bytes, respectively. With the random
data sets, the average flow and byte accuracy was 91% and
67%, respectively. For the client-to-server data sets, 94% of
the flows were correctly classified, on average, for an average
byte accuracy of 57%. In general, using the client-to-server
data sets resulted in the worst byte accuracies in all traces,
except for the April 9, 9 pm trace.

Figure 2 shows the flow and byte accuracies achieved for
the four most significant applications (in terms of number
of flows). We found that all three types of data sets have a
high flow accuracy for the Database, Email, and Web traf-
fic, with both client-to-server and server-to-client data sets
achieving, on average, accuracies in excess of 90% for all
three applications. The application type that proved the
most difficult to classify was P2P. The server-to-client data
sets achieved a 77% flow accuracy; this is 20% greater than
the accuracies with client-to-server and random data sets.

Table 2: Confusion Matrix of Flows with Server-to-
Client Data Sets (April 6, 9 am trace)

Classification
Actual Class WEB EMAIL P2p DB OTHER
WEB 511375 5214 7284 520 1084
EMAIL 6620 64732 3066 88 631
P2P 6886 3620 47716 199 254
DB 1262 420 872 41262 166
OTHER 1904 232 1018 103 5336

To help illustrate the accuracy of the classification, Ta-
ble 2 shows the “confusion matrix” [9] for the classifier when
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Figure 2: Classification accuracy by application
(April 6, 9 am trace).

using a server-to-client data set. In this m X m matrix, the
data value ¢; ; indicates the number of flows from class @
that were classified as class j. Obviously, we want values
along the diagonal to be much larger than the others which
is what we observe. By looking across the row of the confu-
sion matrix at a given class ¢ we can calculate the recall for
that class. Likewise, by looking down a column at a given
class j we can calculate the precision of that class.

The per-application byte accuracy for Database and Web
is high with all three types of data sets. However, for Email
and P2P flows the accuracies vary considerably between the
different data sets. For Email flows, the client-to-server data
sets provide 86% accuracy, but the random and server-to-
client data sets have extremely low accuracies of 7% and
23%, respectively.

While it is difficult for us to make a generalization to en-
compass every model and trace, in the models where we did
extensive analysis of the results, the reason why the client-
to-server data sets classified Email so well was that SMTP
flows were being correctly classified. In the client-to-server
models, SMTP flows were put into a few large clusters that
classified most of the SMTP traffic, with one of these clusters
normally capturing most of the large SMTP flows (in terms
of bytes). However, in the server-to-client models the SMTP
clusters were more fragmented and generally formed many
small clusters. The smaller clusters were generally for SMTP
flows with few bytes transferred (less than 2000 bytes). The
larger SMTP flows that accounted for most of the Email
bytes generally did not form a cluster and were included in
clusters labeled either as P2P or Web. The confusion ma-
trix in Table 2 further confirms that these misclassifications
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with the server-to-client models are mostly P2P and Web.
In the random directionality case, SMTP did not form many
clusters, which resulted in SMTP being misclassified most
of the time.

P2P flows are classified more effectively for the server-to-
client data sets than the other data sets. With the server-
to-client data sets, byte accuracy of approximately 83% is
achieved, which represents a 30% increase over client-to-
server and random data sets. This higher classification accu-
racy is because 20% more P2P flows are correctly classified
using the server-to-client data sets. This marked difference
from the other data sets is one of the main reasons why
server-to-client data sets achieve the best flow and bytes ac-
curacies in Figure 1.

If server-to-client flow statistics are used for discriminat-
ing between P2P and Web flows, encouraging results would
be attained. Owverall, in the server-to-client models Web
flows have precision and recall values of 97%; P2P flows have
precision of 82% and a recall of 77%. If a Quality-of-Service
policy of assigning lower priority to P2P flows than to Web
flows is implemented, 77% of the P2P would be correctly
given a lower priority and at the same time less than 3%
of the Web flows would be mistakenly given a lower prior-
ity. Such a deployed (real-time) system could ease the strain
that P2P puts on many networks.

While we have advocated the discrimination of P2P and
Web traffic in the above example we are, however, not lim-
ited to just these two types of applications. If reducing P2P
was not the concern and instead prioritizing mission-critical
business traffic was the focus then our classification system
could be used just as successfully. Business-critical traffic
from a Database achieves a high accuracy as well. The con-
fusion matrix provides further evidence of this fact with a
precision of almost 98% and a recall of 94% when classifying
Database flows.

5. CLASSIFICATION RESULTS USING FLOW

ESTIMATION

In this section we introduce and use our flow statistic es-
timation algorithm. This algorithm uses the packets of an
unidirectional flow to estimate the flow statistics of the un-
observed direction. The estimation algorithm is based on
the syntax and semantics of the TCP protocol and thus,
would not work for other transport protocols such as UDP.
We first introduce the algorithm in Section 5.1. Section 5.2
discusses some of the assumptions. In Section 5.3, we em-
pirically verify our estimation algorithm’s predictions. Last,
in Section 5.4 we test the classification accuracy using the
estimated statistics.

5.1 Algorithm

The statistics of interest to us can be divided into three
general categories: duration, number of bytes, and number
of packets. After we obtain the data for these three general
categories we can calculate other statistics such as average
throughput, mean packet interarrival time, and packet av-
erage size.

The duration of a flow is the amount of time from when
the first packet of a flow is sent until the last packet of the
flow is sent. This statistic is fairly easy to calculate; we can
use the first and last packet sent in the observed direction
as a good estimate of the flow duration. This works well
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because typically in a well-behaving TCP connection every
packet that is sent receives a corresponding acknowledgment
from the other host. The packet exchanges typically occur-
ring at the beginning and at the end of a flow have the SYN
and FIN packets, respectively. In cases where we did not
see the SYN and/or FIN exchange, such as when the traffic
monitor drops packets, we calculate the duration with the
first or last exchange of data packet and acknowledgment
packets, which may result in a less accurate estimate of the
flow duration.

The second category of statistics is concerned with the
number of bytes transmitted. Our approach for calculating
the number of bytes is similar to the technique developed by
Smith et al. [31]. In the TCP protocol, the host responds to
reception of TCP segments (packets) by sending acknowl-
edgments (ACKs) with the sequence number field (SEQ)
in the TCP header set to indicate the next expected in-
order byte. By using these ACK numbers we can estimate
the amount of data that has been received by calculating
the offset between the highest ACK number and the lowest
ACK number seen. This works fairly well for most TCP
connections. However, it does not work reliably for connec-
tions that were closed using TCP resets (RST). For TCP
RST packets, the ACK number may not correspond to the
in-order byte sequence received. Instead, some TCP imple-
mentations assign a random value. To combat this problem,
we exclude the ACK numbers from RST packets when we
calculate the highest and lowest ACK numbers.

The last category of statistics, the number of packets sent,
is the most difficult to estimate. We derive a set of heuristics
that estimate, for each TCP flow, the number of packets that
could potentially be received in the other direction between
transmission of two successive packets. We assume that if a
SYN packet is seen, then we are seeing the client-to-server
packets of a flow. Otherwise, we assume we are seeing the
server-to-client packets. Algorithm 1 shows the rules that
we defined. We track the last sequence number (PrevSeq)
and acknowledgment number (PrevAck) seen in the flow;
these values are initialized to zero before a flow starts. We
also calculate the change in the sequence number (SeqChg)
and acknowledgment number (AckChg) between the packets
observed. In the event that we do not receive a SYN or a
SYNACK packet at the beginning (or at all), our algorithm
processes the first data packet with either our first (line 5)
or second rule (line 7), and then works correctly afterward.

We explain the remainder of this algorithm using exam-
ples. Let us assume that we are seeing the client-to-server
packets, that one packet (for the flow of interest) had a se-
quence number of 100 and an acknowledgment number of
200, and that the next packet has a sequence number of
1560 and an acknowledgment number of 200. The increase
in sequence number indicates that the most recent packet
carried some payload data. However, since the acknowledg-
ment number has not increased we infer that the missing
server-to-client packets for this interval had no payload data
and would most likely be ACKs corresponding to the pay-
load in the last packets sent. This case would be caught by
our third rule (line 9) where we check to see if the sequence
number has increased and the acknowledgment number has
not. We calculate the number of ACKs as the sequence num-
ber change divided by the expected maximum segment size
(MSS). Conversely, if the sequence number does not increase
but the acknowledgment number does increase we infer that
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Algorithm 1 Packet Estimation Algorithm

1: PrevSeq «— 0, PrevAck «— 0
2: MissedAcks «— 0, MissedData «— 0
3: for each packet do

4: CALCULATE(SeqChg, AckChg)
5: if SeqChg > 0 and AckChg = 0 and PrevSeq = 0 then
6: continue > SYN packet sent and nothing is missed
7 else if SeqChg > 0 and AckChg > 0 and PrevAck = 0
then
8: MissedAcks «— MissedAcks + 1 > SYNACK or SYN
missed
9: else if SeqChg > 0 and AckChg = 0 then
10: MissedAcks «— MissedAcks + [SeqChange/MSS'|
11: else if SeqChg = 0 and AckChg > 0 then
12: MissedData «— MissedData + [AckChange/MSS]
13: else if SeqChg > 0 and AckChg > 0 then
14: MissedData «— MissedData + [AckChange/MSS)
15: else if SeqChg < 0 or AckChg < 0 then
16: continue > Nothing has been missed from last packet

seen
17: end if
18: end for

in this interval packets that were sent in the other direc-
tion contained a total payload size directly proportional to
the change in the acknowledgment numbers. To calculate
the number of data packets, we divide the acknowledgment
number change by the MSS. This case is handled by our
fourth rule (line 11). The fifth rule (line 13) handles cases
where data are being sent simultaneously in both directions.
The sixth rule (line 15) handles retransmissions and packets
that are received out of order.

5.2 Assumptions

In our rules we make three general assumptions, the first
pertaining to the expected MSS of packets, the second per-
taining to the ACK-ing policy of the TCP stacks, and the
last in regards to retransmissions and packet loss.

We use MSS in our calculations for the number of pack-
ets sent. The MSS can be estimated from the options field
in the SYN/SYNACK packets of a connection. A MSS an-
nouncement is made by each host at the beginning of a TCP
connection with the lowest value typically being used. In
a unidirectional trace it would be possible on a per-flow
basis to estimate MSS based on any announcements seen.
However, to be more computationally efficient to determine
the expected MSS, we analyzed the empirical distribution
of MSS in our traces. Our analysis showed that 95% of the
connections had a MSS of 1460 bytes. Approximately 5%
had a MSS of 1380 and some other minor groupings at 512
and 1260. Therefore, we used 1460 bytes as the expected
MSS in our verification and results.

How TCP acknowledges segments depends on the TCP
stacks of both the client and the server. In some cases,
an ACK is sent for every packet, while in other cases an
ACK is sent for every other packet. Our heuristics assume a
simple acknowledgment strategy of an ACK (with 40 bytes
of header data and no payload) for every data packet in the
flow. We realize that this may over estimate the number of
ACKs.

We also assume there are no packet losses, and there-
fore, our statistics do not take into account any retransmis-
sions. We make this assumption because retransmissions
reflect network congestion and transmission errors, rather
than application-specific behaviour of the flows that we want
to classify. However, this does make our estimations lower
than what the actual numbers should be but this has the
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positive effect of balancing the overestimation of the num-
ber of ACKs.

5.3 Validation

Estimating flow duration is easy, and overall the error in
the duration estimation is low. The average flow duration
was 27.5 seconds, with an error of 7.3%. In our estimation
results shown in Figure 3, we found that normally 90% of
the flows had duration errors less than 1 msec. In most cases
where there was a high error in the duration, we found that
the error was caused by a RST or FIN packet being sent
well after the rest of the flow’s packets were sent.

Figure 4 shows a scatter plot of the actual number of bytes
versus the estimated number of bytes for the random data
set generated from the April 6, 9 am trace. The scatter plot
shows strong agreement between the actual and estimated
amount of bytes. For our traces, the algorithm was always
within within 0.4% and 1.4% of the actual number of bytes.

Figure 5 shows a scatter plot of the actual number of pack-
ets versus the estimated number of packets for the random
data set generated from the April 6, 9 am trace. As seen
in the scatter plot, the estimated number of packets closely
follows the actual number of packets; the estimate inaccu-
racy appears to be somewhat larger when there are more
packet transfers along the missing direction of the flow. Ex-
periments with the remaining traces showed that the packet
estimate was, on average, within -5.3% and 1.6% of the ac-
tual number of packets.

On a per flow basis, Figure 6 shows the distribution of the
per-flow percentage error for both packet and byte estima-
tion. It shows that our estimate is within 30% of the actual

2
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Figure 5: Estimation of the num-
ber of packets.

number of packets for 80% of the flows, and within 20% of
the actual number of bytes, for 90% of the flows.

Looking solely at the percentage error is somewhat mis-
leading, since the high error cases often correspond to flows
with few packet transmissions (less than 10). The main
source of inaccuracy are flows that after the TCP hand-
shake had occurred saw a single reject or RST packet from
the server. The client in such cases attempts to send the
initial data packets several times. This typically occurred
in P2P connections that were refused. If our algorithm sees
the server side of such flows it estimates it missed either 0
or 1 packets because we ignore RST packets. Otherwise, if
it sees the client side of the flow it thinks it missed several
ACKs because we assume all packets are acknowledged. In
both cases, the algorithm is off by a couple packets but the
percentage error is large. We found that overall average er-
ror per flow is 2.4 packets, and that 87% of flows are within 5
packets of the actual number. In terms of bytes, the overall
average error is 120 bytes, and 92% of the flows are within
500 bytes of the actual number.

5.4 Classification Using Estimated Statistics

We examine the classification accuracy of our classifier if
we use the estimation algorithm described in the previous
section to estimate server-to-client statistics for our traces
when only the client-to-server or random directionalities are
seen.

Figures 7 and 8 show the classification accuracy. These
experiments are similar to those reported in Figure 1, except
that both model building and the subsequent classifier use
the estimated statistics when necessary. As seen in these
figures, we find that when we use the estimation algorithm
to estimate the server-to-client statistics the flow accuracy
and byte accuracy achieved using the client-to-server and
random directionality is very close to the actual accuracy
we achieved when using the actual server-to-client statistics
obtained from the empirical traces.

Interestingly, our classification accuracies are largely unaf-
fected by the potential errors in our estimated flow statistics.
We think this robustness is due to the fact we use the log-
arithm of the flow statistics (as mentioned in Section 2.1).
The magnitude of difference of the flow statistics has a much
greater impact in the classification than the small errors in
the estimations. This makes us believe it is possible to use
our estimation technique to calculate the different statistics
that allow the best classification, even though only partial
information is available.
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6. DISCUSSION

We found in our experimentation that increasing the sam-
ple size between 2000 and 128,000 does not significantly im-
prove our classification results. However, we did find that
a larger sample size had a higher degree of confidence of
covering the sample space of traffic characteristics.

Figure 9 shows that a single model (built by drawing sam-
ples from one trace) is fairly resilient over a longer period
of time. For this particular experiment, we used a model
built from the (Friday) April 7, 9 am trace; our results show
that this model is applicable on other days and times. This
shows that a generic model could be built to classify traffic
for long periods of time. This would reduce the frequency at
which the expensive step of model building (i.e., clustering
and labeling) would need to be repeated.

We think that the classification framework we use could
be adapted in several ways. One example could be to build
several models to reflect the characteristics of flows after cer-
tain packet milestones (e.g., 8, 32, and 64 packets). Then, a
flow currently in-progress could be classified using the differ-
ent models as it reaches the pre-set packet milestones. This
approach can facilitate real-time classification of flows and
is an idea that we are currently exploring [12].

7. RELATED WORK

The use of flow statistics for clustering network traffic has
received some attention in the literature [10,23,33]. These
prior works only considered the model building stage and
did not evaluate the predictive power of classifiers obtained
from clustering.

The classifier proposed by Bernaille et al. is the closest
to our work [1]. The classifier similarly uses the K-Means
algorithm and a minimum distance measure to assign flow
to an application label. Their work uses bi-directional flow
statistics derived from the first P packet exchanges, and is
not applicable to the more challenging traffic classification
setting considered in this paper.

Some non-clustering, machine learning-based, techniques
also use flow statistics for classifying traffic [25,29]. Roughan
et al. [29] use three algorithms from the data mining litera-
ture, namely Nearest Neighbour, Linear Discriminate Anal-
ysis, and Quadratic Discriminate Analysis, to classify flows
into four predetermined traffic classes. They study the use
of different statistics such as duration and average packet
size of a flow for classifying traffic into four distinct classes.
Moore et al. [25] use a supervised machine learning algo-
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Server-to-Client statistics.
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Figure 9: Longitudinal classifica-
tion accuracy using a single model
on all traces.

rithm called Naive Bayes as a classifier. Using a “hand clas-
sified” trace, they show that the Naive Bayes approach has
a high accuracy classifying traffic. These prior efforts did
not consider classification at the network core. Our work
on the use of clustering techniques for classification at the
network core complements these prior efforts.

Traffic identification approaches that rely on application-
level behaviors such as the number of concurrent TCP/UDP
connections to an IP address have also been developed [6,19,
20,32]. Karagiannis et al. [19] proposed heuristics that cap-
italize on the unique behaviors (e.g., concurrent use of both
TCP and UDP by a source/destination host pair) of P2P
applications when they are transferring data or establishing
connections to identify this traffic. Their results show that
this approach is comparable in terms of accuracy to payload-
based identification. In earlier work, a similar approach was
used to identify chat traffic [6]. More recently, Karagiannis
et al. [20] developed another method that uses the social,
functional, and application behaviors to identify all types of
traffic. Concurrent to [20], Xu et al. [32] develop a method-
ology, based on data mining and information-theoretic tech-
niques, to discover functional and application behavioral
patterns of hosts and the services used by the hosts. They
subsequently use these patterns to build general traffic pro-
files, for example, “servers or services”, “heavy hitter hosts”,
and “scans or exploits”. In contrast, our approach uses only
flow characteristics to classify network traffic, and achieves
comparable or better accuracies when classifying traffic, in-
cluding traffic originating from P2P applications.

8. CONCLUSION

This paper considered the problem of classifying network
traffic when only one direction of network flows are ob-
served, as may be the case when the point-of-observation
is the network core. To address this problem, we developed
a clustering-based machine learning framework for classify-
ing network traffic using only unidirectional flow statistics.

We evaluated the aforementioned classification framework
using a set of full-payload packet traces. The results show
that, in general, rich traffic classification using only unidi-
rectional statistics is feasible, with our experiments show-
ing accuracies of 95% in terms of flows and 80% in terms
of bytes. We also found better classification performance is
achieved when statistics for the server-to-client direction are
used than when statistics for the client-to-server direction
are used. Because collection of the server-to-client statistics
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may not always be feasible, we developed and validated an
algorithm that can estimate the missing statistics from a
unidirectional packet trace.
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