
A Framework for Rapid Integration of Presentation
Components

Jin Yu, Boualem Benatallah,
Regis Saint-Paul

University of New South Wales
Sydney, Australia

{jyu,boualem,regiss}
@cse.unsw.edu.au

Fabio Casati

University of Trento
Trento, Italy

casati@dit.unitn.it

Florian Daniel,
Maristella Matera

Politecnico di Milano
Milano, Italy

{daniel,matera}@elet.polimi.it

ABSTRACT

The development of user interfaces (UIs) is one of the most time-

consuming aspects in software development. In this context, the

lack of proper reuse mechanisms for UIs is increasingly becoming

manifest, especially as software development is more and more

moving toward composite applications. In this paper we propose a

framework for the integration of stand-alone modules or

applications, where integration occurs at the presentation layer.

Hence, the final goal is to reduce the effort required for UI

development by maximizing reuse.

The design of the framework is inspired by lessons learned from

application integration, appropriately modified to account for the

specificity of the UI integration problem. We provide an abstract

component model to specify characteristics and behaviors of

presentation components and propose an event-based composition

model to specify the composition logic. Components and

composition are described by means of a simple XML-based

language, which is interpreted by a runtime middleware for the

execution of the resulting composite application. A proof-of-

concept prototype allows us to show that the proposed component

model can also easily be applied to existing presentation

components, built with different languages and/or component

technologies.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Techniques –

Modules and interfaces, Software libraries. H.5.2 [Information

Interfaces and Presentation]: User Interfaces – Graphical user

interfaces, Interaction styles, Prototyping, Standardization. H.5.4

[Information Interfaces and Presentation]: Hypertext /

Hypermedia – Architectures.

General Terms

Design, Languages, Standardization.

Keywords

Presentation integration, presentation composition, presentation

component, component model, user interface (UI), XPIL.

1. INTRODUCTION
Creating composite applications from reusable components or

modules is an important technique in software engineering and

data management. A large body of research and development

exists in integration-related areas such as enterprise application

integration (EAI), enterprise information integration (EII), and

service composition. However, most of these efforts focus on

simplifying integration at the data or application level, while little

work has been done to facilitate integration at the presentation

level. It is well-recognized that the development of user interfaces

(UIs) is one of the most time-consuming parts of application

development [8], so this indicates that reuse is also critical at the

presentation level. However, UI development today is mostly

facilitated by toolkits (e.g. Java Swing) providing pre-packaged

classes modeling fine-grained UI controls such as buttons and

menus; the integration of high-level presentation components

encapsulating reusable application functionalities has received

little attention.

The need for integrating coarse-grained components at the

presentation level is manifest and examples are numerous, both in

the enterprise and the consumer space. Indeed, hundreds of

examples of presentation integration exist today, in the form of

web mashups [7] (see ProgrammableWeb.com for a list of popular

mashups). Web mashups perform integrations both at the

application level and at the presentation level. However, since

there is very little support in terms of model and tools for

presentation integration, the presentation aspect of most mashups

today is developed manually. That is, a developer needs to glue

the UI of the desired components together using scripts or general

purpose programming languages, in an ad-hoc fashion. Most of

the developer's time is spent in trying to figure out the

programming interfaces of the components, and then use the

appropriate runtime and languages to integrate them.

This situation is similar to that witnessed at the dawn of data and

application integration, where the need for integration was present

but methodologies and tools were not. People resorted to hacking

components and information together by writing all the

integration logic from scratch, using conventional programming

languages such as C or SQL. Eventually, the importance of reuse

and of structured approaches to integration supported by tools was

recognized, and entire multi-billion dollar industries came to life

in the space of EII and EAI. We argue that a similar path will

need to be followed by presentation integration.

Following our preliminary investigation [3], in this paper we

introduce a framework for integration at the presentation level;

that is, integration of components by combining their presentation

front-ends, rather than their application logic or data. The

granularity of components is that of stand-alone modules or

applications encapsulating reusable functionalities; the goal is to

build composite applications that leverage the components’

individual UIs to produce composite applications possibly with

rich and highly interactive user interfaces.

The framework builds on lessons learned in data and application

integration but extends and adapts them to the specific needs of

the presentation layer. Specifically, we argue for the need of the

Copyright is held by the International World Wide Web Conference

Committee (IW3C2). Distribution of these papers is limited to classroom

use, and personal use by others.

WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.

ACM 978-1-59593-654-7/07/0005.

WWW 2007 / Track: Web Engineering Session: Web Modeling

923

notion of presentation component, a loosely-coupled, coarse-

grained module or application which includes a presentation layer

(i.e. UI and logic to manage user interactions), that offers a

programmatic access to facilitate its integration with other

presentation components into an overall user interface. We also

argue on the need for a composition framework (model, language,

and tools) that allows the development of composite applications

from presentation components, and of a runtime infrastructure that

manages the interactions among components and keeps them

synchronized with respect to the content they are displaying.

The end goal is that of being able to drag and drop components on

a canvas and quickly specify the UI integration logic so that a

complex application can be built by aggregating components with

minimal development effort. These presentation components

should also be easily reusable in various composite applications

and, conversely, a composite application would ideally be able to

swap between components providing similar UI functionality

(e.g., different map providers or different image feed providers).

1.1 Reference Scenarios
To understand the problem and the need for such a framework,

consider the development of a US national park interactive guide

(see Figure 1). There are three presentation components in this

example: a national park listing which contains a list of US

national parks, an image displayer which shows images given a

point of interest, and a map which displays the location of a given

address or point of interest. When the user selects a national park

from the park listing component, the image displayer will show an

image of the selected park while the map will display its location.

Instead of building the above three presentation components from

scratch, we choose to reuse existing components. For the national

park listing component, we can leverage the "Find a Park" service

from the web site www.nps.gov. For the image displayer, we can

use the Flickr.NET component, which displays images given

some keyword tags. And for the map service, we can use Google

Maps, which displays the location map given a point of interest.

For the above example, one can manually build a composite

application using client-side JavaScript to maintain the

coordination among the components, so that the selection of a

park name causes the map and the image to change. Most of web-

based presentation integrations are done with this approach, which

has several important drawbacks: the developer needs to be

intimately familiar with the details of each component, the

integration code is not reusable, and components become tightly

coupled. In fact, if developers want to switch components (e.g.,

use MapQuest instead of Google Maps) or “reuse” Google Maps

and Flickr in other applications, the development effort is

significant.

Another very common example is the integration of UIs within

enterprise applications. For example, there are companies such as

HP offering consoles for IT management, service management,

and process management, separately developed over time or

through acquisition. Ideally, users want a single enterprise console

that integrates these more specific consoles to have an overall

view of a business process, of the services supporting this process,

and of the IT infrastructure supporting the services. Note that

integration does not just mean to put the three GUIs side by side:

interactions need to be coordinated so that for example user

interactions with one component UI (e.g., visualization of a

Figure 1. The National Park Guide.

WWW 2007 / Track: Web Engineering Session: Web Modeling

924

process) affect what is displayed by the other UIs (e.g., displaying

information on services and the IT infrastructure used by that

process).

1.2 Contributions to Web Engineering
In light of the previous considerations, we believe that the

potentials for a presentation integration framework cannot be

emphasized enough, and that there are huge opportunities for

research and development in this area. In this paper we aim at

laying the foundations for such a framework and at providing a

proof of concept implementation. Specifically, we make the

following contributions:

• We present a model for presentation components, aiming at

combining simplicity with effectiveness. The key

observations are that presentation components require i) a

conceptual, application specific notion of state (e.g., the

location and the zoom level for maps, the service or process

for enterprise management applications), ii) operations to

request state changes, iii) events to notify state changes,

mainly occurring due to user interactions, and iv) layout and

appearance characteristics to give a consistent look and feel

to the composite application.

• We propose an event-based composition model and a

corresponding lightweight middleware, as we argue that

presentation integration is mostly event-based. For cases

when event-based specification is insufficient, additional

integration logics may also be specified in the form of simple

scripts or references to external code.

• We provide bindings from the abstract component model to

concrete component implementations, leveraging an adapter

framework for communicating with existing heterogeneous

presentation components.

In the next section we discuss some background concepts,

especially with respect to application integration. Section 3

describes the proposed presentation integration framework. We

then illustrate a detailed example in Section 4, followed by a brief

discussion of implementation issues in Section 5. Finally, we

discuss related work in Section 6 and conclude in Section 7.

2. GUIDING PRINCIPLES
In this section we discuss the characteristics of the presentation

integration problem, in particular in terms of similarities and

differences with respect to application integration.

2.1 Lessons Learned from EAI
A plethora of research is available in the fields of integration.

Although integration problems and solutions differ based on the

kind of integration needed, certain issues appear to be common

and certain approaches seem to be more successful and applicable

than others. A key learning from research in EAI is the need for a

homogeneous way to describe the different components to be

integrated. This description should be simple, formal, human

readable, and modular.

Simplicity is paramount: it has been proven over and over that

complex models and languages do not succeed. In application

integration, only simple languages made it into the mainstream

use, such as IDL and WSDL. Formalization is needed as the tool

support is essential. Tools relevant for integration include both

development environment as well as runtime middleware that

handle binding and interaction. Readability is important as,

although tools often act as mediation between a language

representation and the user, developers often need to read the

specifications directly (e.g. to overcome inflexibility of the tools).

Modularization is essential to disseminate a new integration

model. Approaches that tried to push a single specification to

cover all aspects in a big bang approach had very limited success.

The problem here is that, first, the learning curve should be small

and developers only want to learn what is needed for the case they

are handling; second, and most importantly, the requirements

become clear only after a technology is being used. Hence, the

best approach is to start simple, understand requirements, and then

add additional functionalities later if needed. This is for example

the path adopted by Web services, which started with a very

simple model, language, and protocol (SOAP and WSDL) and

then added additional features over time (coordination,

transaction, reliability, etc.), and is contrary to the path followed

by ebXML, which had a much lesser success.

Another interesting lesson, borrowed from application integration,

is the success of queue-based, publish/subscribe, and bus-

mediated approaches to interoperability [2]. This has been proven

by the success of EAI and message broker platforms, and by the

fact that even in Web services, originally born for fully

decentralized interaction with no assumption on a common

middleware, the notion of enterprise service bus quickly emerged

and now it is the common approach to implement SOAs, at least

within the enterprise.

Finally, we observe that there is no easy solution to syntactical

and semantic heterogeneity in application integration. In the end,

the solutions adopted amounts to allowing the specification of

mapping and transformation so that data can be exchanged among

components, possibly with the aid of tools that facilitate data

matching and mapping definitions [2].

2.2 Differences between Presentation and

Application Integration
The above observations provide us with general principles and

guidelines to face the problem of presentation-level integration

(PI). There are, however, important differences that we need to

keep in mind when developing an integration framework at the

presentation layer.

A major difference is that PI is typically event-driven, and

specifically driven by end users' actions. When the user interacts

with the UI of a component, it will react according to its own UI

behavior which may result in certain state changes. At this point,

the rest of the components in the same composite application need

to be aware of the UI state changes in the first component, so that

they can update their UI accordingly.

Figure 2. National park guide (event-based model).

WWW 2007 / Track: Web Engineering Session: Web Modeling

925

In our national park example, this means that when the user

selects a different park from the park listing component, this

component would fire a "ParkSelectionChanged" event (Figure 2).

This event notifies Flickr and Google Maps to update their UI

accordingly (i.e. displaying the image and the map of the newly

selected park). Loose coupling here advices the use of an

intermediation as opposed to implementing point to point links

among components. As we will see this loose coupling is

achieved via an event broker.

Hence, communication among components mainly consists of

notifications of (and requests for) state changes. This means that,

intuitively, we need a notion of application-defined state, whose

data type is also application specific. In a composite application,

what is important for the purpose of UI coordination is being able

to manipulate a component's state as well as to detect its state

changes.

This is unlike EAI where a component offers an arbitrary set of

methods consisting of invocation and reply data, possibly

complex and/or with large attachments. Furthermore, in EAI, the

integration is mainly procedural, achieved via the specification of

fairly complex control logic (e.g., in BPEL [11] or other

workflow-like language) that causes the invocation of services,

typically in some predefined sequence. The interaction with the

individual component is fairly complex as well and possibly

regulated by a business protocol. EAI components also typically

do not have a first class, application-specific notion of state.

Another difference is that presentation components often require

the configuration of UI appearances, such as font and background

color. Hence, we need a notion of configuration parameters, for

the purpose of design-time component customization. For

example, a developer can specify the font and background color

of a map component using a visual composition tool at design

time. This is not commonly used in EAI, where the notion of

configuring a service before using it is rare and not part of the

mainstream component models or description languages.

In presentation integration the runtime middleware needs to know

if the UI is visible or hidden, minimized or maximized; that is, the

middleware should be able to monitor, query, and update the

presentation modes of the components. In addition, components in

PI also require proper layout management; this includes, for

example, the location, size, shape, transparency, and z-order of the

presentation components.

Finally, EAI is characterized by hard requirements in terms of

reliability, transactionality, and security. In the typical

applications of PI this level of reliability and security is not

expected to be of crucial importance, meaning that the extra

complexity generated by reliability and security requirements may

not be justified. Hence, at least in the initial proposal for a PI

solution, and until if and when such requirements materialize, we

will not put emphasis on reliability and security.

3. PRESENTATION INTEGRATION

FRAMEWORK
Based on the previous considerations and requirements, we

propose in this section a conceptual model as well as a framework

to facilitate presentation integration. Figure 3 describes the high-

level architecture of the proposed framework for the execution of

composite applications.

A composite application consists of one or more components, a

specification of the composition model (i.e. integration logics that

coordinate the components at runtime) and a middleware for the

execution of the composition. The middleware includes an event

broker that manages a set of event listeners defined in the

composition model. The event listeners map state change events,

generated by one component, onto operations (i.e. state change

requests) of other components.

The specification of the composition is performed by the

application composer (i.e. composition developer) at design time,

who may also consult a proper component registry to identify

presentation components that suit his/her application requirements

by inspecting the respective abstract component descriptors.

Component descriptors are similar to WSDL descriptors of Web

services; however, as we will show in the following, some

characteristic differences apply in the case of presentation

components.

Registry

L L L

C1 C2 C3

Components

Presentation Integration Middleware

Composition

E
v
e
n

ts

O
p
e
ra

ti
o

n
s

C1

Component Descriptors

Event Broker

Event
Listeners

C2
C3

Composer

L

Figure 3. Architecture of the proposed presentation

integration framework.

In the following subsections we discuss the main elements of the

outlined framework, namely components, composition and

execution middleware.

3.1 Component Model
We propose an abstract model for presentation components,

where abstract means that it is not tied to specific implementation

technologies, and that it should be able to describe existing

presentation components from heterogeneous component

technologies.

Conceptually, a component is characterized by a state, which

defines what the composite application can see and control in

terms of changes to the UI. The state can be complex and consist

of multiple attributes (e.g., map location and zoom level). A set of

events allow notification of state changes, while operations allow

for querying and modifications of the state.

WWW 2007 / Track: Web Engineering Session: Web Modeling

926

In addition, presentation components typically have configuration

parameters that reflect UI appearances such as font face and

background color. Parameters are specified at design time (or

component creation time) and can no longer be modified at

runtime. Configuration parameters are therefore exposed via a set

of properties, allowing the inspection and specification of the

parameter values at design time.

In general, the attributes of the component's state are high level

and conceptual (e.g., location and zoom level), while

configuration parameters are related to preset graphical attributes

(font faces, background colors, etc). However it is up to the

component developer to define what characteristics are part of the

state and what characteristics are configuration parameters.

Ideally, the state should be kept as simple as possible to facilitate

integration and reuse, as state changes are what cause events to be

exchanged among components and therefore need to be handled

in the composite.

The external interface (i.e. the component model) of a

presentation component consists of a set of events, operations, and

properties, which allow the component to expose its state and

configuration parameters. To better illustrate the concepts, we will

use the following XML fragment, which contains a list of

component model descriptors (<component> elements) that

correspond to the park listing, Flickr, and Google Maps,

respectively.1

<component id="parkListing"

 xmlns:cm="http://www.openxup.org/2006/xpil/component"

 adapter="org.openxup.adapter.SackAdapter"

 address="http://www.nps.gov/findapark/index.htm">

 <event name="ParkSelectionChanged"

 address="selectPark">

 <param element="nps:parkName"/>

 </event>

</component>

<component id="imageDisplayer"

 xmlns:cm="http://openxup.org/2006/08/xpil/component"

 adapter="org.openxup.adapter.dotNETCompAdapter"

 address="http://.../FlickrNet.dll">

 <operation name="search" address="PhotosSearch">

 <input element="nps:tags"/>

 </operation>

</component>

<component id="map"

 xmlns:cm="http://openxup.org/2006/08/xpil/component"

 adapter="org.openxup.adapter.GMapWrapper"

 address="http://maps.google.com/maps?file=api...">

 <operation name="showPOI" address="showAddress">

 <input element="nps:POI"/>

 </operation>

 <property name="currentLocation">...</property>

</component>

<types

 xmlns:cm="http://openxup.org/2006/08/xpil/component">

 <!-- data types defined by XML Schema, for

 events, operations, and properties -->

 <xsd:schema xmlns:xsd="http://www.w3.org/2001/..."

 targetNamespace="http://nps.gov/2006/...">

 <xsd:element name="parkName" type="xsd:string"/>

 <xsd:element name="tags" type="xsd:string"/>

 <xsd:element name="POI" type="xsd:string"/>

1 Note that component model descriptors may in fact come from

different developers. For example, the XML fragment in Listing

1 could be created by three different developers, each providing

the component model for one of the components.

 </xsd:schema>

</types>

Listing 1. Component model descriptors.

Now we will proceed with the details of the component's external

interface.

Events. A presentation component may expose a set of events to

notify other components of its state changes, which are initiated

either by user actions on the UI, or by requests from other

components. For example, the park listing component will fire a

"ParkSelectionChanged" event when the user selects a different

park (see Listing 1).

Note that our component model is only concerned with

component-defined events, not native UI events defined by the

underlying UI toolkit. Figure 4 illustrates the distinction between

component-defined events and native UI events.

Figure 4. Component-defined event vs. native UI event.

Essentially, user actions trigger both native UI events and

component-defined events. However, native UI events are

captured by the underlying UI toolkit and processed by the

components internally, whereas component-defined events (which

signal state changes) are exposed externally. It is up to the

component to define and implement the relationship between

native UI events and component events that signal state changes.

Operations. A presentation component can expose a set of

operations that allows for queries and modifications of its state. In

our national park example, the map component supports an

operation called "showPOI" (see Listing 1), which displays the

map given a point of interest. An operation typically supports a

list of input parameters which allows the caller to pass in values,

and a return value which allows the caller to retrieve the result.

The support of multiple input values allows an operation to set an

attribute of the component state with various options, or even to

set multiple attributes of the state at the same time (e.g. setting

map location and zoom level within a single operation).

Properties. At design time or component creation time, properties

can be used to expose the initial state and the configuration

parameters of the component. For example, properties allow the

design-time customization of the map component's configuration

parameters such as font face and background color, and initial

state such as the default map location.

At runtime, properties can be also used to expose component's

state (e.g. the "currentLocation" property of the map component in

Listing 1, which allows for the query or update of the current map

location at runtime). However, unlike operations, a property is

usually expressed as a pair of setter and getter, supporting a single

value. That means that properties are simpler and easier to

manage than operations, and therefore more suitable for visual

composition tools at design time or deployment time.

Presentation modes. In addition to events, operations, and

properties, there are characteristics common to all components

WWW 2007 / Track: Web Engineering Session: Web Modeling

927

which allow the runtime middleware to properly manage the

component's execution. Collectively, we call them presentation

modes, which include:

• Component's visual appearance characteristics, such as its

visibility (visible or hidden) and window state (minimized or

maximized);

• Component's lifecycle information. A component can be in

one of the following lifecycle states: instantiated

(downloaded and instance created), ready (finished initial

configuration and ready to handle tasks), busy (busy

processing tasks), and destroyed (instance destroyed).

Presentation modes are different from component properties: their

semantics must be understood by the runtime middleware for the

components to be properly managed. As a result, the runtime

middleware should be able to monitor, query, and update the

presentation modes of a component.

3.2 Composition Model
The composition model includes event subscription information to

facilitate the communication among presentation components. In

addition, the composition model may contain additional data

transformation logics via XSLT [18] and integration logics in the

form scripts or references to external code. Finally, the

composition model also includes layout information so that the

presentation components can be positioned properly.

Again, we will use our national park example to better explain the

concept. The following XML fragment describes the composition

model of the example.2

<listener id="parkChangedImgListener"

 xmlns="http://www.openxup.org/2006/08/xpil/integration"

 publisher="parkListing"

 event="ParkSelectionChanged"

 subscriber="imageDisplayer"

 operation="search"/>

<listener id="parkChangedMapListener"

 xmlns="http://www.openxup.org/2006/08/xpil/integration"

 publisher="parkListing"

 event="ParkSelectionChanged"

 subscriber="map"

 operation="showPOI"/>

<layout manager="CSS2" xmlns="http:.../xpil/integration">

 ...

</layout>

Listing 2. Composition model description.

Event subscriptions. Components exchange events through an

event broker that facilitates loose coupling. The composition

model supports a one to many publisher/subscriber relationship

among presentation components. That is, one component

publishes an event (i.e. declares that it will fire an event), and

other components subscribe to it (i.e. declares that they will listen

to and handle this event). In our national park example, the image

displayer and the map component (subscribers) listen to the park

selection changed event from the park listing component

(publisher).

2 Note that Listing 2 contains references to the presentation

components defined earlier in Listing 1. In general, component

model descriptors are first created by one or more component

developers; then the composition developer authors the

composition model by referencing the components defined in

the component model descriptors.

The publisher/subscriber relationship is specified via event

listeners. Each listener specifies an event publisher, event type,

event subscriber, and an operation of the subscribing component.

In addition, multiple event listeners can be used to support

multiple event subscribers for a single event from the event

publisher. Note that to facilitate loose coupling, event listeners are

specified in the composition model, not in the component model

descriptors of the subscribing components.

Our national park example (Listing 2) contains two event

listeners: one links the "ParkSelectionChanged" event from the

park listing component to the "search" operation of Flickr, and the

other links the "ParkSelectionChanged" event from the park

listing component to the "showPOI" operation of Google Maps.

Data mappings. When direct mappings between event parameters

and operation parameters are impossible, additional mappings and

transformations can be specified inside event listeners.

Specifically, inline or external XSLT style sheets may be

specified in the event listeners to define data transformation logics

for mapping the event parameters to operation parameters.

Additional integration logic. The primary goal of the

composition model is to facilitate the declarative composition of

presentation components. However, additional integration logic

may be needed (e.g. via simple scripting languages) for those

infrequent occurrences when the integration cannot be entirely

declared in the composition model. For example, a location

change on a map may be expressed in terms of (latitude,

longitude) coordinates, and there may be the need to invoke an

external service to derive city or state information from such

coordinates, and then update Flickr topics with such information.

In addition, a composite application may need finer control of the

integration process, through the direct invocations of operations

and properties of the presentation components. That is, a

developer can build a composite application by writing code on

top of the declarative composition framework that directly calls

the operations and properties of individual presentation

components. This allows the developer to directly manipulate the

state of the presentation components and pass data among them.

Therefore, the composition model allows additional integration

logics to be specified within event listeners, in the form of simple

inline scripts or references to external code. The supported

scripting or general purpose languages depend on the middleware

implementation. Our current prototype supports JavaScript, either

embedded inline or as external files. The reason behind this is that

we believe that the exact requirements for an abstract scripting

language will become clear as experience is gained with

presentation integration. At this stage, JavaScript suits our

purpose.

Layout information. The composition model itself does not

define any layout mechanism, but supports the notion of external

layout managers. This design facilitates maximum reuse of

existing layout technologies while at the same time providing a

flexible and extensible layout service for presentation integration.

Layout information may be specified in a <layout> element (see

Listing 2). The content of this element is not interpreted by the

middleware; instead it is simply passed to the external layout

manager at runtime. In addition, presentation components

typically expose layout properties, such as x, y, width, and height

(i.e. as part of the component model). At runtime, the middleware

will pass these properties to the external layout manager. When

combined with the layout specification in the <layout> element,

these properties allow the external layout manager to properly

position the presentation components at runtime.

WWW 2007 / Track: Web Engineering Session: Web Modeling

928

3.3 Language Representation
To facilitate the easy integration of presentation components, we

propose a declarative composition language, the Extensible

Presentation Integration Language (XPIL). The language contains

two sets of XML elements, one for describing the component

model, and the other for describing the composition model.

The component model consists of a list of component descriptors

(<component> elements) and XML Schema type definitions

(<types> element), and the composition model contains a list of

event listeners (<listener> elements) and layout information

(<layout> element). Listing 1 shows an example of component

model description, and Listing 2 shows an example of

composition model description.

The component and composition models are typically created by

different developers, and they are usually authored in multiple

files (e.g. one file for the composition model, and one file for each

component model). To make the distinction clear, we made the

XML elements describing the component model and the ones that

describing the composition model under different XML

namespaces. This provides a clear separation between the two

models, even if they are authored in the same document.

In designing XPIL, we try to leverage existing standards from

application integration. As shown in Listing 1, the <operation>,

<input>, and <types> elements are very similar to the

corresponding ones in WSDL 2.0. In addition, the structure of

XPIL documents is also very close to WSDL documents. For

simplicity and ease of authoring, XPIL currently does not require

separate sections for binding and endpoints definitions. The

<component> element combines similar functionalities of WSDL

2.0's interface, binding, and service elements.

3.4 Runtime Middleware
The runtime middleware integrates presentation components, by

leveraging information in the composition model. There are two

key ingredients in the middleware. First, the middleware offers an

event automation mechanism which allows the invocation of

designated component operations in response to events; second, it

provides an adapter framework for connecting to components

from heterogeneous component technologies.

In addition, though not discussed in this paper, the middleware

also supports common services such as data transformation,

component naming, location, and lifecycle management. Our

middleware currently does not provide advanced features found in

EAI, such as transactions and queues. As stated earlier in section

2, we want to start simple and hence, will not emphasize on non-

functional aspects such as security or reliability. Following

examples in service composition (e.g. WSDL), those features can

be added later if and when needed.

Event automation. To facilitate the declarative specification of

presentation integration, the middleware supports the notion of

event automation. Via event automation, the middleware captures

an event from a source component and automatically dispatches it

to the designated operations of other components, based on the

event listener specifications in the composition model.

Conceptually, this is similar to how message brokers and event

buses behave, with the difference that there is no explicit

subscription done by the components (i.e. in the component

model). Instead, the event subscriptions are specified via event

listeners in the composition model.

In traditional publish/subscribe or observer models, subscribers

and/or publishers must be aware of the event dispatching logic.

Therefore, there is a tight coupling either with the event (often

called topic) being published (publish/subscribe model) or with

the subscriber (observer pattern). To avoid this tight coupling, the

definition of which events cause which operations to be invoked,

as well as of the data mapping required, must reside in the

composition model, not the component model. As a result, our

middleware can automatically perform transformations from

events raised by one component onto operations of other

components.

Figure 5 provides a simple illustration of what happens at the

runtime, using our national park example:

Figure 5. Event automation.

1. Capturing event from the publishing component

a. The park listing component fires the event

"ParkSelectionChanged".

b. The middleware captures this event.

2. Automatically invoking operations of the subscribing

components

a. The middleware searches for a list of event listeners

matching this event.

b. For each listener, the middleware executes the data

transformation logic (if any) that maps event parameters

to operations parameters, and then invokes the specified

operation on the subscribing component. In our

example, the "search" operation of Flickr and the

"showPOI" operation of Google Maps will be invoked.

In summary, the event automation mechanism goes one step

further than the traditional event publishing and subscription

mechanism: it facilitates the automatic invocation of component

operations in response to events. In addition, event subscriptions

are specified in the composition model, not the component model.

This lays a solid foundation for the declarative composition of

loosely coupled presentation components.

Component adapters and wrappers. In order to support

heterogeneous components, the runtime middleware supports the

notion of component adapters, which allow the middleware to

communicate with components from different component

technologies. Using these adapters, the middleware will permit the

integration of presentation components developed using a wide

variety of technologies, as long as the corresponding component

adapters are available. For example, in our national park guide,

the park listing is an AJAX component built with Simple AJAX

Code-Kit (SACK) [15], Flickr is a .NET component, and Google

Maps is another AJAX component.

Specifically, a component adapter performs the following

functionalities:

WWW 2007 / Track: Web Engineering Session: Web Modeling

929

• Component location and instantiation: locating the

component implementation through URI, local class name,

etc., and then creating an instance of the component.

• Component inspection: identifying the native addresses of

events, operations, and properties within component

implementation, through means such as reflection. This

implies, for example, being able to map an event to an event

member in a .NET class and map an operation to a method in

a Java class, etc.

• Data type mapping: mapping the component's native data

types to and from the platform-independent data types used

in the component model (i.e. XML Schema types).

• Component invocation: capturing native component events

and exposing them as the appropriate abstract events defined

in the component model; invoking operations and properties

by executing their corresponding native counterparts in the

component implementation.

Through appropriate component adapters, the middleware can

practically interface with any component technologies, and

therefore be able to compose existing presentation components

from a variety of sources. Figure 6 illustrates the adapter

framework.

Figure 6. Component adapters.

Referring to Listing 1, the "adapter" attribute of <component>

specifies the adapter to be used by the middleware to

communicate with the component, and the "address" attribute

specifies the location of the component which allows the adapter

to download and instantiate the component. In addition, <event>

and <operation> also contains an "address" attribute, which

allows the adapter to identify the native event or operation in the

component's implementation (e.g. a JavaScript function, a .NET

method or event).

The adapter concept describe here applies to generic classes of

component technologies, with the assumption that the mapping

between events, operations, properties, and their native

counterparts could be done through meta-language facilities such

as reflection. However, if such meta-language facility is not

available or there are no standard conventions for event

registration and callbacks in a particular component technology,

then a generic adapter for that class of components cannot be

built. Instead, we need a component wrapper for each individual

component. For example, there is no reflection mechanism or

standard convention to map the APIs of ad-hoc, custom-built

JavaScript-based components to our abstract events and

operations.

However, we expect the majority of presentation components are

built with established component technologies (e.g. ActiveX, Java

applet) or toolkit (e.g. Yahoo UI [19], Dojo [12]). Therefore, once

a component adapter for a specific component technology or

toolkit has been built, all components in that category can be

integrated with our composition middleware.

4. EXAMPLE
The combination of Listing 1 and 2 provides a full description of

our national park guide example. To conserve space, we only

illustrate a single interaction in this example: after the user selects

a different park in the park listing, Flickr will show a photo of the

newly selected park and Google Maps will display a map of the

park. Figure 1 shows the result of this user interaction. The upper-

left corner is the park listing component (an AJAX component),

and the lower-left corner is Flickr (a .NET component) which

displays a photo of Yellowstone National Park. And at the right

hand side Google Maps shows a map of the park.

At runtime, when the user selects "Yellowstone" from the park

listing, the following happens:

1. The park listing component captures the user action, and fires

a native event (i.e. JavaScript function "selectPark"). The

component adapter in turn exposes it as the abstract event

"ParkSelectionChanged" to the middleware.

2. The middleware tries to locate listeners matching this event.

In this case it finds two listeners.

3. For the "parkChangedImgListener" listener:

a. The middleware locates the component (Flickr) and the

operation ("search") referred to by the listener. It then

dispatches the event to the component by passing the

name of the operation, "search", and the event

parameter "parkName" with the value "Yellowstone"

(an XML Schema string) to the appropriate component

adapter.

b. The component adapter translates the event parameter

from XML Schema string to the appropriate native type

supported by the component implementation, and

locates the operation referred to by the listener within

the component implementation ("PhotosSearch").

c. The component adapter executes the native method,

"PhotosSearch", passing in value for the "tags" input

parameter (i.e. the name of the newly selected park).

Note that the event parameter "parkName" and

operation input "tags" are both XML Schema strings, so

the value "Yellowstone" can be directly passed over

without any transformation or conversion.

d. Flickr updates its display to show a photo of the newly

selected park, Yellowstone National Park.

4. The middleware performs similar steps to execute the listener

"parkChangedMapListener".

The steps above illustrate the middleware's event automation

mechanism. Essentially, a component publishes the events it fires

via <event> elements in the component model; and the <listener>

elements in the composition model define event subscriptions by

WWW 2007 / Track: Web Engineering Session: Web Modeling

930

linking the events to the designated operations in other

components. This allows for rich interactions among loosely

coupled, pre-built presentation components.

To illustrate how our framework simplifies composite application

development, we shall go through the steps necessary to build our

national park example.

First, component developers implement the components using

whatever languages or technologies they prefer. In the national

park example, since all three components are already available,

this step can be skipped.

After that, they need to provide an abstract component model

describing their components in XPIL (i.e. via <component>).

However, this step usually does not require the involvement of the

developers who created the original component implementations.

As a matter of fact, any one who is familiar with the components'

native APIs can author the corresponding abstract component

models in XPIL. That means any existing, legacy presentation

components could be integrated by simply providing component

model descriptors in XPIL, as long as the appropriate component

adapters are available.

In addition, it is not necessary to provide the full component

model that describes every event, operation, and property of the

component; instead, only the ones required for the composition

need to be specified. For example, the three components in the

national park example may support many addition events and

operations. However, for this particular composition scenario,

only the ones mentioned in Listing 1 need to be declared.

Once the component models are available, the composition author

links the components together by adding event subscriptions (i.e.

via <listener>) in the composition model. If event automation is

insufficient (e.g. the need for complex data mappings beyond

XSLT), additional integration logics can be specified in the

<listener> element, as either inline scripts or references to external

code. In our example, since the event parameter "parkName" and

the operation input parameters "tags" and "POI" are all simple

strings, there is no need for any addition data mapping or

transformation.

Finally, the composition author provides layout specification (i.e.

via <layout>) to position the three components appropriately. In

our national park example, this is specified in CSS.

This completes the steps necessary to build our national park

example. One can follow similar steps to create composite

applications with much more sophisticated interactions and user

interfaces.

5. IMPLEMENTATION
The implementation of our prototype consists of a composition

middleware to execute composite applications and a set of

component adapters to communicate with existing presentation

components. There are plenty of implementation alternatives. We

chose the web-based model for our prototype and the web browser

as the integration platform, since web browsers provide built-in

support for many component technologies.

5.1 Middleware and Deployment
Our prototype includes a server-side code generator implemented

in ASP.NET. Given one or more XPIL documents (e.g. one for

composition model and one or more for component models) as the

input, the code generator outputs a complete HTML page,

including component definitions (e.g. HTML <object> tags) and

the necessary JavaScript code that models the component

interactions. The browser then renders this resulting page,

instantiating the presentation components and executing the

JavaScript which coordinates the interactions among the

components. The generated JavaScript code manages event

subscriptions and operation invocations. In addition, it also

performs data transformation and conversion, when necessary.

Since the final composite application is executed in the browser,

any additional integration logics in the composition model (i.e.

inside <listener>) could be specified as JavaScript, which will be

output by the code generator and executed by the browser at

runtime. The JavaScript code in the composition model may refer

to the component IDs as defined in the component model, since

the generated HTML elements corresponding to those

components have the same ID values.

In addition, since our delivery platform is the web browser, the

prototype leverages CSS for layout management. Composition

developers may specify any valid CSS fragment using the

<layout> element in the composition model, which will be

inserted into the output as is during code generation. The CSS

fragment may refer to the component IDs as defined in the

component model, since the generated HTML elements

corresponding to those components have the same ID values.

Finally, each composite application in presentation integration

typically consists of a limited number of components, as too many

visual components would in fact overwhelm the end user. Since

each composite application is executed by a single instance of the

browser and the application usually has a small number of

components, the performance and scalability of the middleware

(running in the browser instance) is not a major concern.

5.2 Component Adapters
With browsers’ built-in support for most popular components

technologies (e.g. ActiveX, Java applet, Flash), component

adapters are relatively easy to implement. In our national park

example, we have implemented a .NET adapter for the

Flickr.NET component3; this adapter could be used to integrate

any .NET components. Similarly, for the park listing component,

we implemented a SACK adapter, which will work with any

AJAX components built with the SACK toolkit.

For Google Maps, we could implement a generic adapter which

would work with many Google-based AJAX components.

However, we chose to implement a wrapper for it instead, for two

reasons. First, Google Maps is one of the most popular AJAX

components, so developing a dedicated wrapper for it to expose

many of its useful services should justify the investment. Second,

the Google Maps API does not support point of interest or address

directly; instead, one needs to translate a point of interest or

address to geographic coordinates first, and then feed the

coordinates to the appropriate API to display the map. We could

leave the translation task to composition developers who would

insert the proper scripts in the <listener> element. However, to

make things easier, we implemented this translation logic as a

JavaScript function (i.e. "showAddress") inside the wrapper.

Finally, component adapters (and wrappers) also support

configuration options for component instantiation, through the

<config> elements inside <component>. Examples of

configuration information are user ID for Flickr service and API

key for Google Maps. At runtime, the adapters will output the

configuration options when called by the code generator.

3 There are many other APIs for Flickr. For example, we could

also use an AJAX-based or Flash-based Flickr component here.

WWW 2007 / Track: Web Engineering Session: Web Modeling

931

6. RELATED WORK
There has been a large amount of research and development in the

field of application integration and more recently service

composition. Our work tries to leverage those existing work as

much as possible. And in particular, the design of our composition

language, XPIL, follows closely to that of WSDL.

In addition, there are numerous application building frameworks,

which allow developers to build composition GUI applications by

assembling application building blocks or modules; for example,

.NET Composite UI Application Block (CAB) [16] and Eclipse's

Rich Client Platform (RCP) [13] for desktop applications, and

Java Portlet [1], ASP.NET Web Parts [9], and WSRP [17] for web

applications. However, these frameworks all require the

components to be built using their specific interfaces or APIs. On

the contrary, our component model provides an abstract layer on

top of any existing component interfaces; and we do not require or

enforce any specific APIs. Furthermore, since our component

model is fairly generic, we believe it should be able to model

existing presentation components developed in these frameworks

(as a matter of fact, we are working on component adapters for the

frameworks mentioned above).

Finally, there are several visual programming based frameworks

that facilitate building composite web applications; for example,

IBM ADIEU [10] and IntelligentPad [5,6]. Those frameworks

provide a "pad" or "card" based metaphor, which presents users

with a form-like interface for inputting data. The pad or card may

contain, for example, snippet of HTML code or linkage to web

service operations. However, with this pad or card based

approach, user interactions are mostly form-based (i.e. one page

or screen at a time), and therefore unsuitable for rich internet

applications. In addition, it is unclear how this approach would

work with AJAX-based components or legacy presentation

components such as ActiveX controls or Java applets.

Our composition framework is event-based, and therefore it

inherently provides richer user interactions. In addition, our

component and composition models are very generic, and can be

applied toward web applications as well as desktop applications.

7. CONCLUSION
Presentation integration is undoubtedly the next step that has to be

taken in the integration area. In this article, we proposed a

presentation integration framework to facilitate the creation of

composite applications through a simple declarative composition

language, XPIL. The language allows developers to specify an

abstract component model for component descriptions as well as a

composition model for presentation interaction logic.

In addition, we do not advocate a new interface standard for

presentation components to adhere. Our proposed component

model can be used analogously to WSDL at the application layer,

that is, as a way to expose presentation components for the sake of

integration. Indeed, when designing the language, we tried to

follow existing standards in application integration, such as

WSDL and BPEL. This allowed us to leverage prior work in

application integration and to provide familiarity to developers

who are versed in the EAI and service composition area.

Finally, our current research focuses on web applications as the

target of composition, since our event-based composition model is

particularly well-suited for delivering rich internet applications. In

addition, we chose the web browser as the integration platform

due to the fact that it has broad support for various component

technologies. Although our current prototype is web-based, the

proposed abstract component model and composition model are

generic enough to apply equally well to desktop UI applications,

built with a diverse range of UI components.

Many improvements could be made to our integration framework.

For example, the layout mechanism in our prototype is based on

passing CSS fragments to the browser. We are investigating how

to adapt to different layout controllers to offer more layout

options. To allow a wider range of mashup applications to be

developed using our framework, we plan to provide additional

component adapters for AJAX-based toolkits, such as Yahoo UI

and Dojo. Finally, to further simplify the development process, we

will create a visual authoring tool that allows the composition

model to be specified in a drag-n-drop fashion with the final

output generated in XPIL.

8. REFERENCES
[1] Abdelnur, A. and Hepper, S. Java Portlet Specification.

<jcp.org/en/jsr/detail?id=168>

[2] Alonso, G., et al. Web Services: Concepts, Architectures, and

Applications. Springer, 2004.

[3] Daniel, F., et al. Understanding UI integration: A survey of

problems, technologies, and opportunities. Technical Report

DIT-06-064, University of Trento, Italy. Oct. 2006.

[4] Fjellheim, T., et al. A process-based methodology for

designing event-based mobile composite applications. Data

and Knowledge Engineering, Elsevier Science Publications

(In Press).

[5] Fujima, J., et al. Clip, connect, clone: Combining application

elements to build custom interfaces for information access.

UIST'04.

[6] Ito, K. and Tanaka, Y. A visual environment for dynamic

web application composition. HT'03.

[7] Merrill, D. Mashups: The new breed of Web app.

<ibm.com/developerworks/library/x-mashups.html>

[8] Myers, B. A. and Rosson, M. B. Survey on user interface

programming. SIGCHI’92.

[9] ASP.NET 2.0 Web Parts. <msdn2.microsoft.com/en-

us/library/e0s9t4ck(vs.80).aspx>

[10] ADIEU. <www.alphaworks.ibm.com/tech/adieu>

[11] BPEL4WS. <ibm.com/developerworks/library/ws-bpel/>

[12] Dojo. <dojotoolkit.org>

[13] Eclipse Rich Client Platform.

<wiki.eclipse.org/index.php/Rich_Client_Platform>

[14] Google Maps API. <www.google.com/apis/maps/>

[15] Simple AJAX Code-Kit (SACK).

<www.twilightuniverse.com/projects/sack/>

[16] Smart Client - Composite UI Application Block.

<msdn.microsoft.com/library/en-us/dnpag2/html/cab.asp>

[17] Web Services for Remote Portlets. <www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wsrp>

[18] XSLT. <www.w3.org/TR/xslt>

[19] Yahoo! UI Library. <developer.yahoo.com/yui/>

WWW 2007 / Track: Web Engineering Session: Web Modeling

932

