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ABSTRACT

To increase confidence in the correctness of specified policies, pol-

icy developers can conduct policy testing by supplying typical test

inputs (requests) and subsequently checking test outputs (responses)

against expected ones. Unfortunately, manual testing is tedious and

few tools exist for automated testing of access control policies.

We present a fault model for access control policies and a frame-

work to explore it. The framework includes mutation operators

used to implement the fault model, mutant generation, equivalent-

mutant detection, and mutant-killing determination. This frame-

work allows us to investigate our fault model, evaluate coverage

criteria for test generation and selection, and determine a relation-

ship between structural coverage and fault-detection effectiveness.

We have implemented the framework and applied it to various poli-

cies written in XACML. Our experimental results offer valuable

insights into choosing mutation operators in mutation testing and

choosing coverage criteria in test generation and selection.

Categories and Subject Descriptors: D.2.5 [Testing and Debug-

ging]: Testing tools

General Terms: Reliability.

Keywords: Fault Model, Mutation Testing, Test Generation, Ac-

cess Control Policies.

1. INTRODUCTION
Access control is one of the most fundamental and widely used

security mechanisms, especially in web applications. It controls

which principals such as users or processes have access to which re-

sources in a system. To facilitate managing and maintaining access

control, access control policies are increasingly written in specifi-

cation languages such as XACML [1] and Ponder [6]. Whenever a

principal requests access to a resource, that request is passed to a

software component called a Policy Decision Point (PDP). A PDP

evaluates the request against the specified access control policies,

and permits or denies the request accordingly.

Assuring the correctness of policy specifications is becoming

an important and yet challenging task, especially as access con-

trol policies become more complex and are used to manage a large

amount of sensitive information organized into sophisticated struc-

tures. Identifying discrepancies between policy specifications and

their intended function is crucial because correct implementation

and enforcement of policies by applications is based on the premise

that the policy specifications are correct. As a result, policy speci-

fications must undergo rigorous verification and validation through
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Figure 1: Analogy between traditional software testing and pol-

icy testing.

systematic testing to ensure that the policy specifications truly en-

capsulate the desires of the policy authors.

Software testing is an important and practical technique to effi-

ciently detect errors in complex software systems. Errors in pol-

icy specifications may also be discovered by leveraging existing

techniques for software testing. Figure 1 illustrates the analogy be-

tween software testing and policy testing. In policy testing, test

inputs are access requests and test outputs are access responses.

The execution of a test input occurs as a request is evaluated by

the PDP against the access control policy under test. Policy au-

thors can inspect request-response pairs to check whether they are

as expected. Like software verification and testing techniques, for-

mal policy verification and testing techniques are complementary

means to achieve the same goal.

Mutation testing [7] iteratively modifies the program under test

to produce numerous faulty versions (called mutants), each con-

taining one fault. Mutation testing has historically been applied to

general-purpose programming languages in measuring the quality

of a test suite. In this paper, we propose a fault model for access

control policies. We present a new framework that implements this

fault model to facilitate automated mutation testing of access con-

trol policies. In the framework, we define a set of new mutation

operators for XACML policies based on the fault model; these mu-

tation operators describe modification rules for modifying a policy

to generate faulty policies (called mutant policies). We also develop

a new tool that automatically seeds a policy under test with faults

by applying these mutation operators, thereby producing numerous

mutant policies. We leverage a change-impact analysis tool to de-

tect equivalent mutants among generated mutants; these equivalent
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mutants are syntactically different from the original policy but are

semantically equivalent to it. We determine whether a mutant pol-

icy is killed by a request by comparing the responses for the request

based on the original policy and mutant policy. Our framework can

be applied on XACML policies together with previous tools that

we have developed for test generation, test selection, and structural

coverage measurement for access control policies [23–25]. We per-

form an experiment that uses mutation testing to evaluate structural

coverage criteria for test generation and test selection in terms of

fault-detection capabilities. Our experimental results offer valu-

able insights into choosing mutation operators in mutation testing

and choosing coverage criteria in test generation and selection.

The rest of the paper is organized as follows. We first present

related work in Section 2 followed by an illustrative example in

Section 3. Section 4 provides some background information. We

then present our fault model for access control policies in Section 5

followed by the corresponding mutation testing framework in Sec-

tion 6. Section 7 describes the experiment where we apply the

framework on various XACML policies. Finally we conclude with

Section 8.

2. RELATED WORK
To help ensure the correctness of policy specifications, researchers

and practitioners have developed formal verification tools for poli-

cies [9, 18, 39]. Fisler et al. [9] developed a tool called Margrave

that can verify XACML [1] policies against properties, if properties

are specified, and perform change-impact analysis on two versions

of policies when properties are not specified. Margrave performs

property verification by automatically generating concrete counter-

examples in the form of specific requests that illustrate violations

of the specified properties. Similarly, change-impact analysis is

performed by automatically generating specific requests that reveal

semantic differences between two versions of a policy. Although

verification tools such as Margrave are valuable, it is sometimes be-

yond the capabilities of these tools to verify complex access control

policies because of the tools’ limited support for various XACML

features. Furthermore, user-specified properties must be expressed

formally (not in natural language) and as a result are often not avail-

able [9]. Our mutation testing framework leverages Margrave’s

change-impact analysis feature to detect a subset of equivalent mu-

tants.

Although various coverage criteria [40] for software programs

exist, only recently have coverage criteria for access control poli-

cies been proposed [25]. Policy coverage criteria are needed to

measure how well policies are tested and which parts of the poli-

cies are not covered by the existing tests. In our previous work [25],

we have defined policy coverage and developed a policy coverage

measurement tool. Because it is tedious for developers to manu-

ally generate test inputs for policies, and manually generated tests

are often not sufficient for achieving high policy coverage, we have

also developed several test generation techniques. The first one it-

erates over all possible requests for a given policy, if its domain

set is finite. The second one is a random test generation tool [25]

that randomly generates tests for XACML policies. The third tech-

nique [24] is a novel framework that automatically generates high-

quality tests based on a change-impact analysis tool such as Mar-

grave [9]. Because the number of automatically generated tests

is often too large for manual inspection, we developed a request-

reduction tool that greedily selects a minimal set of tests for achiev-

ing the same policy coverage as the original set of tests. Our new

fault model and corresponding automated mutator allow us to quickly

evaluate test generators and techniques of test selection in terms

of fault-detection capability. Techniques [8] have been proposed

Figure 2: An example XACML policy

to leverage mutation testing to automatically generate and/or re-

duce test sets for general purpose programming languages. We take

similar approaches for test generation and reduction techniques for

testing access control policies.

3. EXAMPLE
We first present the syntax of XACML and give an example of a

mutation operator and how that operator is used to generate mutant

policies to facilitate mutation testing.

The eXtensible Access Control Markup Language (XACML) is

an XML-based syntax used to express policies, requests, and re-

sponses. This general-purpose language for access control policies

is an OASIS (Organization for the Advancement of Structured In-

formation Standards) standard [1] that describes both a language

for policies and a language for requests and responses of access

control decisions. The policy language is used to describe general

access control requirements and is designed to be extended to in-

clude new functions, data types, combining logic, etc.

The five basic elements of XACML policies are PolicySet,

Policy, Rule, Target, and Condition. A policy set is simply

a container that holds other policies or policy sets. A policy is ex-

pressed through a set of rules. With multiple policy sets, policies,

and rules, XACML must have a way to reconcile conflicting rules.

A collection of combining algorithms [1] serves this function. Each

algorithm defines a different way to combine multiple decisions
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into a single decision. Both policy combining algorithms and rule

combining algorithms are provided. Seven standard combining al-

gorithms are provided but user-defined combining algorithms are

also allowed [2].

To aid in matching requests with the appropriate policies, XACML

provides a target [1], which is basically a set of simplified condi-

tions for the subject, resource, and action that must be met for a

policy set, policy, or rule to apply to a given request. Once a pol-

icy or policy set is found to apply to a given request, its rules are

evaluated to determine the response.

XACML provides attributes, attribute values, and functions. At-

tributes are named values of known types that describe the subject,

resource, and action of a given access request. A request is formed

of attributes that will be compared to attribute values in a policy to

make the access decisions. Attribute values from a request are re-

solved through two mechanisms: the AttributeDesignator and

the AttributeSelector [1]. The former lets the policy spec-

ify an attribute with a given name and type, whereas the latter al-

lows a policy to look for attribute values through an XPath query.

Functions can work on any combination of attribute values and can

return any kind of attribute value supported in the system; these

functions are used to compare values to make access decisions. For

example, one may use a role-based access control policy that pro-

vides various levels of access based on the subject’s role attribute.

A SubjectAttributeDesignator in the Condition of a Rule

can be used to compare the role attribute against expected values

to determine the level of access allowed for the given Subject.

Figure 2 shows an example XACML policy, which is revised and

simplified from a sample Fedora policy (to be used in our experi-

ment described in Section 7). This policy has one policy element,

which in turn contains two rules. The rule combining algorithm is

“first-applicable”, meaning that the decision of the first applicable

rule encountered during evaluation is returned. Lines 2− 13 define

the policy’s target, which indicates that this policy only applies to

those access requests of a resource “demo:5”. The target of Rule 1

(Lines 15− 25) further narrows the scope of applicable requests to

those requesting to perform a “Dissemination” action on resource

“demo:5”. Its condition (Lines 26 − 35) indicates that if the sub-

ject’s “loginId” is “testuser1”, “testuser2”, or “fedoraAdmin”, then

the request should be denied. Otherwise, according to Rule 2 (Line

37) and the rule combining algorithm of the policy (Line 1), a re-

quest applicable to the policy should be permitted.

In mutation testing, mutation operators are used to generate mu-

tant policies. A mutant policy is identical to the policy under test

but with one syntactic difference automatically inserted based on

the used mutation operator. For example, one mutation operator is

Change-Rule Effect (CRE). Applying CRE to the example policy

in Figure 2 generates two mutant policies. One mutant policy has

the rule decision on Line 14 as permit and the other mutant policy

has the rule decision on Line 37 as deny. After the mutant policies

are generated, each test (in this case an access request) in a test set

is executed both on the policy under test and each mutant policy. If

a test output (in this case an access response) differs between the

policy under test and a mutant policy, then the mutant is said to be

killed (i.e., the fault is exposed). The more mutants a test set kills,

the more effective that test set is in terms of fault-detection capa-

bility. We use mutation testing as a quality measure for various test

generation and selection techniques.

4. BACKGROUND
This section presents background information for our framework,

including a description of our previous work [23–25] on structural

coverage measurement, request generation, and request selection.

4.1 Coverage Measurement
We have defined three types of policy structural coverage for

each of the three major entities in an XACML policy: policies,

rules, and conditions.
• Policy coverage. A policy is covered by a request if the pol-

icy is applicable to the request and the policy contributes to

the decision; in other words, all the conditions in the policy’s

target are satisfied by the request and the PDP has yet to fully

resolve the decision for the given request. Policy coverage is

the number of covered policies divided by the number of to-

tal policies.
• Rule coverage. A rule for a policy is covered by a request

if the rule is also applicable to the request and the rule con-

tributes to the decision; in other words, the rule is applicable

to the request and all the conditions in the rule’s target are

satisfied by the request and the PDP has yet to fully resolve

the decision for the given request. Rule coverage is the num-

ber of covered rules divided by the number of total rules.
• Condition coverage. The evaluation of the condition for a

rule has two outcomes: true and false, which are called as

the true condition and false condition, respectively. A true

condition for a rule is covered by a request if the rule is cov-

ered by the request and the condition is evaluated to be true.

A false condition for a rule is covered by a request if the rule

is covered by the request and the condition is evaluated to

be false. Condition coverage is the number of covered true

conditions and covered false conditions divided by twice of

the number of total conditions.

Note that a policy has at least one rule but a rule can have no

condition, indicating an implicit condition true, which is always

satisfied when the rule is applicable. Therefore, when there are

no conditions defined within the policies under consideration, the

condition hit percentage is always the same as the rule hit percent-

age. Normally a policy tester shall be able to generate requests to

achieve 100% for all three types of policy coverage. In other words,

all the to-be-covered entities defined in the policy coverage are fea-

sible to be covered in principle; otherwise, those infeasible parts of

policy specifications could be removed like dead code in programs.

To automate the measurement of policy coverage, we use a mea-

surement tool [25] implemented by instrumenting Sun’s open source

XACML implementation [2]. Sun’s implementation facilitates the

construction of a PDP. Several methods throughout their implemen-

tation collect policy, rule, and condition information when a policy

is loaded into the PDP. Then coverage information is collected and

stored as requests are evaluated by the PDP against the policy under

test.

4.2 Random Test Generation
Because manually generating requests for testing policies is te-

dious, we have developed a random test generation tool for poli-

cies [25]. The tool analyzes the policy under test and generates

requests on demand by randomly selecting requests from the set

of all combinations of attribute id-value pairs found in the policy.

A particular request is represented as a vector of bits. The length

of this vector is equal to the number of different attribute values

found in the policy set targets, policy targets, rule targets, and rule

conditions of the policy under test. Each attribute value appears in

the request if its corresponding bit in the vector is 1; otherwise, the

value is not present. Each request is generated by setting each bit in

the vector to 0 or 1 with probability 0.5. The number of randomly

generated requests can be configured by the user and the config-

ured number can be considerably smaller than the total number of

combinations.
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To help achieve adequate coverage with a small set of random

requests, we modified the random test generation algorithm to en-

sure that each bit was set to 1 and 0 at least once. In particular, we

explicitly set the ith bit to 1 for the first n generated requests where

i = 1, 2, ..., n. Similarly, for the next n requests, we explicitly set

the (i−n)th bit to 0 where i = n+1, n+2, ..., 2n. This improved

algorithm guarantees that each attribute value is present and absent

at least once as long as the number of randomly generated requests

is greater than 2n.

4.3 Test Generation via Change-Impact Anal-
ysis

To automatically generate high-quality test suites for access con-

trol policies, we have developed a framework based on change-

impact analysis [24]. The framework receives a set of policies un-

der test and outputs a set of tests in the form of request-response

pairs for developers to inspect for correctness. The framework con-

sists of four major components: version synthesis, change-impact

analysis, request generation, and request reduction. The key notion

of the framework is to synthesize two versions of the given poli-

cies in such a way that test coverage targets (e.g., certain policies,

rules, and conditions) are encoded as the differences of the two

synthesized versions. Then a change-impact analysis tool can be

leveraged to generate counterexamples to witness these differences,

thus covering the test coverage targets. The framework generates

tests (in the form of requests) based on the generated counterex-

amples. We implemented this framework in a tool called Cirg [24]

that leverages Margrave [9] to automatically generate test suites

with high structural coverage.

4.4 Test Selection
The number of generated requests can be large for complex poli-

cies. In such cases it is infeasible for policy authors to inspect each

request-response pair; therefore, we need to reduce the number of

requests for inspection without incurring substantial loss in fault

detection capability.

We have defined request selection or reduction problem [25] sim-

ilar to the test minimization problem for program testing [14]:

Given: request set QS, a set of requirements r1, r2, ..., rn that must

be satisfied to provide the desired test coverage of the policies, and

subsets of QS, Q1, Q2,..., Qn, one associated with each of the ris

such that any one of the request qj belonging to Qi can be used to

test ri.

Problem: Find a representative set of requests from QS that satisfies

all of ris.

In the problem statement, the ris can represent policy coverage

requirements, such as covering a certain policy, a certain rule, and

a certain condition. In a representative set of requests that satisfies

all of the ris, at least one request satisfies each ri. We say a repre-

sentative set is minimal if removing any request from the set causes

the set not to be a representative set. Given a request set QS, there

can be several minimal representative sets QS′
⊆ QS. Among

the minimal representative request sets, we could find a request set

that has the smallest possible number of requests. Finding such re-

quest tests reduces to optimization problems called “minimum set

cover” and “minimum exact cover”, respectively; these problems

are known to be NP complete, and in practice approximation algo-

rithms are used [19]. We employ a greedy algorithm that removes

a request from a request set if and only if the request does not in-

crease any of the coverage metrics that are achieved by previously

evaluated requests in the request set.

5. FAULT MODEL
This section presents a fault model for access control policies

and a set of mutation operators that implement that model. In gen-

eral, a fault model is an engineering model of something that could

go wrong in the construction or operation of a piece of equipment,

structure, or software. In our case, we are modeling things that

could go wrong when constructing an access control policy. We

use this fault model to measure the fault-detection effectiveness of

automatic test generation and selection techniques. Any fault re-

sults in a semantic change in the policy but we broadly categorize

faults as being semantic or syntactic as follows: syntactic faults are

a result of simple typos whereas semantic faults are associated with

the logical constructs of the policy language.

Syntactic faults are easier to make and consist of simple typos

that result in a semantically faulty policy. Syntactic faults may

result in syntactically incorrect policies but we assume that basic

static analysis tools exist to check for such inconsistencies. For

example, in XACML, an XML schema definition (XSD) can be

used to check for obvious flaws in XACML syntax. In addition,

syntactic faults that do not violate the XSD can occur due to ty-

pos in attribute values. If the set of attribute values for a given

attribute-id is finite and can be enumerated, then a domain-specific

XSD can be written to check for correct attribute values. For ex-

ample, consider Line 8 of the example XACML policy in Figure 2.

The attribute value “demo:5” can accidentally contain a typo (e.g.,

“demo5”) causing the target to be incorrectly specified. The fault

may allow unauthorized access to the “demo:5” resource. This fault

can be detected by a domain-specific XSD that is written to ensure

that the attribute value is a valid resource. Not all syntactic faults

can be detected by an XSD. For example, if “demo:5” is acciden-

tally written as “demo:6”, which is a valid resource, then the XSD

cannot detect this fault. Typos in attribute values can cause the

conditions found in the target and condition elements to evaluate

to true or false when they should not. We define and implement

several mutation operators that emulate these faults.

Semantic faults are more elusive than syntactic faults because

semantic faults involve incorrect use of the logical constructs of

the policy specification language. For XACML policies, these log-

ical constructs include policy combining algorithms, rule combin-

ing algorithms, policy evaluation order, rule evaluation order, and

various functions found in the condition. Unlike some syntactic

faults, semantic faults can not be detected by an XSD. For an ex-

ample of a semantic fault, consider the rule combining algorithm

“first-applicable” on Line 1 of the example XACML policy in Fig-

ure 2. A logical mistake would be to use the “permit-overrides”

rule combining algorithm. The result of this mistake is severe be-

cause all access requests would be permitted. The final rule on Line

37 applies to all requests and has a permit decision; thus, using the

“permit-overrides” rule combining algorithm ensures all access re-

quests will be permitted.

5.1 Mutation Operators
Mutation operators describe modification rules for modifying ac-

cess control policies to introduce faults into the policies. Previous

studies [15,21] have been conducted to investigate the types and ef-

fectiveness of various mutation operators for general-purpose pro-

gramming languages; however, these mutation operators often do

not directly apply to mutating policies. This section describes the

chosen mutation operators for XACML policies that implements

our fault model. An index of the mutation operators is listed in

Table 1 and their details are described below. The first eight muta-

tion operators emulate syntactic faults because these mutation op-

erators manipulate the predicates found in the target and condition
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Table 1: Index of mutation operators.

ID Description

PSTT Policy Set Target True

PSTF Policy Set Target False

PTT Policy Target True

PTF Policy Target False

RTT Rule Target True

RTF Rule Target False

RCT Rule Condition True

RCF Rule Condition False

CPC Change Policy Combining Algorithm

CRC Change Rule Combining Algorithm

CRE Change Rule Effect

elements. In particular, PSTT, PSTF, PTT, PTF, RTT, RTF, RCT,

and RCF emulate syntactic faults as simple typos in the policy set,

policy, and rule target elements as well as the condition elements

which result in the predicates found in those elements to always

evaluate to true or false. The last three mutation operators, CPC,

CRC, and CRE, emulate semantic faults because they manipulate

the logical constructs of XACML policies.

Policy Set Target True (PSTT). Ensure that the policy set is ap-

plied to all requests by removing the <Target> tag of each PolicySet

element. The number of mutants created by this operator is equal

to the number of PolicySet elements with a <Target> tag.

Policy Set Target False (PSTF). Ensure that the policy set is

never applied to a request by modifying the <Target> tag of each

PolicySet element. The number of mutants created by this oper-

ator is equal to the number of PolicySet elements.

Policy Target True (PTT). Ensure that the policy is applied to all

requests simply by removing the <Target> tag of each Policy

element. The number of mutants created by this operator is equal

to the number of Policy elements with a <Target> tag.

Policy Target False (PTF). Ensure that the policy is never applied

to a request by modifying the <Target> tag of each Policy ele-

ment. The number of mutants created by this operator is equal to

the number of Policy elements.

Rule Target True (RTT). Ensure that the rule is applied to all

requests simply by removing the <Target> tag of each Rule ele-

ment. The number of mutants created by this operator is equal to

the number of Rule elements with a <Target> tag.

Rule Target False (RTF). Ensure that the rule is never applied to a

request by modifying the <Target> tag of each Rule element. The

number of mutants created by this operator is equal to the number

of Rule elements.

Rule Condition True (RCT). Ensure that the condition always

evaluates to True simply by removing the condition of each Rule

element. The number of mutants created by this operator is equal

to the number of Rule elements with a <Condition> tag.

Rule Condition False (RCF). Ensure that the condition always

evaluates to False by manipulating the condition value or the con-

dition function. The number of mutants created by this operator is

equal to the number of Rule elements.

Change Policy Combining Algorithm (CPC). Try all possible

policy combining algorithms. This high-level mutation may change

the way that various policies interact. This operator is only mean-

ingful if there is more than one Policy element in the policy un-

der test. Currently there are six policy combining algorithms im-

plemented in Sun’s XACML implementation [2] but four of these

algorithms semantically reduce to two, leaving only four semanti-

cally different standard policy combining algorithms, namely deny-

overrides, permit-overrides, first-applicable, and only-one-applicable.

The number of mutants created by this operator for policies with

more than one Policy element is three and zero otherwise.

Change Rule Combining Algorithm (CRC). Try all possible rule

combining algorithms. This high-level mutation may change the

way that various rules interact. This operator is only meaning-

ful if there is more than one Rule element in the policy under

test. Currently there are five rule combining algorithms imple-

mented in Sun’s XACML implementation [2] but four of these al-

gorithms semantically reduce to two, leaving only three rule com-

bining algorithms, namely deny-overrides, permit-overrides, and

first-applicable. The number of mutants created by this operator

for policies with more than one Rule element is two and zero oth-

erwise.

Change Rule Effect (CRE). Invert each rule’s Effect by chang-

ing Permit to Deny or Deny to Permit. The number of mutants

created by this operator is equal to the number of rules in the pol-

icy. This operator should never create equivalent mutants unless

a rule is unreachable, a strong indication of an error in the policy

specification.

6. MUTATION TESTING FRAMEWORK
This section presents our framework for policy mutation testing.

We first introduce the general concept of mutation testing and de-

scribe mutation testing for access control policies. We then present

how to detect equivalent mutants among generated mutants.

6.1 Mutation Testing
Mutation testing [7] has historically been applied to general pur-

pose programming languages. The program under test is iteratively

mutated to produce numerous mutants, each containing one fault.

A test input is independently executed on the original program and

each mutant program. If the output of a test executed on a mutant

differs from the output of the same test executed on the original pro-

gram, then the fault is detected and the mutant is said to be killed.

The fundamental premise of mutation testing as stated by Geist et

al. [11] is that, in practice, if the software contains a fault, there will

usually be a set of mutants that can only be killed by a test that also

detects that fault. In other words, the ability to detect small, minor

faults such as mutants implies the ability to detect complex faults.

Because fault detection is the central focus of any testing process,

mutation testing provides an external measure of the effectiveness

of that process. The higher the percentage of killed mutants, the

more effective the test set is at fault detection.

In policy mutation testing, the program under test, test inputs,

and test outputs correspond to the policy, requests, and responses,

respectively. An overview of our framework for policy mutation

testing is illustrated in Figure 3. In the framework, we first define

a set of mutation operators, whose details are described in Sec-

tion 5.1. Given a policy and a set of mutation operators, a mutator

generates a number of mutant policies. Given a request set, we eval-

uate each request in the request set on both the original policy and

a mutant policy. The request evaluation produces two responses

for the request based on the original policy and the mutant policy,

respectively. If these two responses are different, then we deter-

mine that the mutant policy is killed by the request; otherwise, the

mutant policy is not killed.

Unfortunately, there are various expenses and barriers associated

with mutation testing. The first and foremost is the generation and

execution of a large number of mutants. For general-purpose pro-

gramming languages, the number of mutants is proportional to the

product of the number of data references and the number of data
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Figure 3: Overview of our framework for policy mutation test-

ing.

objects in the program [33]. For XACML policies, the number of

mutants is proportional to the number of policy elements, namely

policy sets, policies, targets, rules, conditions, and their associated

attributes.

Techniques to reduce the cost of mutation testing fall into two ba-

sic approaches: test with fewer mutants and test smarter. The test

fewer approach simply involves generating and/or executing fewer

mutants; selective mutation and mutant sampling both fall into this

category. Constrained mutation [33, 36] later refined into selec-

tive mutation [28, 29, 33] is an approximation technique that tries

to select only mutants that are truly distinct from other mutants.

Results show that 5 out of 22 mutation operators are key operators

and these 5 provide almost the same coverage with cost reductions

of four times with small programs and up to 50 times for larger

programs [28, 29]. Mutant sampling, first proposed by Acree [3]

and Budd [4], involves randomly selecting a subset of mutant pro-

grams, which are then evaluated. Results from Wong [35] show that

a 10% random sample of mutants is only 16% less effective than a

full set in ascertaining fault-detection effectiveness. Another sam-

pling approach [34] selects mutant programs based on a Bayesian

sequential probability ratio test until sufficient evidence has been

collected to determine that a statistically appropriate sample size

has been reached.

Various test smarter approaches involve optimizations for spe-

cific computer architectures [5, 20, 26, 31] and techniques that ex-

ploit the classic space-time trade-off [10]. For example, weak mu-

tation [17] is an approximation technique that reduces execution

costs by comparing the internal states of the mutant and original

programs instead of their output at program termination. Weak mu-

tation has been discussed theoretically [16, 27, 37], studied empir-

ically [12, 22, 32], and probed with variants that differ on exactly

when the program states should be compared [27,37]. Weak muta-

tion has been shown to generate tests that were almost as effective

as tests generated with strong mutation and that at least 50% or

more of the execution time was saved [30, 32].

6.2 Equivalent-Mutant Detection
Cost of mutation testing also includes detection of equivalent

mutants [33]. Although there are syntactic differences between an

equivalent mutant and the program under test, the mutant is se-

mantically equivalent to the original one. In other words, the mu-

tant will produce the same result as the original one for all test

inputs and thus provides no benefit. Equivalent-mutant detection

provides a mechanism to better evaluate mutation operators and

more efficiently perform mutation testing because computational

resources will not be wasted in evaluating test inputs or compar-

ing test outputs for equivalent mutants. Detecting such mutants in

software is generally intractable [8] and historically has been done

by hand [33] but using a change-impact analysis tool such as Mar-

grave [9] allows us to detect equivalent mutants among generated

mutants. We originally believed equivalent-mutant detection to be

an important efficiency improvement though we found in practice

that evaluating requests and comparing responses to be computa-

tionally cheaper than performing change-impact analysis with Mar-

grave. Furthermore, limitations of Margrave prevented the detec-

tion of equivalent mutants for mutation operators on conditions and

some combining algorithms.

7. EXPERIMENT
This section presents the experiment that we conducted to evalu-

ate our fault model. The policy mutator implements the fault model

by using the defined mutation operators to automatically seed the

policy under test with faults for generating mutant policies. These

mutant policies are then used to evaluate request sets to determine

the mutant-killing ratios. This process provides a measure of qual-

ity for each request set in terms of fault-detection capability. Be-

cause two of these request sets are generated based on the structural

coverage of the policy, we can find correlations between structural

coverage and fault-detection capability. We first describe the exper-

iment’s objective and measures as well as the experiment instru-

mentation. We then present and discuss the experimental results

and finally describe threats to validity.

7.1 Objective and Measures
The objective of the experiment is to investigate the following

questions:

1. How strong is the correlation between structural coverage

and fault-detection capability? More specifically, does test

selection based on structural coverage criteria produce re-

duced request sets with low loss of fault-detection capabil-

ity?

2. What are the individual characteristics of each mutation op-

erator? Are some more difficult to kill than others? Are some

easily killed by request sets selected based on structural cov-

erage criteria?

To help answer these questions, we collect several metrics to

compare the request-generation techniques based on change-impact

analysis, random request generation, and the selected random re-

quest set based on structural coverage. The following metrics are

measured for each policy under test, each request set, and each mu-

tation operator.

• Policy hit percentage. The policy hit percentage or policy

coverage is the number of policies involved in evaluating the

request set divided by the total number of policies.

• Rule hit percentage. The rule hit percentage or rule coverage

is the number of rules involved in evaluating the request set

divided by the total number of rules.

• Condition hit percentage. The condition hit percentage is the

number of conditions involved in evaluating the request set

divided by two times of the total number of conditions.

• Test count. The test count is the size of the request set or

the number of tests generated by the chosen test-generation

technique. For testing access control policies, a test is syn-

onymous with request.
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• Reduced-test count. Given a policy and the generated set of

requests, the reduced test count is the size of the selected or

reduced request set based on policy coverage.

• Mutant-killing ratio. Given a request set, the policy under

test, and the set of generated mutants, the mutant-killing ratio

is the number of mutants killed by the request set divided by

the total number of mutants.

Intuitively a set of requests that achieve higher policy coverage

are more likely to reveal faults. This notion is easy to understand

because a fault in a policy element that is never covered by a re-

quest would never contribute to a response and thus a fault in that

element cannot possibly be revealed. There is a direct correlation

between the test count and the test evaluation time because a large

request set would take longer to evaluate than a smaller set. Fur-

thermore, a low test count is highly desirable because the request-

response pairs may need to be inspected manually to verify that the

policy specification exhibits the intended policy behavior. An ideal

request set should have a low test count, high structural coverage,

and high fault-detection capability.

7.2 Instrumentation
In the experiment, we used the policy mutator for generating mu-

tants, the Cirg tool [24] for test generation based on change-impact

analysis, a random request generation tool [25], a policy coverage

measurement tool [25] for test selection, and Margrave [9] for lim-

ited equivalent-mutant detection.

We collected policies from several sources as subjects in our ex-

periment. Each policy is preprocessed to ensure unique policy el-

ement identifiers in order to correctly measure structural coverage.

Once each policy has been preprocessed, we can apply a request

generation technique to generate tests. We compare three requests

sets. The first one is generated by Cirg based on change-impact

analysis. The second one is randomly generated. The third one is

a subset of the second, greedily selected to ensure equivalent struc-

tural coverage.

The random test generation technique requires only the complete

policy. The technique parses the policy and enumerates all possible

attribute id-value pairs. This set is represented as a vector of bits

and each bit is randomly set to 0 or 1, which indicates the absence

or presence of the corresponding attribute id-value pair in the gen-

erated request as described in Section 4.2. We generate exactly 50
random requests for each subject. Finally, we greedily select re-

quests from this set based on structural coverage. Doing so allows

us to directly measure the reduction in fault-detection capability

when selecting requests based on structural coverage.

The test-generation technique based on change-impact analysis

uses only one of the variants of version synthesis in Cirg [24].

The policy versions are essentially equivalent to the mutants gen-

erated with the CRE operator. We use Margrave’s API to perform

a change-impact analysis on the original policy and each of the

policy versions. Based on the counterexamples produced by Mar-

grave, the request generator generates requests. Exactly one request

is generated from each version.

We used 11 XACML policies collected from three different sources

as subjects in our experiment. Table 2 summarizes the basic statis-

tics of each policy. The first column shows the subject names.

Columns 2-5 show the numbers of policy sets, policies, rules, and

conditions, respectively. The conference
1 policy is a slightly

modified version of the policy used by Zhang et al. [38]. The

1
http://www.cs.bham.ac.uk/˜mdr/research/
projects/05-AccessControl/

Table 2: Policies used in the experiment.

Subject # PolSet # Pol # Rule # Cond

codeA 5 2 2 0

codeB 7 3 3 0

codeC 8 4 4 0

codeD 11 5 5 0

conference 0 1 15 0

default-2 1 13 13 12

demo-11 0 1 3 4

demo-26 0 1 2 2

demo-5 0 1 3 4

mod-fedora 1 13 13 12

simple-policy 1 2 2 0

<Condition> tags were removed so Sun’s XACML implemen-

tation could evaluate the requests. This policy relies on custom

functions (implemented in the PDP) that interact with a database

at runtime for request evaluation. Sun’s XACML implementation

supports only the standard functions and so it failed to evaluate re-

quests properly. Once the relevant conditions were removed from

the policy, requests were evaluated successfully. Although these

modifications changed the semantics of the policy, it is structurally

similar and thus suitable for the experiment. Five of the policies,

namely simple-policy, codeA, codeB, codeC, and codeD are

examples used by Fisler et al. [9, 13]. The remaining policies are

examples of real XACML policies used by Fedora2. Fedora is an

open source software that gives organizations a flexible service-

oriented architecture for managing and delivering digital content.

Fedora uses XACML to provide fine-grained access control to the

digital content that it manages. The Fedora repository of default

and example XACML policies provided a useful resource of real-

istic subjects.

7.3 Results
Table 3 summarizes the number of requests and structural cover-

age metrics for each policy and each request set. We do not show

the coverage metrics for the minimized random request set because

it has equivalent coverage as its superset. Each row of the table cor-

responds to a particular policy and each column group corresponds

to a request set. Within each column group, we show the policy,

rule, and condition coverage percentages as well as the number of

requests. N/A indicates that there are no policy elements of that

type and thus coverage cannot be computed. The columns “Rand”,

“Sel Rand”, and “Cirg” indicate the number of requests in the Ran-

dom, Selected Random, and Cirg request sets, respectively. Both

test generation techniques achieve 100% policy coverage for al-

most all subjects because it is the most coarse measure of structural

coverage. Cirg achieves only 50% condition coverage because the

generation technique does not attempt to evaluate the condition as

true and false but merely covers the condition’s rule once. How-

ever, for policy and rule elements, Cirg is at least as good as random

generation at achieving high structural coverage. We unexpectedly

notice that Cirg exhibits worse policy and rule coverage than the

random technique on the mod-fedora policy. Upon further exam-

ination of that policy we find that two of the policies within the

policy set are identical. Furthermore, each of these policies con-

tains exactly one rule. As a result, there was no change-impact

when that rule was removed and so Cirg did not generate a request

to cover that rule or its containing policy.

2
http://www.fedora.info
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Table 3: Structural coverage achieved by each request set.

Random Request Set Cirg

Subject Pol % Rule % Cond % # Rand # Sel Rand Pol % Rule % Cond % # Cirg

codeA 100.00% 100.00% N/A 50 2 100.00% 100.00% N/A 2

codeB 100.00% 100.00% N/A 50 3 100.00% 100.00% N/A 3

codeC 100.00% 100.00% N/A 50 6 100.00% 100.00% N/A 4

codeD 100.00% 100.00% N/A 50 6 100.00% 100.00% N/A 5

conference 0.00% 0.00% N/A 50 0 100.00% 100.00% N/A 15

default-2 100.00% 92.31% 75.00% 50 6 100.00% 100.00% 50.00% 13

demo-11 100.00% 100.00% 75.00% 50 2 100.00% 100.00% 50.00% 2

demo-26 100.00% 100.00% 50.00% 50 1 100.00% 100.00% 50.00% 2

demo-5 100.00% 100.00% 75.00% 50 3 100.00% 100.00% 50.00% 3

mod-fedora 100.00% 84.62% 58.33% 50 7 84.62% 84.62% 33.33% 11

simple-policy 100.00% 100.00% N/A 50 4 100.00% 100.00% N/A 2

average 90.91% 88.81% 30.30% 50.00 3.64 98.60% 98.60% 21.21% 5.64

Table 4: Mutant-kill results achieved by each request set.

Random Selected Random Cirg

Subject # Mut # Kill Kill % # Kill Kill % # Kill Kill %

codeA 64 32 50.00% 20 31.25% 29 45.31%

codeB 92 46 50.00% 33 35.87% 42 45.65%

codeC 112 58 51.79% 50 44.64% 53 47.32%

codeD 148 65 43.92% 55 37.16% 69 46.62%

conference 82 0 0.00% 0 0.00% 79 96.34%

default-2 157 31 19.75% 10 6.37% 85 54.14%

demo-11 22 17 77.27% 16 72.73% 16 72.73%

demo-26 17 10 58.82% 9 52.94% 9 52.94%

demo-5 23 18 78.26% 17 73.91% 19 82.61%

mod-fedora 157 40 25.48% 35 22.29% 82 52.23%

simple-policy 32 20 62.50% 14 43.75% 17 53.13%

average 47.07% 38.27% 59.00%

Figure 4: Mutant-killing ratios for all operators by subjects.

Table 4 summarizes the number of mutants generated, the num-

ber of mutants killed, and the computed mutant-kill ratios for each

policy and each request set. Each row corresponds to a policy. The

second column “# Mut” denotes the number of mutants generated

for each policy. Each column group corresponds to a request set

and lists the number of mutants killed and the computed mutant-

killing ratios. The same data is illustrated in Figure 4. By compar-

ing these results with those in Table 3, we observe that there is in-

deed a correlation between structural coverage and fault-detection

capability. One example is the conference policy; the structural

coverage for the two random request sets is zero and, as expected,

the mutant-killing ratio is also zero. Similarly we observe that

the mutant-killing ratios across all subjects for the random and

selected random request sets are quite similar. Unfortunately the

mutant-killing ratio is still low when considering the high struc-

tural coverage. Similar to statement coverage in software, low cov-

erage indicates a deficiency in the test set but high coverage does

not necessarily indicate a high-quality test set in terms of fault-

detection capability. This observation indicates that stronger cri-

teria are needed. The average mutant-kill ratios are given in the

last row of Table 4 for the Random, Selected Random, and Cirg

request sets as 47.07%, 38.27%, and 59%, respectively. This indi-

cates that while Random request generation may be able to achieve

adequate coverage for some policies, Cirg outperforms the Random

technique in terms of fault-detection capability.

Figure 5 illustrates the average mutant-killing ratios for each re-

quest set grouped by mutation operators. Recall that the CPC and

CRC mutation operators are faults that exploit the way that various

policies and various rules interact, respectively. These mutation op-

erators have less than 11% mutant-killing ratios. The observation

indicates that these operators produce mutants that are particularly

difficult to kill. Another explanation is that these mutation opera-

tors produce a large number of equivalent mutants causing an arti-
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Figure 5: Mutant-killing ratios for all subjects by operators.

ficial lowering of the mutant-killing ratio. Indeed this explanation

may be the case because policy and rule combining algorithms are

only relevant when there is a high degree of interaction between

rules within a policy or policies within a policy set. Conversely,

PSTT and PSTF have over 60% killing ratios, and PTT, PTF, RTF,

RCF, and CRE have at least 90% killing ratios. The similar mutant-

killing ratios across these mutation operators indicate that there is

no significant difference between the fault types in terms of diffi-

culty of detection.

We provided the original policy and each mutant policy to Mar-

grave’s change-impact analysis feature to perform equivalent-mutant

detection. If Margrave finds counterexamples that illustrate dif-

ferences between the policies, then they must not be equivalent.

Unfortunately, Margrave supports only a subset of XACML fea-

tures; therefore, the converse does not hold, resulting in potential

false positives. In other words, if Margrave does not find counter-

examples for a particular mutant, then the mutant may or may not

be equivalent. In our experiment, Margrave identified less than 1%
of all mutants as potentially equivalent. Furthermore, these po-

tentially equivalent mutants occurred only for the CPC and CRC

mutation operators. Performing equivalent mutation detection is

costly, taking approximately 45 minutes for the whole experiment.

When considering the low percentage of detection, potential for

false positives, and high computational cost, we feel other means

of equivalent-mutant detection are needed.

In summary, the results indicate that although structural cov-

erage is indeed correlated to fault-detection capability, structural

coverage is not strong enough to achieve an acceptable level of

fault detection. Note that the structural coverage investigated in

this experiment is essentially equivalent to statement coverage in

general-purpose programming languages. In future work, we plan

to investigate stronger criteria that correspond to path coverage. We

expect these stronger criteria to be much more effective at achiev-

ing higher mutant-killing ratios. Similar to the findings in mutation

testing of general-purpose programming languages, we found that

equivalent-mutant detection is expensive.

7.4 Threats to Validity
The threats to external validity primarily include the degree to

which the policies, fault model, mutation operators, coverage met-

rics, and test sets are representative of true practice. These threats

could be reduced by further experimentation on a wider type and

larger number of policies and a larger number of mutation oper-

ators. In particular, lower-level mutation operators are needed to

operate on the subject, resource, and action attributes found in var-

ious policy elements. Currently the proposed mutation operators

operate only on higher-level policy elements. Additional mutation

operators are needed to exploit policy and rule evaluation order as

well as the numerous functions that may be specified in the con-

dition. The threats to internal validity are instrumentation effects

that can bias our results such as faults in Sun’s XACML imple-

mentation, faults in Margrave’s API and/or its limitations, as well

as faults in our own policy mutator, policy coverage measurement

tool, and request generators.

8. CONCLUSION
We have proposed a fault model for access control policies and

developed an automated mutation testing framework that imple-

ments that model. In this framework, we have defined a set of

mutation operators. We have implemented a mutator that generates

a number of mutant policies based on the defined mutation opera-

tors. We evaluate each request in a given request set on both the

original policy and a mutant policy. The request evaluation pro-

duces two responses for the request based on the original policy

and the mutant policy, respectively. If these two responses are dif-

ferent, then we determine that the mutant policy is killed by the

request. We have also leveraged a change-impact analysis tool to

detect equivalent mutants among generated mutants. We have con-

ducted an experiment on various XACML policies to evaluate the

mutation operators as well as request generation and selection tech-

niques in terms of fault-detection capabilities. Our experimental re-

sults show that although structural coverage is a strong indicator of

fault-detection effectiveness, it is far from optimal. The shortcom-

ings of test selection based on structural coverage are highlighted

by mutation operators that exploit how different policy elements

interact. Moreover, careful test generation and selection techniques

can substantially reduce the size of the test suite while incurring a

relatively low loss of fault-detection capability.
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