
Preferencebased Selection of
Highly Configurable Web Services

Steffen Lamparter, Anupriya Ankolekar,
Rudi Studer

Institute AIFB, University of Karlsruhe (TH)
76128 Karlsruhe, Germany

{sla,aan,rst}@aifb.unikarlsruhe.de

Stephan Grimm
FZI Research Center for Information
Technologies, Karlsruhe, Germany

grimm@fzi.de

ABSTRACT

A key challenge for dynamic Web service selection is that Web ser-

vices are typically highly configurable and service requesters often
have dynamic preferences on service configurations. Current ap-

proaches, such as WS-Agreement, describe Web services by enu-
merating the various possible service configurations, an inefficient

approach when dealing with numerous service attributes with large

value spaces. We model Web service configurations and associated
prices and preferences more compactly using utility function poli-

cies, which also allows us to draw from multi-attribute decision the-
ory methods to develop an algorithm for optimal service selection.

In this paper, we present an OWL ontology for the specification
of configurable Web service offers and requests, and a flexible and

extensible framework for optimal service selection that combines
declarative logic-based matching rules with optimization methods,

such as linear programming. Assuming additive price/preference

functions, experimental results indicate that our algorithm intro-
duces an overhead of only around 2 sec. compared to random ser-

vice selection, while giving optimal results. The overhead, as per-
centage of total time, decreases as the number of offers and config-

urations increase.

Categories and Subject Descriptors: H.3.5 [Information Systems]:

On-line Information Services – Web-based services; H.3.3 [Infor-
mation Systems]: Information Storage and Retrieval – Selection

process.

General Terms: Algorithms, Languages, Economics.

Keywords: Web Services, Customisation, Preference-based Ser-
vice Selection.

1. INTRODUCTION
Web service discovery and selection have been extensively stud-

ied in recent years. As the set of available Web services may not be

known a priori, may change frequently or service requester require-
ments and preferences may change, the problem of dynamic Web

service selection is a fundamental one. Considerable research and
industry effort has focussed on the (semantic) description of Web

services, leading to standards such as WSDL [36], WSMO [9] and
OWL-S [8]. One of the key open challenges is performing dy-

namic service selection for highly configurable Web services with
dynamic user preferences. Web services are typically highly con-

figurable, with significant service customisation possibilities and

a choice of quality-of-service (QoS) properties, e.g. delivery/re-
sponse times, naturally each with its own price. Customisation is

critical for them to be able to differentiate themselves from com-

Copyright is held by the International World Wide Web Conference Com
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 9781595936547/07/0005.

peting Web services and offer a better service experience to their

customers. Service requesters themselves have certain preferences

on which service configurations they want to use and their prefer-
ences may change dynamically. Given their significance, there is a

strong need to support customisable services. However, we lack ef-
ficient methods for the representation and matching of configurable

services.
Current approaches to modelling Web service configurations and

requester preferences, such as WS-Agreement [11], enumerate the
various possible service configurations, which is inefficient when

dealing with multiple service attributes and their values. For ex-

ample, a service described by five attributes, each with five possi-
ble values, already leads to 3125 different configurations. Given

this combinatorial increase, a functional description of service at-
tributes and their associated prices or preferences would be more

appropriate.
In this paper, we model service configurations and associated

preferences compactly using utility function policies [17, 20], which
provide a declarative mechanism for efficiently attaching price in-

formation to attribute values. This allows us to draw from the vast

literature on efficient multi-attribute decision theory methods to de-
velop an algorithm for optimal service selection. In addition, in

order to be able to compare service attributes correctly, we need
to describe them in a way that captures their semantics. We use

ontologies to describe services attributes and their values semanti-
cally, and extend the resulting semantic representation to include

offers and requests. This allows us to define appropriate attribute
value matching rules for each kind of attribute.

The contributions of this work are three-fold. First, we develop

an OWL ontology for configurable Web service offers and requests
that can represent (execution-) context-dependent user preferences

for functional and non-functional (e.g. QoS) properties within a
standards-based specification language, thus extending current se-

mantic Web service description frameworks, such as OWL-S and
WSMO. Second, we present an optimal service selection mecha-

nism in the context of this framework and demonstrate its feasibil-

ity by analysing its performance. For large numbers of highly con-
figurable offers, given the assumption of additive functions, experi-

mental results indicate that the algorithm introduces an overhead of
only 2 sec. compared to random selection, while giving optimal re-

sults. This represents a 35% slowdown at 1000 offers and 1600 con-
figurations per offer, which only decreases as the number of config-

urations rises. Third, our framework enables flexible matching by
specifying declarative logic-based matching rules rather than hard-

coding the matching algorithm as is usual. By providing a declar-

ative mechanism that integrates optimization techniques, such as
linear programming, we achieve computational tractability while

obtaining a flexible system where different optimization and match-
ing algorithms can be seamlessly plugged in.

In the following, we first discuss the requirements for a preference-

WWW 2007 / Track: Web Services Session: SLAs and QoS

1013

Service

Repository

Web service

Mobifhon

Web service
1. Request Route

2. Service

Lookup

Publish Service

Offer

3. Invoke Route

Planning Service
4. Receive Route

Annika

Figure 1: Example for dynamic Web service binding.

based service selection framework informally through a scenario in

Section 2 and discuss the state-of-the-art with respect to these re-
quirements. We then develop an abstract model that addresses the

requirements for configurable services, preferences over configu-
rations and service selection in Section 3. To enable the exchange

of offers and requests in open heterogeneous environments, the ab-

stract model is implemented in Section 4 using standard Web lan-
guages. Based on this formalization, matching and optimization

rules for service selection are presented and evaluated (Section 5).
In Section 6, we present a proof-of-concept implementation of our

optimal service selection framework within the scenario developed
in Section 2. We conclude the paper with thoughts on the feasibil-

ity of optimal service selection within current Web scenarios and
point to future work directions.

2. REQUIREMENTS ANALYSIS
Consider Annika, a mobile phone user, who is currently in the

city of Karlsruhe in Germany and wants to know the driving di-

rections to Munich as soon as possible. Annika’s mobile network
operator, Mobifhon, provides route planning services for several

countries to its customers, dynamically outsourced from third party
route planning services on the Web, as sketched in Figure 1. Thus,

the service selection takes place at Mobifhon’s end. The service se-
lection is therefore not constrained by the limited resources and par-

tial connectivity of Annika’s mobile phone, while allowing Mob-

ifhon to aggregate demands and thus procure better discounts for
services than if each customer were to transact individually. Mob-

ifhon only sends the final route to Annika’s mobile phone. For
the sake of illustration, in the we have chosen a relatively general

scenario for identifying the requirements, but one could imagine
several simplifications, e.g. where the service repository is located

with Mobifhon.

(R1) Service Configurations: The route planning services provide

various kinds of routes (the fastest, the shortest etc.) with or with-
out highways, identifying different kinds of attractions on the way.

They also provide services at different levels of service quality. A
more complex route planning, for example, will cost more than a

simple route and similarly a quick response will cost more than a
slower one. The various route planning services need to be able

to describe their capabilities and configurations to Mobifhon, such

that it can choose the appropriate one at the desired QoS level.
Thus, our system must support the description of various service

configurations.

Since WSDL lacks any support for modelling QoS character-

istics of Web services, there have been several proposals to ex-
tend WSDL with concrete QoS metrics, e.g. the Web service Level

Agreement (WSLA) project [14] and Web Service Modeling Lan-
guage (WSML) [31]. By generalising beyond QoS attributes, XML

query languages, like XQuery [39], and policy languages, like WS-

Policy [38], enable the expression of constraints on arbitrary at-

tributes. However, these approaches lack appropriate support for

attaching prices and also preferences which are addressed by re-
quirement (R2).

(R2) Context-dependent Preferences: Many of Mobifhon’s cus-

tomers have different preferences about the services they use, based
on their current context, location, activities, etc. For example, An-

nika typically prefers to travel on highways but she is currently on

vacation and wants to travel through scenic country roads, possibly
making several stops at attractions on the way. Mobifhon chooses

route planning services, taking into account the requirements and
preferences of the user as well as its own preferences, e.g. on ser-

vice characteristics such as availability, response time, supported
encryption methods etc. Annika’s preferences may also depend on

her implicit context. For example, if she has an upcoming appoint-
ment in Munich the next day, she is more likely to prefer a short

route than a long scenic route. In fact, her context-dependent pref-

erences may be predefined, allowing Mobifhon to choose her pref-
erences based on her context dynamically. To enable this, we need

a way to describe requests and preferences for particular service

configurations declaratively in terms of their attributes.

Requirement (R1) and (R2) are addressed by languages such
as WS-Agreement [11] and the Web Service Offering Language

(WSOL) [34], which introduce classes of services that roughly cor-
respond to what we call service configurations and attach price and

preference information to configurations. Both languages require

the enumeration of the set of possible configurations. This is clearly
inefficient for Web services whose attribute space is very large or

even infinite (contradiction to (R4)). For example, the charges for
route plans levied by the route planning service may decrease lin-

early with the desired response time. To cover such requirements,
we use Utility Function Policies [17] to describe preferences and

prices as a function of service attribute values, and we use declara-
tive rules to model the context-sensitive nature of the preferences.

This is similar to the approach presented in [3], where personal-

ized service selection is realized by expressing preferences declar-
atively using SQL. However, since there is no rule support, context-

dependent preferences cannot be expressed. In addition, matching
algorithms required by (R3) are not supported there.

(R3) Semantic Web Service Descriptions: One of the advantages

of using semantic description languages like OWL-S and WSMO is
that one can use logical reasoning, in particular class subsumption,

to bridge different levels of abstraction that occur when specifying
requests and offers. Thus, if Annika has specified that she wants to

know about attractions on the route, Mobifhon can identify route
planning services with information about historical sites as being

relevant. Annika may also not want to define preferences for all

attributes. She may not know which attributes are used by the ser-
vices she is interested in and even if she did, it would be too tedious.

For example, she may want to say that she generally prefers histor-
ical sites to museums without specifying which particular types of

each she prefers and by how much. The service matching algorithm
needs to match her general preference to the actual attractions in-

formation provided by individual services. By modelling attributes
as classes in a Semantic Web language, we can classify them into

attribute hierarchies. It would not be possible to rely on semantic

reasoning alone for service discovery and selection, as others [18]
have also argued, since this only results in a coarse ranking.

There have been previous efforts to augment OWL-S and WSMO
with QoS extensions [15, 33]. In addition, [21, 35] propose dy-

namic binding for Web service compositions using semantic ser-
vice descriptions. However, as with the Web service description

languages, they cannot be used to describe complex functional re-
lations. Recent research [12, 26] has tried to express such relations

declaratively, without however investigating how the performance

of service selection is affected by the modelling of preferences and

WWW 2007 / Track: Web Services Session: SLAs and QoS

1014

matching rules. Thus, these approaches often fail with respect to

(R4). We use a decidable fragment of the rule language SWRL
[13] to express complex functional relations declaratively, and dis-

cuss the effects of modelling on the performance of selection.

(R4) Communication and Computational Efficiency: A lesser
requirement, yet nonetheless critical for resource-constrained en-

vironments such as mobile services, is that the chosen representa-
tion be designed for communication efficiency and computational

tractability. I.e., the request has to be expressed in an efficient way
(e.g. by avoiding enumeration of all possible configurations) and

the selection algorithm has to be efficient enough to enable run-

time selection.
Policy languages are state-of-the-art for expressing Web service

configurations. However, as already discussed, while alleviating
the problem, they cannot solve it due to the exponential size of the

attribute space. We circumvent the problem using functional repre-
sentations (as suggested in [10, 4]) by introducing Utility Function

Policies. There is a vast amount of work in economics, and par-
ticularly in operations research, addressing the computational ef-

ficiency of decision making algorithms. In the context of service

selection, this is investigated in [5], focusing on the complexity of
service selection with one time costs and e.g. in [40, 35] for service

compositions. Like these approaches, our work utilises efficient op-
timization techniques for service selection, but also augments them

with the required service description and matching models.
Based on these requirements, in the next section we develop an

abstract model for representing and selecting configurable services.

3. ABSTRACT SELECTION MODEL
Web service selection is the problem of selecting the best offer

made by a service provider given a request. In order to perform

Web service selection, one requires (i) means for communicating
service offers as well as requests to the other party and (ii) an algo-

rithm for ranking the offers with respect to the request. Bidding lan-
guages are a well-established means for communicating requests

and offers within economic literature.
Our abstract model essentially describes a Web service, Web ser-

vice offers and requests and the Web service selection problem. We

take a fairly abstract view of a Web service in our model and con-
sider it to be fully described by properties A1 . . . , Al, . . . , An. Such

properties might comprise service input and output, behavioural as-
pects of a service, QoS attributes, etc., thus covering existing Web

service description approaches as well as fulfilling (R1). Such a
general description of a Web service allows us to abstract from var-

ious existing Web service description frameworks, while simulta-
neously allowing us to utilise existing decision-theoretic algorithms

for multi-attribute products.

During the execution of a Web service, each attribute is assigned
a value. A set C of Web service configurations comprises all pos-

sible combinations of attribute values, i.e. C = A1 × · · · × An. For
example, considering the attributes Attractions, Highways and Re-

sponse Time a concrete configuration would be a service providing
routes including highways and information about nearby attractions

within 10 seconds. A specific value of Al is denoted by ale.
A Web service contract ti j is defined as a tuple (c, π), where agent

j provides a Web service with configuration c to a customer i at a

price of π ∈ R. Furthermore, let T j denote the set of all contracts in-
volving provider j, and Ti the set of contracts involving customer i.

Not all possible contracts are acceptable to an agent, and thus, only
subsets T ′j ⊆ T j and T ′i ⊆ Ti are requested or offered, respectively.

3.1 Bidding Language
For our bidding language for highly configurable Web services

(R1), we draw from bidding languages for multi-attribute products

[10, 4]. In this context, a common technique to efficiently encode

pricing information (R4) is the use of functions that represent the
relationship between Web service configurations and their prices

or utilities (as discussed in (R2)). This avoids the combinatorial

explosion that results from adding price markups to each configu-
ration.

D 1 (W S O). An offer by a provider j is

defined as a pair (C j, P j) of a set C j ⊆ C of configurations and a

function P j : C → R mapping each configuration c ∈ C j to a real

number that represents the price π of invoking service configuration

c. As suggested by [4], the pricing function P j(c) is described by

a base price pbase
j

and an additive function that aggregates pricing

functions for individual attributes:

P j(c) = pbase
j +

n
∑

l=1

w jl p jl(al) with

n
∑

l=1

w jl = 1 (1)

where p jl represents the pricing function of provider j for a partic-

ular attribute Al. The weights w jl are used to adjust the influence

of the different attributes on the price.

Thus an offer assigns an additive pricing function to a Web ser-

vice description, mapping the configurations of the offer to a certain
price. Analogously, we introduce a functional form for represent-

ing Web service requests. One major difference though is that a
requester’s willingness to pay might depend on a runtime specific

context (R2). Therefore, we introduce a set K = δ1 × · · · × δn of

execution contexts, where the δi represent different context dimen-
sions, such as current location of a mobile device, time of service

execution, history of past transactions. Any k ∈ K denotes a con-
crete execution context.

D 2 (W S R). A Web service request by

requester i is defined as a pair (Ci, Fi) of a set Ci ⊆ C of accept-

able configurations and a function Fi : Ci × K → R that maps

each configuration to a real number score depending on the ex-

ecution context k. Due to payment monotonicity [10], i.e. ∀π >

π′ : (c, π) ∈ T ′i ⇒ (c, π′) ∈ T ′i , we interpret Fi(c, k) as the max-

imal price for which a customer is willing to carry out the trade,

i.e. T ′i = {(c, π) ∈ Ti|π ≤ Fi(c, k)}. Fi is an additive scoring function

composed of the attribute-specific functions fil and their relative

weights wil:

Fi(c, k) =

∑n
l=1 wil fil(ale, k) if c ∈ Ci,

−∞ otherwise.
with

n
∑

l=1

wil = 1 (2)

A configuration which is not requested is scored as minus infinity.

Due to the additive form of the scoring function Fi , we have
to assume mutual preferential independency [16] between the at-

tributes in the scoring function. This holds if the utility of an at-

tribute Al does not depend on the value of another attribute. For
example, the score for a certain guaranteed response time will not

change if the type of indicated attractions changes.

3.2 Selection Mechanism
Service selection in the case of configurable services involves

finding the best provider and her best offer. Therefore, we have

to solve two maximization problems: first, the best contract for
a given provider has to be identified, the so-called Multiattribute

Matching Problem (MMP) [10]. Second, based on these results, the
best provider can be chosen. Service selection often requires trade-

offs between the various attributes of configurable services. For
example, it can be hard to decide between a slow route planning

service that provides a lot of detailed information about en route

attractions and a fast service that provides only imprecise route

WWW 2007 / Track: Web Services Session: SLAs and QoS

1015

information. In economic literature, multi-attribute utility theory

(e.g. [16]) uses utility functions to make such decisions, mapping
each alternative to a measure that can be used to rank the alterna-

tives. In our case, the utility of a service configuration is given by

a quasi-linear function representing the difference between the re-
quester’s preference score for the configuration and its price. The

MMP is thus defined as follows:

D 3 (MMP). Given a request (Ci, Fi), an offer (C j, P j)

and an execution context k, we solve the MMP by maximizing the

requester’s utility per service configuration. The solution of the

MMP for a given requester i and provider j is referred to as ui j in

the following.

ui j = max
c∈Ci∩C j

Fi(c, k) − P j(c) (3)

Our assumptions of additive pricing and scoring functions al-

low us to simplify the MMP. In particular, we can decompose the

calculation into individual subproblems which can be solved inde-
pendently. The following equations (4-6) use this property to solve

Equation 3 efficiently by reducing the number of iterations from
O(|
∏

l Al|) to O(
∑

l |Al|). The binary decision variable xle is asso-

ciated with each attribute value and denotes whether the value is
part of the best configuration. Equation 5 ensures that exactly one

attribute value is selected for each attribute. Since the following in-
teger programming formulation has a totally unimodular constraint

matrix and only integers on the constraints’ right-hand sides, the

problem can be solved efficiently using the simplex algorithm [28].

max

n
∑

l=1

|Al |
∑

e=1

(wil fi(ale, k) − w jl p j(ale))xle − pbase
j (4)

s.t.

|Al |
∑

e=1

xle = 1 for 0 < l ≤ n, (5)

xle ∈ {0, 1} for 0 < l ≤ n, 0 < e ≤ |Al | (6)

In a second step, we have to find the best provider from the set
of all offers. Obviously this implies that the best contract for each
provider is known, i.e. the MMP is solved for each pair of a request

and an offer. We can then determine the best provider by solving

Local Allocation Problem (LAP).

D 4 (LAP). Given a single request (Ci, Fi) and m of-

fers (C j, P j), the Local Allocation Problem can be solved by iterat-

ing over all offers and determining the maximal solution for MMP.

max
j=1,...,m

ui j (7)

Solving LAP is linear with respect to the number of offers and re-

quires O(m) steps. However, there are several scenarios where LAP
is not sufficient for service selection. First, if we relax the require-

ment for quasi-linearity of the utility function, e.g. by allowing one
time costs, the problem will get considerably more complex. It

can be shown by reduction of the Uncapacitated Facility Location

Problem that computing the optimal service in such scenarios is in

FPNP [5]. Second, for the problem formulation in this section, we

assume that offered services are always available for all requesters
and that possible resource limitations are handled at the provider

side, e.g. by adapting the guaranteed service levels or by increasing
server capacity. LAP also needs to be extended to handle scarce

resources. This is done, e.g. in [32] using a double auction or in [7]
by means of scheduling algorithms. Third, LAP could be gener-

alized for entire service compositions such as in [40]. The tech-
niques presented later in this paper can also be applied to these new

problems, requiring only the rewrite of a single rule to change the

selection strategy.

4. ONTOLOGYBASED REPRESENTATION
Given the abstract selection model above, we now focus on im-

plementing this model using existing standards and tools for the
open and heterogenous Web environment. We use the Web Ontol-

ogy Language OWL [37] together with its rule extension SWRL [13]
to implement our service selection framework, which allows us

to perform sophisticated matchmaking and ranking of services by
means of logical inferencing. We build on well-known notions of

matching for Semantic Web services, such as subsumption-based

“plugin" or “exact" matches [27] and develop a flexible and exten-
sible framework of declarative matching and optimization rules.

4.1 Ontology Formalism
OWL is an ontology language standardized by the World Wide

Web Consortium (W3C) [37] and is based on the description logic

(DL) formalism [2]. Due to its close connection to DL it facilitates
logical inferencing and allows to derive conclusions from an ontol-

ogy that have not been stated explicitly. We briefly review some of
the modelling constructs of OWL using its abstract syntax.

The main elements of OWL are individuals, properties that relate
individuals to each other and classes that group together individu-

als which share some common characteristics. Classes as well as
properties can be put into subsumption hierarchies. Furthermore,

OWL allows for describing classes in terms of complex class con-

structors that pose restrictions on the properties of a class. For
example, the statement Class(BigCity partial restriction(connectedTo

someValuesFrom Highway)) describes the class of big cities, which are
connected to some Highway. The keyword partial means that any
big city is connected to some highway, but not any city connected

to a highway is also necessarily big, which would be achieved by
using the keyword complete instead. Subclass relationship can be
expressed by a statement like SubClassOf(BigCity InterestingCity), say-
ing that any big city is also interesting. Individuals can be related

to classes and assigned values by a statement like Individual(Munich

type(BigCity) value(locatedIn Germany) value(population 1314551)). Be-
sides introducing Munich as a big German city, this statement also

includes a data value for the city’s population, which is supported
by OWL for various datatypes such as integer or string.

An OWL ontology consists of statements like the ones above,

considered logical axioms from which an agent can draw logical
consequences. For example, given an ontology O consisting of

the above statements, it follows that Munich is an interesting city,
which is denoted by O |= InterestingCity((Munich)).

For the declarative formulation of matching directives in form

of rules, we require additional modelling primitives not provided

by OWL. We use the Semantic Web Rule Language (SWRL) [13]
which allows us to combine rule approaches with OWL. We restrict

ourselves to a fragment of SWRL called DL-safe rules1 [24], which
is more relevant for practical applications due to its tractability and

support by inference engines such as KAON22. For the notation of
rules we rely on a standard first-order implication syntax.

4.2 Specification of Offers and Requests
In this section we present an ontology-based modelling approach

for Web service offers and requests which is in line with Defini-

tion 1 and 2 of our abstract model. For the reader’s convenience
we present the most parts of our ontological model informally via

UML class diagrams, where UML classes correspond to OWL con-

cepts, UML associations to object properties, UML inheritance to
subconcept relations, UML attributes to OWL datatype properties

and UML dependencies to OWL class instantiation [6].

1DL-safety restricts the application of rules to individuals that are
explicitly mentioned in the ontology. However, this restriction does
not affect the suitability of DL-safe rules in our selection scenario.
2http://kaon2.semanticweb.org/

WWW 2007 / Track: Web Services Session: SLAs and QoS

1016

Figure 2 shows a top-level view of our ontological model, which

can be split into two conceptual levels: the upper part a) captures
the elements of the abstract model introduced in Section 3, while

the lower part b) exemplarily captures certain available domain on-

tologies that are plugged in for the matchmaking of attribute values.

Web Service Description Ontology. Recalling definitions 1
and 2, offers and requests specify a set C of supported configura-

tions in our abstract model, which they map to prices and scores,
respectively. This is captured in the ontological model shown in

Figure 2 a) by the classes in the two boxes for description of Web

services and policies. The classes Offer and Request are introduced
as subclasses of the more general Bid, by which they are connected

to the policies used to define their pricing and scoring functions.
They represent the sets C j and Ci of configurations for a provider or

requester. Instead of relating offers and requests to configurations
directly, as done in the abstract model, we introduce the interme-

diary concept Service to capture technical service-specific aspects.
Offers and requests are then related to a service which in turn sup-

ports various configurations. Referring to pairs of attributes Al and

their values ale, the class Configuration represents the combinations
of attribute values that a provider or customer support. This upper

part of our ontology can be seen as extensions of existing Web ser-
vice description ontologies such as OWL-S or WSMO by using

these ontologies to define the type of Attributes. For instance, by
introducing the concepts Input, Output, Result, etc. as specialisa-

tion of Attribute our ontology can be aligned to the OWL-S profile.
To give an example, recall our mobile phone scenario, where our

user Annika requests route planning from Karlsruhe to Munich in

at most 30 seconds while she wants nearby castles to be indicated
along the route. For convenience, we illustrate the instantiation of

elements for service description, such as Configuration, by an in-
tuitive notation of pairs of attributes and their values, while we use

OWL abstract syntax for details concerning the attribute values in
domain ontologies. Colon-separated namespace prefixes indicate

the origin of an entity in a domain ontology. An example of a sup-
ported configuration ci for a service that Mobifhon launches as a

request based on the above parameters could look as follows.

ci = (ServiceType = scl : RoutePlanningService
StartPoint = geo : Karlsruhe

EndPoint = geo : Munich
Attractions = tourism : Castle
ResponseTime = 30 sec)

On the other hand, an example for a configuration c j supported
by an appropriate provider could look like this.

c j = (ServiceType = ServiceSupportingNavigation
StartPoint = geo : Germany
EndPoint = geo : Germany

Attractions = tourism : CulturalAttraction
ResponseTime = 1 min)

equivalentClasses(ServiceSupportingNavigation intersectionOf(

scl : Service restriction(scl : supports someValuesFrom(scl : Navigation))))

Definition 1 and 2 introduce a compact functional form for ex-
pressing pricing and scoring information. This avoids introduc-

ing a separate class Price to model the tertiary relation between

Price, Configuration and Offer/Request explicitly. Although such
an approach would be most natural, it would result in a signifi-

cant modelling overhead and does hardly scale up, as shown in our
previous work [19]. For modelling functions we introduce the no-

tion of Policies. Generally policies are declarative rules that guide
the decision making of an agent. We use a specific class of poli-

cies, called utility-function policies [17], which allow for represent-
ing trade-offs between different Web service attributes by mapping

their values to a comparable quantitative measure. Approaches on

how such policies are expressed via an ontology are discussed in

[20]. Namely there are three modelling techniques: Point Based

Functions, Piecewise Linear Functions and Pattern-based Func-

tions. To illustrate the idea, the concept Point Based Function is

introduced in more detail.

A Point Based Function can be used for discrete attributes and
is modeled by specifying sets of Points that explicitly map attribute

values ale referred to in an Attribute Value Pair to a price fil(ale) or
p jl(ale). To indicate the Attribute for which a certain Policy is ap-

plicable, the isAssignedTo-relation is introduced that points to one
of the Attributes in the Web service description. Coming back to

our example, assume Annika generally prefers cultural attractions
to sports events with the only exception that she hates museums.

We can model such a preference structure by instantiating a point-

based policy function assigned to the attribute Attractions. Map-
ping a utility of 1, 0.5 and 0 to the three alternatives results in the

following specification of the function’s component fil for this par-
ticular attribute.

ale fil(ale)

CultureWithoutMuseum 1
tourism : SportsEvent 0.5

tourism : Museum 0

equivalentClasses(CultureWithoutMuseum intersectionOf(

tourism : CulturalAttraction complementOf(tourism.Museum)))

The table maps alternative values for the attribute Attractions to

the utility values that specify Annika’s preferences.

Domain Ontologies for Attribute Values. The attributes

A1, . . . , An in the abstract model represent generic characteristics of
a service and can potentially originate from a given domain, de-

pending on the kinds of services to be described. In our frame-
work, we support this by plugging in various domain ontologies –

depicted in Figure 2 b) – that describe attribute values, such as a
classification of service types or geographic or tourism knowledge

for attributes like StartPoint or Attractions. During the matchmak-
ing process, this knowledge is, for example, used to detect that a

service supporting navigation is equivalent to a route planning ser-

vice, that Munich is in Germany, or that a castle is a historic site.
Assuming appropriate domain ontologies are available and agreed

by providers and customers, they are linked to our ontology by their
elements, such as the class InformationService or the individual

Munich, being instances of the class AttributeValue. The value for
the attribute EndPoint would be a URI like http://geo.owl#Munich

that points to a location in a geographic ontology3.
In our example, the notions of “route planning service" and “ser-

vice that supports navigation" are captured in the service classifica-

tion ontology Oscl that states them to be equivalent.

Ontology(Oscl

Class(RoutePlanningService complete intersectionOf(
Service restriction(supports someValuesFrom(Navigation))))
...)

Also the values “Karlsruhe", “Munich" and “Germany" are covered
in a domain ontology, namely in the geographical ontology Ogeo,

where the two cities are stated to be located in Germany.

Ontology(Ogeo

Individual(Karlsruhe type(City) value(locatedIn Germany))

Individual(Munich type(City) value(locatedIn Germany))
...)

Moreover, the values “cultural attraction" and “castle" for the at-

tribute Attractions are related by subsumption in the ontology Otourism

that describes notions of leisure.

Ontology(Otourism

subClassOf(HistoricSite CulturalAttraction)

subClassOf(Castle HistoricSite) ...)

3Notice, that the OWL-Full language variant supports metamod-
elling, i.e. an URI can denote a class and an individual at the
same time. Although metamodelling is outside the DL formalism,
KAON2 can handle such URIs to a certain extend [22].

WWW 2007 / Track: Web Services Session: SLAs and QoS

1017

-WSDLreference:string(xsd)

Service Policies

-price:double(xsd)

Offer

defines

provides

PointBasedFunction

PiecewiseLinearFunction

-patternIdentifier - xsd:string

-PatternParameter1 - xsd:Float

-...

-patternParameterN - xsd.Float

PatternBasedFunction

-price:float(xsd)

Point

constitutedBy

constitutedBy

next

isAssignedTo

...

supports

Attribute

-score:double(xsd)

Request

Bid

Configuration

refersTo

Context

isValidIn

Dimension
has

Dimension

Description of PoliciesDescription of Web Service Offers/Requests

requests

attributeValue

contains

locatedInService Activity

Navigation MoneyTransfer

RoutePlanningServiceBankingService

supports

supports

Attraction

CulturalAttraction SportsEvent

HistoricSite Museum

Castle Monument

Country City

MunichKarlsruheGermany

locatedIn
locatedIn

... ...

...

... ...

AttributeValue

Service Classification

Tourism Knowledge

Geographic Knowledge

AttributeValuePair

hasAttribute

hasValue

a)

b)

Figure 2: Ontology for representing Web service offers and requests

5. SERVICE SELECTION
Having shown how descriptions of configurable Web services of-

fers and requests are captured by an ontological model, we now de-

scribe how the actual selection of a service is carried out by solving
LAP using logical inferencing on the ontological elements intro-

duced above.
In order to derive a ranked list of the offer instances from the

knowledge base, we formulate a query that refers to a Request in-
stance r containing preferences and to an instance k representing

the current Context. In addition, to reduce the number of offers that
have to be ranked we can add mandatory conditions directly to the

query using the SPARQL FILTER element. This is exemplified in

Query 8, where only services that provide a guaranteed response
time of less than 20 sec. are retrieved.

PREFIX ex: < http://example.org/ns# >

SELECT ?O , ?U WHERE {

?O ex:provides ?S . ?S ex:supports ?C . ?C ex:refersTo ?A .

?A ex:hasAttribute ex:ResponseTime ; ex:hasValue ?V .

FILTER (?V < 20) . EVALUATE mmp(r, ?O, c, ?U) .}

ORDER BY DESC(?U) (8)

Conceptually answering such a query can be broken down into
two highly connected parts: (i) determining matches between of-

fers and requests by comparing the respective service attributes,

and (ii) ranking the various configurations provided in the offer ac-
cording to the preferences in the request. In the following, we first

discuss how matching of attribute values is realized and show how
these matching rules are applied to define variants of optimization

predicate mmp used in Query 8. Subsequently, we evaluate these
algorithms in terms of performance and discuss their applicability

for service selection.

5.1 Matching
The comparison between a requested attribute value and an of-

fered attribute value is fundamental. In the context of matchmaking
in the Semantic Web, various techniques have been proposed for

comparing the characteristics of two semantically annotated ser-

vices. The most widely used approach for descriptions based on

OWL classes is to use DL inferencing, distinguishing between sev-
eral notions of match based on subsumption or concept satisfiabil-

ity. For two OWL classes CR and CO that represent attribute values
of a request or an offer, the degrees of match proposed in [27] are:

exact if CR and CO are equivalent, plugin if CR is a subclass of CO,
subsumes if CO is a subclass of CR, intersect if the conjunction of

CR and CO is satisfiable, and fail if the conjunction of CR and CO is

unsatisfiable.
We support these notions of match in our framework, and also al-

low for others by including customisable matching predicates into
the service selection algorithm. In fact, since we use a declarative

formalism to describe how attribute values are matched, a user can
bring in arbitrarily complex matchmaking behaviour expressed in

rules which facilitates the adaption of the selection component to

changing service descriptions (e.g. with new attributes). Contrarily,
other approaches use hard-coded algorithms to process the results

of attribute matching that are specific to e.g. input/output matching,
as done in [27]. Since we keep attributes in Web service config-

urations rather generic, the way in which two attribute values are
compared strongly depends on the domain of interest they originate

from and on the way in which they are represented in there.
In our example, the values of the attributes ServiceType and Indi-

catedAttractions are concepts in an ontology, and thus, the formerly

described degrees of match apply to them and can be used for their
comparison. The following rule definition specifies the matching

predicate for service types, requiring them to yield an exact match.

match(?P1, ?P2)← hasAttribute(?P1,ServiceType),

hasValue(?P1, ?V1), hasAttribute(?P2,ServiceType),

hasValue(?P2, ?V2), exact(?V1, ?V2) (9)

In our example, the scl : RoutePlanningService indeed yields an
exact match with the provided ServiceSupportingNavigation, since

Oscl entails their equivalence. The attribute ServiceType itself is
an instance of the class Attribute in the model shown in Figure 2.

Analogously, values of the attribute Attractions could be matched
using the predicate plugin(x, y) instead of exact(x, y), and again

the provided attribute value would match the requested one, since

Otourism |= subClassOf(Castle CulturalAttraction).

WWW 2007 / Track: Web Services Session: SLAs and QoS

1018

The values of the attributes StartPoint and EndPoint from the

example represent individual locations in a geographic ontology
and require a different treatment. Here the modeller specifies the

customised matching behavior for location attributes by introduc-

ing a class Location as a subclass of Attribute, of which StartPoint
and EndPoint are instances. The appropriate matching behaviour

is then captured by the following rule.

match(?P1, ?P2)← hasAttribute(?P1, ?A1), hasValue(?P1, ?V1),

hasAttribute(?P2, ?A2), hasValue(?P2, ?V2), Location(?A1),

Location(?A2),matchLocation(?V1 , ?V2) (10)

matchLocation(x, y) =

{

true Ogeo |= locatedIn(x, y)

f alse otherwise
(11)

The predicate matchLocation is realized as a builtin using a sep-
arate call to a description logic reasoner, just as in exact(x, y) or
plugin(x, y) before. In the example, the offered value would again

match the request, since Karlsruhe and Munich are both located in

Germany according to Ogeo.
Finally, there are attributes which do require a complex match-

ing in terms of logical reasoning, but where a simple and efficient
string comparison or arithmetic calculations are sufficient. In this

case, the modeler of a matching rule can include predefined builtin
predicates defined in SWRL. From our example, the QoS attribute

ResponseTime falls into this category, and is processed according
to the following rule specification.

match(?P1, ?P2)← hasAttribute(?P1, ?A1), hasValue(?P1, ?V1),

hasAttribute(?P2, ?A2), hasValue(?P2, ?V2),QoS Attribut(?A1),

QoS Attribut(?A2), equals(?V1, ?V2) (12)

Also here a subclass of Attribute, namely QoSAttribute, is intro-

duced to enable the specification of the matching behavior for all
QoS attributes, such as ResponseTime, by a single rule.

Based on definitions above, we can define a shortcut for match-

ing two arbitrary configurations as follows:

compare(?C1 , ?C2)←
∧

l=1,...,n

attrCompare(Al , ?C1 , ?C2) (13)

attrCompare(?A, ?C1 , ?C2)← re f ersTo(?C1, ?P1), re f ersTo(?C2, ?P2),

hasAttribute(?P1, ?A), hasAttribute(?P2, ?A),match(?P1, ?P2) (14)

5.2 Ranking
In the following, we show how the matching predicates intro-

duced in the previous section can be used within the optimization
rule mmp in order to determine the utility measure for the indi-

vidual attribute values. We define three alternative variants of the
mmp-predicate, which considerably differ in their underlying as-

sumptions, applicability and performance characteristics. While

the fist variant [V1] implements the ranking based on enumerating
the configurations (Equation 3), [V2] solves MMP on per attribute

basis using Equation 4-6. [V3] goes a step beyond [V2] by utilizing
the linear program formulation.

[V1] This variant implements Equation 3, where a ranking of all

offers and configurations is derived by evaluating all possible con-

figurations for each offer according to a request. We can model the
problem purely based on DL-safe rules using some standard SWRL

builtin functions. Rule 15 calculates the difference between score
and price of each Configuration that is supported by an Offer as

well as asked for in the Request. The compare-predicate defined in
Rule 14 is used to match two configurations.

mmp(?R, ?O, ?K, ?U) ← provides(?O, ?S 1), supports(?S 1, ?C1),

requests(?R, ?S 2), provides(?S 2, ?C2), compare(?C1, ?C2),

price(?O, ?C1, ?P), score(?R, ?C2, ?K, ?S), sub(?S , ?P, ?U) (15)

Since pricing and scoring information are not explicitly given,
the two predicates price and score are used to calculate this infor-

mation based on the Policies defined in the offer or request, respec-

tively. Rule 16 calculates the score Fi(c, k) by evaluating fil(ale) for

Algorithm 1 Determine optimal attribute value for two policies

function F(Policy f1 , Policy f2)
SELECT ?U WHERE {

f1 constitutedBy ?P1 . f2 constitutedBy ?P2 .
?P1 attributeValue ?V1 ; price ?X .
?P2 attributeValue ?V2 ; price ?Y .
?V1 match ?V2 . EVALUATE ?U := dif(?X,?Y) .

} ORDER BY DESC(?U)
return first element of result set

all ale provided in a configuration c. Attribute values are matched

by means of the matching predicate defined in the previous section.
The price-relation is defined analogously, but without the context-

dependency represented by the relation isValidIn.

score(?R, ?C, ?K, ?U) ←
∧

l=1,...,n

(re f ersTo(?C, ?AVPl),

hasAttribute(?AVPl , ?Al), de f ines(?R, ?Fl), isAssignedTo(?Fl, Al),

isValidIn(?Fl , ?K), constitutedBy(?Fl , ?Pl), price(?Pl ,Vl),

attributeValue(?Pl , ?AVl),match(?AVPl , ?AVl)),

sum(?V1, . . . , ?Vn, ?U) (16)

Advantages of this approach are that one can get a full rank-

ing of all configurations, which might be required in some appli-

cations. Furthermore, it can be modelled purely based on standard
modelling primitives provided by OWL-DL and SWRL. However,

the disadvantages are also evident. Since the approach is based on
enumerating all configurations, a finite number of configurations is

required and thus the approach is not suitable in the presence of
continuous attributes. As already discussed in Section 3, another

fundamental problem is the complexity with respect to the number
of required utility calculations.

[V2] The second variant of the mmp-predicate implements the de-

composed optimization algorithm described in Equation (4-6). In
this context we utilize the additive structure of the pricing as well

as scoring functions: the optimal value for each attribute is deter-
mined separately and the overall price/score is calculated based on

these measures. Equation 17 determines the utility of an offer ac-
cording to request in a specific execution context.

mmp(?R, ?O, ?K, ?U) ← Request(?R),Offer(?O)
∧

l=1,...,n

(defines(?R, ?Fl), isValidIn(?Fl , ?K), isAssignedTo(?Fl , ?Al),

defines(?O, ?Pl), isAssignedTo(?Pl , ?Al), optFkt(?Fl , ?Pl, ?Ul)),

sum(?U1 , . . . , ?Un , ?U) (17)

Since the calculation of the optimal value for a certain attribute

requires iterating over an unknown number of attribute values (in-

stances), the calculation cannot be directly expressed in SWRL. We
thus use a builtin function, called optFkt, to determine the attribute

value ale maximizing the utility fil − g jl of attribute l. Algorithm 1
shows the implementation of the builtin-predicate specifically for

Point-based Functions. In the predicate optFkt for each attribute
the requester and provider policies are queried from the knowledge

base and the attribute value leading to the maximal utility is de-

termined. A major advantage of the approach is that this query
uses the match-predicate defined in the ontology. Thus, the correct

matching algorithm is used for each attribute automatically and the
implementation of the builtin is domain independent.

[V3] The third variant of the algorithm implements also the de-
composed ranking algorithm described in Equation (4-6), but with

some additional optimizations.

mmp(?R, ?O?, ?C, ?U) ← Request(?R),Offer(?O),

optLP(?R, ?O, ?C, ?U) (18)

This time we use a linear programm to calculate the optimal at-
tribute value. The calculation is encapsulated within the builtin

optLP (Algorithm 2). The builtin performs a query to get the rele-

vant utilities for the attribute values. This is done again by utilising

WWW 2007 / Track: Web Services Session: SLAs and QoS

1019

Algorithm 2 Optimization built-in using Linear Programming

function LP(Request r, Offer o, Context k)
resultList := SELECT ?A, ?W, ?U WHERE {

o defines ?F1 . r defines ?F2 .
?F1 constitutedBy ?P1 ; isAssignedTo ?A .
?F2 constitutedBy ?P2 ; isValidIn k; isAssignedTo ?A .
?P1 attributeValue ?V1 ; price ?X .
?P2 attributeValue ?V2 ; price ?Y .
?V1 match ?V2 . EVALUATE ?U := dif(?X,?Y) .}

Un×maxl |Al | = ule with (l, e, ule) ∈ resultList
determine u by solving max{UTx|∀l :

∑

e xle = 1, x ∈ {0, 1}}
return u for given Offer o and Request r

the match-predicate from the ontology. The optimization problem

is constructed and solved using a standard optimization library.4

This approach has the advantage that we can use the efficient im-

plementations for solving integer linear programs provided by stan-
dard tools.

In contrast to the first optimization algorithm, variant [V2] and
[V3] can be easily adapted to handle continuous attributes by in-

troducing appropriate builtins for optFkt and optLP. However, it is
not possible to get a ranked list enumerating all offers and configu-

rations, as it is possible using the first approach. Nevertheless, for

most applications determining the ranked list of offers is sufficient.
In the next section we compare the different modelling approaches

with respect to their performance in the selection process.

5.3 Performance Evaluation
Having introduced an approach for preference-based selection of

configurable Web services, the question arises how this increased

expressivity influences the performance of the selection process. In
particular, we are interested in the trade-off between performance

and optimality. Therefore, the three selection variants introduced
in Section 5.2 are compared to an algorithm that randomly selects

an offer and configuration. All algorithms are evaluated for vary-

ing number of offers in the knowledge base and varying numbers
of configurations per offer. Each of these settings is evaluated by

means of a simulation. Only settings with string matching rules
have been used. Performance evaluations of query answering with

more complex matching rules is a complementary question and has
already been elaborated in [23] for KAON2. For each setting, in-

stances of offers, requests and contexts are randomly generated us-
ing a uniform distribution and stored in the knowledge base. Then

SPARQL-queries are generated according to Equation 8 (without

any FILTER condition) referring to a specific execution context
and request in the knowledge base. The time between sending the

query and receiving the result is measured. In order to avoid pos-
sible network delays the simulation is done on a single machine.

For each setting the average query time is determined based on 20
simulation runs. Using this simulation setup the following issues

are addressed:

How does the performance change when moving towards preference-

and context-aware selection strategies? How expensive is optimal-

ity? To investigate the additional time required for evaluating the
offers and configurations according to preferences, we compare the

most general optimal variant [V1] with a baseline algorithm that
randomly selects an offer and corresponding configuration from the

knowledge base. Figure 3 shows the interrelation between the num-
ber of offers in the knowledge base, the number of configurations

in an offer and the resulting query time. In the first setting (Figure
3(a)) each bid contains exactly 100 configurations. Service selec-

tion can be done in less than a second for 2000 offers using the

random algorithm, while [V1] requires about 17 seconds. As de-

4For our implementation we currently use the LP solver lp_solve
5.5 (http://lpsolve.sourceforge.net/5.5/).

picted in Figures 3(b) and 3(c), the gap increases further for more

demanding settings. However, the random approach leads to a con-
siderable loss in utility for the requester. Assuming a uniform dis-

tribution of the prices and scoring values in [0,1] and a reasonable

number of offers (> 50) an optimal algorithm leads to a utility of al-
most 1 while the random algorithm results only in a average utility

of 0.

Can we improve the performance of optimal selection by constrain-

ing the bidding language? How does the performance of the opti-

mal selection variants differ? Variants [V2] and [V3] of the mmp-

predicate assume an additive structure of the pricing and scoring

function. As discussed above, this allows a more efficient imple-
mentation. [V2] reduces the runtime compared to [V1] from 17

to 11 seconds in the first setting and from 477 to 41 in the sec-
ond setting (both with 2000 offers). [V3] further reduces the run-

time to 5 and 13 seconds, respectively. If we now compare this
improved performance to the random algorithm, the cost of opti-

mality is rather moderate. In particular, considering setting 3 with
1000 offers and 1600 configurations per offer, there is only a slow-

down by 35% when moving from random selection to [V3] (Figure

3(c)). Comparing this number to smaller settings we can observe
much greater slowdowns which, at first glance, seems contradic-

tory. However, this observation can be explained by the fact that
for large-scale scenarios (more that 1000 configurations per offer)

query answering becomes the predominant factor compared to the
optimization in [V3]. Since query answering is required for both

algorithms, variant [V3] and random selection converge.

5.4 Discussion
In this section, we presented an flexible approach for assign-

ing syntactic as well as semantic matching predicates to attributes.
These predicates are automatically applied for matching attribute

values in the optimization process. In general, the results of the
performance evaluation are promising since the fastest approach

allows ranking up to 2000 offers with a reasonable number of con-
figurations below 15 seconds. Considering the fact that these 2000

offers all fulfill the mandatory conditions defined in the FILTER

condition of Query 8, this can already be seen as a very large sce-
nario. Moreover, we analysed the worst-case scenario where all

offers provide all possible configurations and all attributes are dis-
crete. Optimization on discrete attributes is more time consuming

compared to the continuous case because techniques like differen-
tiation are not applicable. Therefore, we expect better performance

in a real-world use case. In our mobile scenario, only up to 20
different route planning providers might be available, whereas the

number of possible configurations may easily exceed 1000. How-

ever, it is unlikely that all of them are offered by all providers.
As a further result of our performance study, it becomes clear

that providing expressive means for modelling preferences as done
in [12, 26] is not sufficient without ensuring that the way they

are used allows for the implementation of efficient selection algo-
rithms. Comparing the results for [V2] and [V3], we can iden-

tify the absence of the additivity assumption as the major source of
complexity (improvement from [V1] to [V2]). Using an efficient

implementation for solving the optimization problem provides a

relatively minor improvement (improvement from [V2] to [V3]) in
performance. Therefore, in many cases, especially if service selec-

tion has to be done at runtime, restricting the expressiveness of the
bidding language is a viable way to considerably increase perfor-

mance. Even if preferential independency does not hold exactly,
additive functions often provide a good approximation [30]. If this

simplification is not possible, other methods for improving the per-
formance of [V1] can be introduced, e.g. a caching mechanism for

prices and scores that reduces the number of rule evaluations [19].

A further conclusion is that in some very demanding settings, re-

WWW 2007 / Track: Web Services Session: SLAs and QoS

1020

 0

 5000

 10000

 15000

 20000

 25000

 0 500 1000 1500 2000

q
u

e
ry

 t
im

e
 i
n

 m
s

number of offers in KB

[V1]
[V2]
[V3]

random selection

(a) 100 configurations per offer

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 500 1000 1500 2000

q
u

e
ry

 t
im

e
 i
n

 m
s

number of offers in KB

[V1]
[V2]
[V3]

random selection

(b) 1000 configurations per offer

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 400 800 1200 1600

q
u

e
ry

 t
im

e
 i
n

 m
s

number of configurations per offer

[V1]
[V2]
[V3]

random selection

(c) 1000 offers in KB

Figure 3: Performance of service selection.

ducing the set of relevant offers is crucial. This can be realized by
adding additional mandatory conditions through FILTER expres-

sions.

6. PROTOTYPE
As a proof of concept, we implemented the algorithms presented

in this paper in a framework consisting of two components.5 The

first is a server component that provides a repository for service of-
fers and requests that can be queried via a Web service interface and

the DL reasoner KAON2. KAON2 is chosen because it supports
the logical fragment required for our offer and request descriptions,

while being optimized for large-scale query answering [23]. This
component corresponds to the service repository in Figure 1.

The second component is a client tool that facilitates the speci-

fication of Web service offers and requests by providing a GUI for
specifying SPARQL-queries and utility function policies. Gener-

ally, offers are transferred to the server, whereas for requests the
user decides whether they should also be stored as policies on the

server to enable further reuse (cf. (R4)) or formulated directly as a
query. The client is supplemented by a WS-BPEL engine [25] that

allows the specification of service compositions. For example, the

second component could be used by the network operator in our
initial example to implement its application.

In order to implement dynamic binding of services, we utilise the
distinction between ports and port types in WS-BPEL. This feature

allows us to dynamically re-assign end points as long as the service
candidates have an identical interface, i.e. port type. To support

this, the client tool allows extending the process as follows: before
each dynamic service invocation, a WS-BPEL invoke-operation for

the selection service is introduced that provides the binding in-

formation for the following service. We realize the Binding by

Constraint paradigm [29] by specifying a SPARQL query (such

as Query 8) that is passed to the selection service. In this case,
SPARQL provides a standardized language for identifying suitable

services without referring to a concrete name or identifier. Parts of
the query are generated at development time of the process, while

others can be added dynamically at runtime. To illustrate this ap-
proach, Listing 1 shows an excerpt form the WS-BPEL process of

the route planning scenario introduced in Section 2. In lines 2-4 the

user’s request is received, the contained clientId is passed to the lo-
cation service, where the current country of the user is determined

(lines 8-10). Then the SPARQL query, which statically refers to re-
quest ns1:RequestOperatorX containing the providers preferences,

is extended by the context location (lines 12-15) and passed to the
selection service which is invoked in lines 18-20. After receiving

the address of the best service, the corresponding port is assigned
to the port type of the following partner link (lines 21-25) and the

5More information about the implementation can be found at
http://km.aifb.uni-karlsruhe.de/projects/kaonws/.

1...
2<receive name="receiveRoute" partnerLink="customer"

3portType="client:Process" operation="initiate"
4variable="routeRequest" createInstance="yes"/>
5<assign name="Assign_Query">

6<copy> <from variable="routeRequest" part="user"/>
7<to variable="clientID"/>

8<invoke name="LocationCheck" partnerLink="LocationServicePLT"
9portType="ns1:LocationService" operation="executeQuery"

10inputVariable="clientID" outputVariable="location"/>
11<assign name="Assign_Query">
12<copy> <from expression=’"concat(string(\"SELECT ?O , ?U WHERE {
13EVALUATE mmp(ns1:RequestOperatorX, ?O,\"),
14bpws:getVariableData(’location’,’Country’),string(\",?U) . }\"))"’/>
15<to variable="requestQuery" part="queryMessage"/>
16</copy>
17</assign>
18<invoke name="ServiceInvoke" partnerLink="SelectionServicePLT"
19portType="ns1:SelectionService" operation="executeQuery"

20inputVariable="requestQuery" outputVariable="responseQuery"/>
21<assign name="Assign_Port">

22<copy> <from variable="responseQuery" part="queryResult"/>
23<to partnerLink="RoutePlanner"/>

24</copy>
25</assign>
26<invoke name="RoutePlanningInvoke" partnerLink="RoutePlanner"

27portType="ns1:RoutePlanningService" operation="requestRoute"
28inputVariable="routeRequest" outputVariable="responseRoute"/>

29...

Listing 1: Flexible binding in WS-BPEL

route planning service is invoked by passing the original user re-

quest containing the start and end point (lines 26-28).
In case service candidates have different interfaces, dynamic se-

lection requires complex interface mappings. [29] present an ap-

proach for dynamic binding of services using reflection. However,
this cannot be used directly for WS-BPEL.

7. CONCLUSION
In this paper, we have provided a formal and standards-based

representation of Web service configurations and user preferences

over these configurations meeting the requirements (R1) and (R2)
introduced in Section 2. Our approach avoids enumerating of-

fered/requested configurations and thus significantly reduces stor-

age requirements and increases communication efficiency (R4). In
addition, we have presented a service selection algorithm that seam-

lessly integrates syntactic as well as semantic matching (R3) with
efficient optimization techniques. In contrast to other work in this

area, we do not restrict ourselves to logical and/or similarity-based
matching approaches, but allow customisable matching predicates

that can be declaratively assigned to service attributes in a very
flexible way. In order to quantify the overhead introduced by the

additional expressivity and the optimality requirement, we evalu-

ated the performance of the different ranking algorithms, showing

WWW 2007 / Track: Web Services Session: SLAs and QoS

1021

that an algorithm that implements the linear programming formu-

lation of the optimization problem introduces only a small over-
head compared to random selection. This holds particularly for

large-scale scenarios with a high number of configurations per of-

fer. Another important finding is that the performance depends cru-
cially on the way offers and request are modelled. According to our

evaluation, additive preference and price functions are required to
dynamically select services in large-scale scenarios in a computa-

tionally tractable manner (R4). Finally, as a proof of concept we
applied our framework for dynamic Web service selection in WS-

BPEL.
As future work, we plan to move from selecting single services

to service selection for an entire process. This can be realized sim-

ply by adding rules and builtin predicates implementing the more
complex optimization algorithms (e.g. [40]). In addition, we plan

to integrate behavioral matching rules as presented in [1], which
would allow defining preferences over temporal properties of a ser-

vice. For example, Annika might prefer services which provide
the route information before paying. In terms of implementation,

we plan to address the problem of dynamic binding in WS-BPEL

beyond simple port re-assignments.

Acknowledgments. This research was partially supported by
the German Research Foundation (DFG) in scope of the Research

Training Group “Information Management and Market Engineer-
ing”, by the European Commission under FP6-027595 “NEON”,

FP6-507482 “KnowledgeWeb”, and FP6-507483 “DIP”, and by the
German BMBF project “SmartWeb”. The expressed content is the

view of the authors but not necessarily the view of any of the men-

tioned projects as a whole.

8. REFERENCES

[1] S. Agarwal and R. Studer. Automatic matchmaking of web services.
In 5th Int. Conf. on Web Service, Chicago,USA, 2006.

[2] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F.
Patel-Schneider, editors. The Description Logic Handbook: Theory
Implemenation and Applications. Cambridge University Press, 2003.

[3] W.-T. Balke and M. Wagner. Towards personalized selection of web
services. In 12th Int. WWW Conf., Budapest, Hungary, 2003.

[4] M. Bichler and J. Kalagnanam. Configurable offers and winner
determination in multi-attribute auctions. European Journal of
Operational Research, 160(2):380–394, 2005.

[5] P. A. Bonatti and P. Festa. On optimal service selection. In Proc. of
the 14th Int. WWW Conf., New York, USA, 2005.

[6] S. Brockmans, R. Volz, A. Eberhart, and P. Löffler. Visual modeling
of OWL DL ontologies using UML. In Proc. of the 3rd Int. Semantic
Web Conf., Hiroshima, Japan, 2004.

[7] P. Bruckner and S. Knust. Complex Scheduling. Springer, 2006.

[8] DAML Services Coalition. DAML-S: Web service description for the
semantic web. In 1st Int. Semantic Web Conf., Sardinia, Italy, 2002.

[9] R. Dumitru, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg,
A. Polleres, C. Feier, C. Bussler, and D. Fensel:. Web service
modeling ontology. Applied Ontology, 1(1):77 – 106, 2005.

[10] Y. Engel, M. P. Wellman, and K. M. Lochner. Bid expressiveness and
clearing algorithms in multiattribute double auctions. In Proc. of the
7th ACM Conf. on e-Commerce, New York, USA, 2006.

[11] Global Grid Forum. Grid Resource Allocation Agreement Protocol.
Web Services Specification. Available from
http://www.ogf.org/Public_Comment_Docs/Documents/

Oct-2006/WS-AgreementSpecificationDraftFinal_sp_tn_

jpver_v2.pdf, October 2006.

[12] B. Grosof and T. Poon. SweetDeal: Representing agent contracts
with exceptions using XML rules, ontologies, and process
descriptions. In 12th Int. WWW Conf., Budapest, Hungary, 2003.

[13] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and
M. Dean. SWRL: A semantic web rule language combining OWL
and RuleML, 2004. W3C Submission.

[14] IBM Corporation. WSLA language specification, version 1.0.

http://www.research.ibm.com/wsla, 2003.

[15] L. Kagal, T. Finin, and A. Joshi. Declarative Policies for Describing
Web Service Capabilities and Constraints. In W3C Workshop on
Constraints and Capabilities for Web Services, CA, USA, 2004.

[16] R. L. Keeney and H. Raiffa. Decisions with Multiple Objectives:
Preferences and Value Tradeoffs. J. Wiley, New York, 1976.

[17] J. O. Kephart and W. E. Walsh. An artificial intelligence perspective
on autonomic computing policies. In 5th IEEE Int. Workshop on
Policies for Distributed Systems and Networks, NY, USA, 2004.

[18] M. Klusch, B. Fries, M. Khalid, and K. Sycara. OWLS-MX: Hybrid
Semantic Web Service Retrieval. In 1st Int. AAAI Fall Symposium on
Agents and the Semantic Web, Arlington, USA, 2005.

[19] S. Lamparter and A. Ankolekar. Automated selection of configurable
web services. In 8. Int. Tagung Wirtschaftsinformatik, Karlsruhe,
Germany, 2007.

[20] S. Lamparter, A. Ankolekar, D. Oberle, R. Studer, and C. Weinhardt.
A policy framework for trading configurable goods and services in
open electronic markets. In 8th Int. Conf. on Electronic Commerce,
New Brunswick, Canada, 2006.

[21] D. J. Mandell and S. McIlraith. Adapting BPEL4WS for the
Semantic Web: The Bottom-Up Approach to Web Service
Interoperation. In 2nd Int. Semantic Web Conf., FL, USA, 2003.

[22] B. Motik. On the properties of metamodeling in OWL. In 4th Int.
Semantic Web Conf. (ISWC 2005), Galway, Ireland, 2005.

[23] B. Motik and U. Sattler. A comparison of reasoning techniques for
querying large description logic aboxes. In Proc. of the 13th Int.
Conf. on Logic for Programming Artificial Intelligence and
Reasoning, Phnom Penh, Cambodia, 2006.

[24] B. Motik, U. Sattler, and R. Studer. Query answering for OWL-DL
with rules. Journal of Web Semantics: Science, Services and Agents
on the WWW, 3(1):41–60, 2005.

[25] OASIS. Web Services Business Process Execution Language
(WS-BPEL). http://www.oasis-open.org/committees/tc_
home.php?wg_abbrev=wsbpel, 2007. Version 2.0.

[26] N. Oldham, K. Verma, A. Sheth, and F. Hakimpour. Semantic
WS-Agreement Partner Selection. In 15th Int. WWW Conf.,
Edinburgh, UK, 2006.

[27] M. Paolucci, T. Kawamura, T. R. Payne, and K. P. Sycara. Semantic
matching of web services capabilities. In 1st Int. Semantic Web
Conference, pages 333–347, Sardinia, Italy, 2002.

[28] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization.
Englewood Cliffs, N.J.: Prentice Hall, 1982.

[29] C. Pautasso and G. Alonso. Flexible binding for reusable
composition of web services. In Proc. of the 4th Workshop on
Software Composition, Edinburgh, Scotland, 2005.

[30] S. Russel and P. Norvig. Artificial Intelligence - A Modern Approach.
Prentice Hall, 2nd edition, 2003.

[31] A. Sahai, V. Machiraju, M. Saya, A. v. Moorsel, and F. Casati.
Automated SLA monitoring for web services. In Proc. of 13th Int.
Workshop on Distributed Systems, Montreal, Canada, 2002.

[32] B. Schnizler, D. Neumann, D. Veit, and C. Weinhardt. Trading grid
services - a multi-attribute combinatorial approach. European
Journal of Operational Research, forthcoming.

[33] I. Toma, D. Foxvog, and M. C. Jaeger. Modeling QoS characteristics
in WSMO. In 1st Workshop on Middleware for Service-oriented
Computing, New York, USA, 2006.

[34] V. Tosic, K. Patel, and B. Pagurek. WSOL - web service offerings
language. In CAiSE Workshop on Web Services, E-Business, and the
Semantic Web, Toronto, Canada, 2002.

[35] K. Verma, R. Akkiraju, R. Goodwin, P. Doshi, and J. Lee. On
accommodating inter service dependencies in web process flow
composition. In AAAI Spring Symposium on SWS, CA, USA, 2004.

[36] W3C. Web Services Definition Language (WSDL) 1.1.
http://www.w3.org/TR/wsdl, 2001.

[37] W3C. Web Ontology Language (OWL).
http://www.w3.org/2004/OWL/, 2004.

[38] W3C. Web Services Policy Framework 1.5.
http://www.w3.org/2002/ws/policy/, July 2006.

[39] W3C. W3C XML Query (XQuery 1.0).
http://www.w3.org/XML/Query/, January 2007.

[40] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang. QoS-aware middleware for web services composition.
IEEE Transactions on Software Engineering, 30(5):311–327, 2004.

WWW 2007 / Track: Web Services Session: SLAs and QoS

1022

