
Reliable QoS Monitoring Based on Client Feedback

Radu Jurca
Ecole Polytechnique Fédérale

de Lausanne (EPFL)
Artificial Intelligence Lab
Lausanne, Switzerland
radu.jurca@epfl.ch

Walter Binder
University of Lugano
Faculty of Informatics
Lugano, Switzerland

walter.binder@unisi.ch

Boi Faltings
Ecole Polytechnique Fédérale

de Lausanne (EPFL)
Artificial Intelligence Lab
Lausanne, Switzerland
boi.faltings@epfl.ch

ABSTRACT
Service-level agreements (SLAs) establish a contract be-
tween service providers and clients concerning Quality
of Service (QoS) parameters. Without proper penalties,
service providers have strong incentives to deviate from
the advertised QoS, causing losses to the clients. Reliable
QoS monitoring (and proper penalties computed on the
basis of delivered QoS) are therefore essential for the
trustworthiness of a service-oriented environment. In this
paper, we present a novel QoS monitoring mechanism
based on quality ratings from the clients. A reputation
mechanism collects the ratings and computes the actual
quality delivered to the clients. The mechanism provides
incentives for the clients to report honestly, and pays special
attention to minimizing cost and overhead.1

Categories and Subject Descriptors
I.2.11 [Artiflcial Intelligence]: Distributed Artiflcial In-
telligence; K.4.4 [Computers and Society]: Electronic
Commerce

General Terms
Algorithms, Economics, Measurement, Performance, Secu-
rity

Keywords
Service-oriented computing, service-level agreement,
quality-of-service, reputation mechanism, incentive com-
patibility

1. INTRODUCTION
Service-oriented computing enables the construction of

distributed applications by integrating services that are
available over the web [21]. The building blocks of such
applications are web services2 that are accessed using stan-
dard protocols.

1The work presented in this paper was supported by the
Swiss National Funding Agency OFES as part of the Euro-
pean project KnowledgeWeb (FP6-507482).
2We use the terms web service and service interchangeably.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

In this paper we assume a service market where services
are accessed according to service-level agreements (SLAs).
SLAs are advertised in directories by service providers. A
SLA identifles the service provider and includes information
concerning service functionality and grounding, which may
be specifled in a formalism such as WSDL [26], OWL-S [19],
or WSMO [28]. Moreover, a SLA specifles the conditions
of service delivery, such as the price for service invocation
as well as Quality of Service (QoS) parameters (e.g., maxi-
mum response time). Languages such as Web Service Level
Agreements (WSLA3) [5] or WS-Agreement [2] may be used
to specify such non-functional properties. Service directories
ofier matchmaking functionality allowing clients to discover
SLAs that flt their requirements.

Essential for the functioning of such a service market is
the credibility of SLAs. Unreliable SLA advertisements de-
crease the overall welfare of the market, since clients do not
have accurate information to plan their business. As clients
are usually required to pay for a SLA before receiving the
requested service, providers have an opportunity to cheat.
They may provide lower QoS than advertised, and thus save
costs. It is therefore necessary to create incentives for ser-
vice providers to respect their advertised SLAs by stating
penalties that must be paid when the delivered QoS is less
than promised.

In order to enforce such penalty payments, the market
has to provide efiective mechanisms to monitor QoS in an
objective and reliable way. There is a large body of research
addressing infrastructural facilities for SLA monitoring [24,
12, 5, 3]. Existing solutions rely on one of the following
three techniques:

† a trusted monitor intercepts the messages exchanged
between the client and the provider and outputs an
estimate of the delivered QoS.

† monitoring code runs on the provider side, as part of
the service middleware. The monitoring layer inter-
cepts the messages addressed to/originating from the
provider, and estimates the delivered QoS.

† a trusted party periodically probes the service and out-
puts performance metrics.

The problem with the flrst technique is scalability. When
the monitor intercepts all service invocations, it acts as a
central proxy and soon becomes a performance bottleneck.
Bottlenecks may of course be avoided by only monitoring a

3http://www.research.ibm.com/wsla/

WWW 2007 / Track: Web Services Session: SLAs and QoS

1003

sample of the service invocations, but the monitoring will
be less precise.

The problem with the second techniques is trustworthi-
ness. The providers have obvious strategic incentives to
modify the monitoring results. Unless strongly secured
(which comes at a non-negligible cost), the monitoring code
may be tampered with, and rendered unreliable.

The third technique is expensive and probably inaccurate.
Special clients must be set up only to probe and evaluate
the service. They generate supplementary service requests
which unnecessarily overload service providers. Moreover,
trusted clients monitor only a small sample of the total num-
ber of requests, and therefore the output results are prone
to noise and errors.

In this paper we introduce an alternative QoS monitoring
mechanisms based on feedback provided by clients. In our
solution, the clients are running the monitoring code, and
periodically report feedback to a trusted center (referred
to as the reputation mechanism or RM). The RM aggre-
gates the reports and estimates the delivered QoS for each
provider. In this way,

† the RM can get information about most transactions
without actually being a bottleneck (there are no real-
time constraints for reporting feedback, and the result
of several interactions may be compressed in one feed-
back message);

† the monitoring process is as precise as possible (an
immediate consequence of the flrst point);

† the provider cannot directly tamper with the monitor-
ing process;

Accurate mechanisms must, however, address two prob-
lems. The flrst, is obtaining honest feedback reports. We
rely on economic incentives rather than hard security mea-
sures, and thus make lying uninteresting rather than im-
possible. Honest reporting incentives are created through a
payment mechanism where every client gets paid for submit-
ting feedback an amount that depends on the collective set
of feedback received by the RM in a certain time-window.
We prove that truthful reporting maximizes the expected
revenue (due to feedback payments) of a client, motivating
an equilibrium where every client reports honestly.

The second problem is collusion. The payment mecha-
nism makes individual honest reporting rational, however,
several clients that coordinate on a lying strategy can still
manipulate the monitoring results without sufiering lower
expected payments. We therefore modify the initial pay-
ments to also be robust against coalitions that are smaller
than a certain threshold.

The paper is organized as follows. In Section 2 we describe
the general assumptions behind our environment. Section 3
presents the interaction protocol and Section 4 describes
some of the implementation details of a monitoring frame-
work prototype. Section 5 presents a payment mechanism
that the RM can use to make rational agents report the
truth. The robustness against colluding reporters is ad-
dressed in Section 6, followed by an example in Section 7.
Finally, Section 8 compares our results with related work.

2. SETTING AND ASSUMPTIONS
We consider an online market of services [21] where dif-

ferent clients interact with difierent service providers in a

decentralized manner. There is no trusted authority or
proxy intermediating the transactions between clients and
providers, except that service discovery is facilitated by di-
rectories. Both clients and providers have digital identities
based on public key infrastructure. The complete upper
level interaction protocol is described in Section 3.

Services are characterized by binding SLAs specifying
both functional and non-functional (quality) attributes [5,
2]. We divide time into equal periods and assume that the
same SLA is shared by a large group of clients in any given
period of time. The same service provider can have several
customer groups, but all clients within the same group are
treated equally (within the same period of time). The length
of the time period is an application-dependent parameter,
set to meet the two constraints above (i.e., large number of
client requests per period, but the same SLA and service
parameters).

The Quality of Service (QoS) is specifled according to a
common ontology such as [15] or [23]. We impose, however,
several restrictions on the type of QoS descriptions that oc-
cur in the SLAs. First, we consider only objective quality
attributes that take discrete values, and can be observed
by clients for single service invocations. ServiceIsAlive or
InvocationFailure are examples of such quality attributes:
they are understood by all agents in the same way, can be
measured for each interaction, and take boolean values. Re-
sponseTime and Bandwidth are both objective and observ-
able, but usually take continuous values. For most applica-
tions, however, clients are indifierent between values that fall
within some range, and therefore, they can be discretized:
e.g., Bandwidth 2 f DialUp, DSL, T1g. On the other hand,
Availability or Reliability do not meet our restriction since
they are not observable for single interactions.

Second, we assume that quality properties are specifled
in the SLA as probability distributions over possible values
for each of the quality attributes. Availability can therefore
be indirectly expressed as a probability distribution over the
boolean values of the quality attribute ServiceIsAlive. Such
descriptions can be regarded as simple extensions to the for-
malism used in [15, 23, 20], where quality attributes are
characterized by min, max and/or typical values.

Finally, we assume that the values of difierent quality at-
tributes are independent, with the only exception that cer-
tain values of certain quality attributes render the obser-
vation of other quality attributes impossible: e.g., if for the
present invocation the ServiceIsAlive attribute has the value
FALSE, the value of the ResponseTime attribute cannot be
observed.

While simplifled, we believe that our model is still general
enough to be of practical use in many domains. Further-
more, the assumption that quality attributes are indepen-
dent (with the exception mentioned in the previous para-
graph) can be relaxed without any theoretical di–culties.
Nonetheless, the appropriate notation that would allow us
to formally explain the efiect of correlated quality attributes
on the reporting incentives is cumbersome, and dependent
on the particular application. At the end of Section 5 we
provide an informal discussion of how to extend the mech-
anisms presented in this paper for the more general model
including correlations.

Formally, let Q = fq1; q2; : : : ; qng be the set of all quality
attributes deflned by our ontology, and let Vi be the domain
of values of the quality attribute qi. We assume there is a

WWW 2007 / Track: Web Services Session: SLAs and QoS

1004

strict total order over the elements of Vi, such that vj < vj+1

(the value vj+1 is preferred by all clients to value vj) for
all j. Generally, the dependence between quality attributes
is expressed through a (linear) correlation factor between
the values of those attributes [15]. With our simplifying
assumptions, however, this dependence can be expressed as
a relation:

R = f(qi; vi; qj)jqi; qj 2 Q; vi 2 Vig;

specifying all tuples (qi; vi; qj) such that when the quality
attribute qi takes the value vi 2 Vi, the quality attribute
qj cannot be observed. For example, the relation R may
contain the tuple (ServiceIsAlive, FALSE, ResponseTime)
since the response time of a service that is not alive cannot
be observed.

A description of the quality attribute qi is a cumulative
probability distribution …i : Vi ! (0; 1) over all possible val-
ues of the attribute. For example, a description of the qual-
ity attribute ResponseTime could be the following: \the re-
sponse time is: less than 0.1s with probability 30%, less than
0.5s with probability 70%, and less than 1s with probability
100%".

A quality advertisement, as published by a SLA, describes
a subset „Q µ Q of quality attributes.

Service providers are rational, and they can advertise a
false QoS. To overcome this problem, SLAs can be extended
with a clause that punishes providers for not keeping their
promises. The SLA deflnes the penalties that must be paid
by the provider to the client if the delivered QoS is less than
advertised. [8] shows that appropriately scaled penalties
that depend on the difierence between the delivered and the
advertised QoS make it rational for all providers to advertise
the QoS honestly.

Our monitoring mechanism relies on the clients to provide
the information required to estimate the delivered QoS. Af-
ter every interaction, the client observes a value for some (or
possibly all) of the quality attributes specifled in the SLA.
A quality observation is a vector containing a value for each
of the quality attributes specifled in the SLA: i.e., o = (vi),
where vi 2 Vi [fnullg for all qi 2 „Q. Since not all combi-
nations of values can occur simultaneously (because of the
constraints deflned by the relation R), the quality attribute
qj will have the value vj = null if and only if some other
quality attribute qi has the value vi, and (qi; vi; qj) 2 R.

A trusted RM is responsible for gathering and aggregating
the feedback from the clients. The feedback is used to com-
pute the delivered QoS and to update (in an application-
dependent manner) the reputation information about the
service provider. The RM publishes periodically, at the end
of every period of time, the monitored value for the QoS.
When the monitored QoS is less than advertised in the SLA,
all clients that received the service in the last period are en-
titled to penalties paid by the corresponding providers. The
providers that do not pay their penalties are excluded from
the market: e.g., are listed on black lists and will be avoided
by future clients.

The feedback messages submitted by the clients consist of
a set of quality reports about the interactions between the
client and service providers. One message can thus compress
information about the several transactions with several ser-
vice providers. We assume that quality observations can be
derived automatically from the messages exchanged between
the client and the provider. To facilitate the reporting, the

RM makes available the monitoring and reporting code that
allows the clients to automatically submit feedback.

Although feedback is by default reported honestly, clients
can tamper with the reporting code when they increase their
utility by doing so. Let ¢ > 0 be an upper bound on the
utility increase an agent can obtain by lying, as, for example,

† falsely reporting low quality decreases the reputation
of the provider, who may be forced, in the future, to
decrease the price of service;

† the decreases in reputation due to a false report
may also drive away other clients, leaving the service
provider more available to the requests of the lying
agent;

† falsely reporting high quality could attract rewards or
preferential treatment from the provider.

Tampering with the reporting code is costly, and we de-
note this cost by C. The same modifled code can be used
repeatedly or shared by several clients, and therefore, the
marginal cost of one false report is often smaller than ¢.
The potential advantage a client can obtain by lying moti-
vates the need for measures to ensure honesty.

Opposed to traditional techniques, our approach is to
make lying uninteresting, rather than impossible. We use
a minimum of cryptographic tools, and propose a payment
mechanism that rewards honesty. The RM will pay some-
thing for every submitted feedback, and the payments will
be scaled such that, in expectation, the reward from telling
the truth is better than the reward when lying by at least ¢.
This property guarantees that no agent (or small coalition
of agents) has the incentive to tamper with the reporting
code.

However, before presenting in more detail the incentives
that drive clients to report honestly, Section 3 presents the
interaction protocol and Section 4 gives more implementa-
tion details of the QoS monitoring framework.

3. INTERACTION PROTOCOL
The participants in our environment are the following:

service providers advertise SLAs and ofier the correspond-
ing services; clients choose SLAs and invoke the respective
services; service directories facilitate the matching between
clients and providers; RMs collect and aggregate feedback
from the clients; a bank handles payments. The RMs and the
bank are trusted parties. A RM can be integrated into a ser-
vice directory in order to enable e–cient, reputation-aware
SLA selection. In this case, the service directory integrating
a RM is assumed to be trusted.

Figure 1 illustrates the interactions between the aforemen-
tioned participants:

1. Providers advertise SLAs to a service directory (1a).
Each SLA uniquely identifles the service provider and the
service functionality, for example by referring to a WSDL
service description, and deflnes the price and QoS for ser-
vice invocation. The service directory assigns a suitable RM
for each SLA advertisement, which shall be used for feed-
back reporting. The instantiation of a RM for a new SLA
(1b) requires solving a linear optimization problem, which
will be discussed in Section 5. Advertised SLAs remain valid
for a period of time specifled by the provider. After expira-
tion, they are removed from the directory. Service directo-
ries may support leases, allowing service providers to refresh

WWW 2007 / Track: Web Services Session: SLAs and QoS

1005

Directory
Reputation

Mechanism
Bank

(1a) S
LA

publication

(2) SLA discovery

(3
)

C
o

n
tr

a
c

t
e
s

ta
b

li
s

h
m

e
n

t

(4) Payment for service

(5
)

S
e
rv

ic
e

in
v
o

c
a

ti
o

n
(s

)

(6) Feedback reportin
g

(8a) Report

payment

(8b) Request penalty paym
ent

Client

Provider

(7) Feedback aggregation

(1b)

Directory
Reputation

Mechanism
Bank

(1a) S
LA

publication

(2) SLA discovery

(3
)

C
o

n
tr

a
c

t
e
s

ta
b

li
s

h
m

e
n

t

(4) Payment for service

(5
)

S
e
rv

ic
e

in
v
o

c
a

ti
o

n
(s

)

(6) Feedback reportin
g

(8a) Report

payment

(8b) Request penalty paym
ent

Client

Provider

(7) Feedback aggregation

(1b)

Figure 1: Interaction protocol involving a RM.

SLA advertisements. Each SLA receives a unique SLA-ID,
computed as a secure hashcode of the SLA.

2. Clients search for advertised SLAs according to func-
tional and non-functional criteria, as well as according to
reputation information. To this end, clients access a direc-
tory and a RM. If the RM is integrated within the direc-
tory, reputation-based flltering constraints can be directly
included in the directory query. Clients may inspect reputa-
tion information speciflc to a SLA, or aggregated reputation
information for a service provider.

3. The client and the chosen provider establish a con-
tract for a given SLA, for a given period of time. The client
sends a request message to the service provider, including
Client-ID, SLA-ID, and the number of requested service in-
vocations, Nr-Invoc. The service provider may reject the
request, if it (temporarily) cannot meet the conditions of
the SLA. The response message sent by the service provider
is a non-forgeable service invocation capability (SIC), valid
for Nr-Invoc service invocations according to the conditions
advertised in the SLA SLA-ID. The SIC will also be used
by the client to report feedback.

4. The client pays for the agreed number of service invoca-
tions (i.e., Nr-Invoc times the price stated within the SLA).
The payment message includes the SIC, and the bank re-
turns the signed SIC in order to certify successful payment.

5. The client requests the service, and the provider re-
sponds. For each service invocation, the client has to pro-
vide a valid SIC signed by the bank. Hence, the service
provider can easily determine that the client has payed for
the SLA. The service provider keeps track of the number of
service invocations for each valid SIC in order to ensure that
this number does not exceed the contracted Nr-Invoc value.
The client monitors the QoS parameters to be reported to
the RM.

6. The client sends feedback to the RM. The feedback
contains the SIC signed by the bank, and a timestamped
series of quality reports. For each SIC, the client may send
between 1 and Nr-Invoc reports. The quality reports need
not necessarily be aggregated within a single message. I.e.,
for the same SIC, the client may send several messages with
a varying number of quality reports. The RM does not verify
whether a service was actually invoked by the client, but it

ensures that the client paid for the invocation. I.e., the RM
rejects reports if the SIC has not been signed by the bank.

7. The RM aggregates received feedback at the end of
each time period. From all valid quality reports about a
SLA, the RM estimates the actually delivered QoS by com-
puting the distribution of values (i.e., histogram) for every
quality attribute described by the SLA. Feedback can also
be used to update the reputation of the service provider.

8. The RM pays valid reports as described in Section 5
(8a). Finally, the RM publishes the monitored QoS value
for the current period and notifles the providers about the
penalties they must pay (8b). Service providers who do not
pay the agreed penalties may be put on a black list by the
RM and consequently will be avoided by clients upon service
selection.

4. IMPLEMENTATION OF A PROTOTYPE
To validate the model discussed in the previous sections,

we implemented a prototype of the QoS monitoring frame-
work as a light-weight add-on on top of existing web-service
middleware (Axis4). The framework exposes three types
of components: directory services, reputation mechanisms,
and banks. It also uses external certiflcation authorities in
order to setup a public key infrastructure (PKI). The users
of the framework (i.e., the clients and the service providers)
are provided with appropriate libraries in order to facilitate
the deployment of applications.

As a general principle, all components expose two kind of
interfaces:

† a web service exposing the functionality available to
the users (providers and clients) of the framework. We
will refer to this web service as the public web service
(respectively the public interface).

† a web service exposing the functionality available to
the other components within the framework. For secu-
rity reasons, providers and clients do not have access
to this web service. By abusing the terminology we
will refer to this web service as the private web service
(respectively the private interface).

The certiflcation authority (CA) must provide the stan-
dard functionality associated to this role: creation and sign-
ing of digital X:509 certiflcates, validation of certiflcates,
and revocation of expired or compromised certiflcates. For
testing purposes we implemented a demo CA in our frame-
work, however, any CA with a web service interface may
be used. All parties (clients, providers, as well as directory
services, reputation mechanisms and banks) are required to
have valid identity certiflcates; these will be used to sign,
encrypt, and authenticate exchanged messages. In our cur-
rent version, we assume that CAs enforce unique identities
and unique names.

The directory service is implemented as a wrapper around
one or several UDDI and WSLA repositories. The public
interface of the directory allows service providers to regis-
ter, modify and delete service descriptions and service level
agreements. Service registrations are requests by providing
standard WSDL documents, signed by the provider. The
directory checks the validity of the signature, and forwards
the request to the UDDI repository (we used JUDDI5 as
4http://ws.apache.org/axis/
5http://ws.apache.org/juddi/

WWW 2007 / Track: Web Services Session: SLAs and QoS

1006

the implementation of UDDI). The business key returned
by the UDDI repository is returned to the provider, but
is also stored by the directory next to the identity of the
provider. Any subsequent modiflcations to existing service
descriptions are flrst validated by the directory in order to
avoid malicious corruption of WSDL documents.

Service providers may announce several SLAs for the same
service. The registration of one or several SLAs is made
by providing one, respectively several WSLA documents,
describing the non-functional characteristics of the service.
The directory flrst checks the validity of the business key
against the identity of the provider, and then forwards the
request to a proprietary WSLA repository6. The WSLA
document describes the quality attributes of the service, by
providing a cumulative distribution function on the values
of each attribute. The quality attributes and possible values
are described in an ontology.

Clients can search the directory for services that fulflll
functional and non-functional requirements. Non-functional
requirements are specifled as a list of constraints that must
be simultaneously met. Every constraint specifles a tuple
(qi; vj ; pk), meaning that the client expects for the quality
attribute qi a value higher than vj with probability greater
than pk. E–cient queries of the WSLA repository can be
implemented by indexing the WSLA documents according
to all possible tuples (qi; vj).

The private interface of the directory is used by the Bank
to signal the service providers that pay (or do not pay) the
required penalties. Service providers that refuse to pay the
penalties are eventually placed on a black list, and are ex-
cluded from the result set returned to the clients.

Among the modules provided by our framework, the bank
is the simplest one. The public interface of the bank in-
cludes the traditional operations (i.e., account creation, de-
posits, balance checks and withdrawals) as well as two func-
tions required to support the interaction protocol in Fig-
ure 1. The flrst, paySIC(SIC, signatureOfClient) is used
by clients to pay for a service invocation capability (SIC)
in step 4 of the interaction protocol. The bank signs the
SIC as a proof of payment, and returns it the client. The
second, payPenalty(bill, signatureOfProvider) is used
by providers to pay the penalties resulting from delivering
lower than advertised QoS (step 8). The bills are created
periodically by the reputation mechanism, and re°ect the
difierence between the advertised and delivered quality lev-
els. Providers can instruct the bank to automatically pay
the penalty bills.

The private interface of the bank allows the reputation
mechanism to announce the penalties that should be paid
by a provider for not respecting the terms of the SLA.
In response to such announcements the bank notifles the
provider about the pending payment, or automatically pays
the penalty if instructed so by the service provider.

Clients submit feedback reports by using the public inter-
face of the reputation mechanism. One message may contain
a set of reports, made up of:

† quality observations (as deflned in Section 2) for one
or several SLAs

6Our current implementation uses a MySQL database to
implement the WSDL repository, with appropriate indexes
to facilitate the search of services with the desired quality
levels

† the corresponding SICs, signed by the bank

† the signature of the client.

The RM checks the validity of the client’s signature, and
verifles the signature of the bank on the SIC. All reports
about a SLA beyond the number specifled in the SIC are
discarded.

The private interface of the reputation mechanism is used
by the directory in order to query the reputation of certain
service providers.

All components of the framework also include code for
house-keeping operations like maintenance of databases,
purging expired records, revoking expired certiflcates, etc.
This code can run either as a separate demon process when
the middleware allows it, or as part of the calls to the public
or private web services.

5. INCENTIVES FOR TRUTHFUL RE-
PORTING

An essential component of our mechanism is a payment
scheme that rewards clients for honestly reporting feedback.
Such payments can be constructed by comparing every re-
port with some other report (called the reference report)
submitted by a difierent client about the same SLA. As the
two reports refer to the same service, there is a link between
them; this link will be exploited such that whenever the ref-
erence report is true, it also becomes in the reporter’s best
interest to report the truth. Honest reporting thus becomes
a Nash equilibrium in our environment [17].

The simplest payment rule pays a report only if it matches
(i.e., has the same value as) the reference report. For exam-
ple, a negative report about the SLA that describes only the
attribute ServiceIsAlive is paid only if the reference report is
negative as well. However, the payments depend on the ac-
tual value of report, and a negative report is paid difierently
from a positive report.

The reason why such payment rules encourage truthful
reporting can be explained by the subtle changes in beliefs
triggered by the private experience of a client with a given
service provider. Although clients know that the service
provider has all the incentives to deliver the promised QoS,
they also realize that the delivered QoS will only in expec-
tation equal the advertised one. Environmental noise and
other unpredictable events will perturb the delivered QoS,
making it higher in some rounds, and smaller in others. This
is why the current experience of a client also conveys infor-
mation about the immediately future interactions of other
clients with the same provider.

It is therefore an acknowledged empirical fact [22] (also
in full accordance with Bayesian theory) that an agent’s
posterior belief about the observation of another client (that
receives the service in the same conditions) depends on the
private experience of the agent.

For example, a client that has just had a negative expe-
rience believes that the clients in the same round will prob-
ably experience similar problems. Thus, she expects that
the reference report used to compute her payment from the
RM will correspond to a QoS that is slightly lower than ad-
vertised. On the contrary, a satisfled client is more likely
to believe that other clients will be satisfled as well; there-
fore, she expects a reference report corresponding to slightly
higher QoS than advertised.

WWW 2007 / Track: Web Services Session: SLAs and QoS

1007

The payments are designed such that a negative report
maximizes the expected return only when clients expect a
negative reference report with probability higher than adver-
tised. And vice-versa for a positive report. Given that the
reference report is true, the client maximizes her returns by
reporting honestly, which makes truth-telling a Nash equi-
librium. This means that no agent can gain an advantage by
deviating from the protocol. Miller et al. [17] present a game
theoretic analysis of such reporting scenarios and show that
it is always possible to choose payments that make truth-
telling optimal.

Concretely, our RM computes the payment made to every
client in the following way. At the end of every period, all
quality reports about the same SLA are grouped in a single
set. Remember that each report corresponds to a quality
observation, and therefore consists of an array of values,
each corresponding to a quality attribute advertised by the
provider.

For each report, r = (vr
i), the RM randomly takes a ref-

erence report, rr = (vrr
i), coming from a difierent client.

Every pair of matching non-null values for the attribute qi

(i.e., vr
i = vrr

i 6= null) contributes with ¿i(v
r
i) to the pay-

ment for the report r.
If (ra

j) are all the reports submitted by client a, and (rra
j)

are the corresponding reference reports, the total payment
received by a is:

P ay(a) =
X

j

P ay(ra
j ; rra

j); P ay(r; rr) =
X

i

¿i(v
r
i ; vrr

i);

where: ¿i(v
r
i ; vrr

i) =

‰
0 if vr

i 6= vrr
i or vr

i = null
¿i(v

r
i) if vr

i = vrr
i

The payment mechanism is fully specifled by announcing
the amounts ¿i(vi), paid for a report matching the reference
report on the value vi of the quality attribute qi.

We compute the payment mechanism through automated
mechanism design [4]. Instead of a closed form speciflcation,
we deflne the mechanism through a set of constraints that
act on the decision variables (i.e., the payments ¿(¢; ¢) in
our case). By adding an objective function, we get an opti-
mization problem that solves for the best possible payment
mechanism in a given context.

The optimal payment mechanism minimizes the total cost
of the RM, while guaranteeing that honesty is better than
lying by at least the desired margin. The cost of the RM
will depend on the SLA, so the payment mechanism must
be instantiated for every SLA.

The expected cost for an honest report equals the
weighted sum of all amounts ¿i(vj). The probability that
payment ¿i(vj) is made equals the probability that both the
report and the reference report have the value vj for the
quality attribute qi. Since each probability equals …i(vj)
and the two events are assumed independent, we have:

E[Cost] =
X

qi2 „Q

X

vj 2Vi

¿i(vj)…i(vj)2; (1)

To compute the expected revenue obtained by a client
when lying or telling the truth, we must flrst describe the
belief of a client regarding the reference report chosen by the
reputation mechanism. Given the real quality observation
o = (vi), we assume that the belief regarding the reference
report change slightly in the direction of o. If …i(vj) is the
advertised probability that the attribute qi takes the value
vj , the belief of the client assigns:

† at least the probability …i(vi) +
¡
1 ¡ …i(vi)

¢
„° to the

event that the reference report also has the value vi

for the attribute qi, and,

† at most the probability …i(vj)(1 ¡ °) to the event that
the reference report has some other value vj 6= vi for
the attribute qi.

If vi = null (no observation was possible for the attribute
qi), we assume that the beliefs regarding the reference report
remain unchanged. Both „° and ° take values between 0 and
1, and depend on the speciflc applications.

Honest reporting can be guaranteed when:

† for any quality attribute qi, truthfully reporting max-
imizes the expected payment by at least –:

£
…i(vi) +

¡
1 ¡ …i(vi)

¢
„°

⁄
¿i(vi) >

h
…i(vj)(1 ¡ °)

i
¿i(vj) + –;

(2)

for all qi 2 „Q and all vi 6= vj 2 Vi,

† dependencies between quality attributes do not break
the honest reporting incentives (i.e., since matching
null values do not contribute to the payment, the pay-
ments for the values that cause the null reports must
be large enough):

[…i(vi) + (1 ¡ …i(vi))„°] ¿i(vi) >
h
…i(vj)(1 ¡ °)

i
¿i(vj) + …k(vl)¿k(vl) + –;

(3)

for all qi; qk 2 „Q, vi 6= vj 2 Vi, vl 2 Vk such that
the value vi of the attribute qi makes impossible the
observation of the attribute qk: i.e., (qi; vi; qk) 2 R.

The margin – must ofiset the worst case incentive for ly-
ing. This value is very conservative and can be relaxed in
real applications by considering that not all lies can simul-
taneously attract the worst case incentives.

The objective function in (1) together with the constraints
deflned by (2) and (3) deflne a linear optimization problem
that accepts as a solution the cheapest incentive-compatible
payment mechanism for a given SLA. The number of vari-
ables is equal to the overall number of values in all domains
Vi, i.e.,

P
qi2 „Q card(Vi). The number of constraints is on

the order of
P

qi2 „Q card(Vi)
2.

Extending our framework to include other types of depen-
dencies or correlations between quality attributes does not
pose theoretical challenges. Optimal payments that ensure
truthful reporting can still be computed by extending the
optimization problem with constraints like (3) that limit
the gains of lying on pairs of values for correlated quality
attributes. Intuitively, the additional constraints isolate in-
dependent groups of attributes, and guarantee truth-telling
incentives. However, the notation that allows the deflnition
of such payments is complicated, and outside the space lim-
its set for this paper.

The payments naturally decrease with the margins, –, re-
quired for truth-telling. Therefore, the expected cost of the
RM can be decreased either by decreasing the beneflts clients
may obtain by manipulating their reports, or, by increasing
the cost of tampering the reporting code. While the latter
direction is outside the scope of this paper, the following two
ideas can be used to address the former.

WWW 2007 / Track: Web Services Session: SLAs and QoS

1008

First, we can make sure that the penalties paid back by
the provider do not give incentives to underrate the quality
of the service. For that, we impose that the penalty paid
to client a depends only on the QoS delivered to all other
clients, except a. Given a large enough number of agents,
the penalties paid by the provider are expected to be the
same, but the feedback reported by a has no in°uence on
the penalties paid to a.

A second interesting direction is to fllter out the reports
that are very far from the common distribution [9]. Intu-
itively, these reports are either erroneous, or intentionally
try to introduce signiflcant perturbations towards desired
values.

6. COLLUSION AMONG CLIENTS
The payments deflned in the previous section do not have

truthful reporting as the unique equilibrium. Always report-
ing the same values is also an equilibrium strategy, since
reports will surely match the corresponding reference re-
ports. Moreover, it is easy to see that such constant re-
porting strategies yield higher payments than the truthful
reporting. Fortunately, such coalitions on lying strategies
can be rendered unprofltable when a fraction of reports are
guaranteed to be honest.

We believe it is reasonable to rely on some fraction of
truthful reports for several reasons. First, empirical stud-
ies show that a non-negligible fraction of users are altruists
who always report the truth. Second, given that the frame-
work already provides the default (honest reporting) code,
some clients won’t have the knowledge to temper with the
reporting code even if they want to. Third, the reputation
mechanism can probatively get honest reports by contract-
ing specialized monitors to probe the service [8]. When the
fraction of honest reports is large enough, individual clients
cannot improve their payment by lying.

The idea behind flghting lying coalition is to make them
unstable. We start from the assumption that at most
‚ 2 (0; 1) percent of the clients can collude on a lying strat-
egy. Then we compute a payment scheme that makes it
individually better for a colluder to shift to the honest re-
porting strategy, knowing that 1 ¡ – percent of the reports
are honest. Since the other coalition members cannot detect
(and punish) deviators, all rational colluders will break the
coalition and report honestly. The coalition is unstable in
the sense that it is not profltable for coalition members to
keep their commitment to the coalition.

Let us analyze the additional constraints on the optimiza-
tion problem deflning the payments. An honest reporter now
expects that the reference report will be part of a coalition
with probability at most ‚. To make sure that the client still
has the incentive to truthfully report the observed value vi

instead of the collusion value vj , the constraint in (2) be-
comes:

(1 ¡ ‚) […i(vi) + (1 ¡ …i(vi))„°] ¿i(vi) >

(1 ¡ ‚)
h
…i(vk)(1 ¡ °)

i
¿i(vj) + ‚¿i(vk) + –;

(4)

for all qi 2 „Q and all vi 6= vj 2 Vi. Similarly, the constraint
(3) becomes:

(1 ¡ ‚)
£
…i(vi) + (1 ¡ …i(vi))„°

⁄
¿i(vi) >

(1 ¡ ‚)
h£

…i(vj)(1 ¡ °)
⁄
¿i(vj)

+…k(vl)¿k(vl)
i

+ ‚
¡
…i(vj) + …k(vl)

¢
+ –;

(5)

for all quality attributes qi; qk 2 „Q, values vi 6= vj 2 Vi,
vl 2 Vk, and tuples (qi; vi; qk) 2 R.

The linear problem that minimizes (1) under the set of
constraints (4) and (5) deflnes the incentive-compatible pay-
ments that are also ‚-coalition proof.

7. EXAMPLE
We exemplify the mechanism described above with a sim-

ple weather service. The client submits a geographical lo-
cation and the service returns the weather forecast for the
next time interval.

The SLA advertises availability p1 (i.e., the probability
that a request is answered before a deadline td is p1) and
correctness p2 (i.e., the probability of returning the correct
information7 is p2). Formally, this SLA is expressed as the
probability distribution …1 = fp1; 1 ¡ p1g for the quality
attribute:

Q1 = ResponseBeforeDeadline 2 V1 = f0(false); 1(true)g;

and the probability distribution …2 = fp2; 1 ¡ p2g for the
quality attribute:

Q2 = InformationIsCorrect 2 V2 = f0(false); 1(true)g;

Naturally, the relation R deflning the dependency between
quality attributes contains only the tuple (Q1; 0; Q2): if
no response is received, checking for correct information is
meaningless.

A quality observation (and therefore a quality report) is
a vector o = (v1; v2) where v1 2 f0; 1g and v2 2 f0; 1; nullg.
The payment scheme used by the RM is deflned by the four
positive amounts ¿1(1); ¿1(0); ¿2(1) and ¿2(0), paid when the
non-null value of Q1 or Q2 matches the corresponding value
of the reference report. The maximum beneflt a client can
obtain by misreporting one observation is ¢ = 0:01 (all val-
ues hereafter are normalized to the price of service, assumed
1), and the cost of tampering with the default monitoring
code is C = 10. A client is assumed to generate at most
N = 1000 service requests within the same period of time,
so the worst case truth-telling margin that must be enforced
by the RM is – = ¢ ¡ C=N=2 = 0:5%.

The belief of one client regarding the value of the reference
report changes by at least „° = ° = 20% in the direction of
the actual observation. The probability that the reference
report contains 1 for Q1 is: P r1[1j1] = p1 + (1 ¡ p1)„° if the
client also received a response, or P r1[1j0] = p1 ¡ (1 ¡ p1)„°
if the client did not receive a response. Similar equations
can be written for the probabilities P r2[1j1] and P r2[1j0]
deflning the beliefs regarding the value of Q2 in the ref-
erence report. From (1), (2) and (3), Figure 2 presents
the linear optimization problem that deflnes the minimum
payments guaranteeing the truth-telling equilibrium. When
p1 = p2 = 90%, we obtain the payments: ¿1(1) = 0:064,
¿1(0) = 0:680, ¿2(1) = 0:025, ¿2(0) = 0:225, and an ex-
pected cost of 0.081. These rather high payments can be
further decreased by an order of magnitude using a fllter-
ing mechanism: (i.e., the RM probabilistically selects the
reports that will contribute towards estimating delivered
quality). Similar to the payment mechanism, the flltering
mechanism compares a report r with a set of peer reports,
and specifles the probability of discarding r. In [9], we show

7The two criteria must be used together, since otherwise
a service can achieve almost perfect availability by always
returning the same information.

WWW 2007 / Track: Web Services Session: SLAs and QoS

1009

min E[Cost] = p2
1¿1(1) + (1 ¡ p1)2¿1(0)+

p2
2¿2(1) + (1 ¡ p2)2¿2(0);

s:t: P r1[1j1]¿1(1) > P r1[0j1]¿1(0) + –;
P r1[0j0]¿1(0) > P r1[1j0]¿1(1) + –;
P r2[1j1]¿2(1) > P r2[0j1]¿2(0) + –;
P r2[0j0]¿2(0) > P r2[1j0]¿2(1) + –;
P r1[0j0]¿1(0) > P r1[1j0]¿1(1)+

p2¿2(1) + –;
P r1[0j0]¿1(0) > P r1[1j0]¿1(1)+

(1 ¡ p2)¿2(0) + –;
¿1(1); ¿1(0); ¿2(1); ¿2(0) ‚ 0

Figure 2: Linear optimization problem deflning the
payment mechanism.

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

tolerated coalition fraction (%)

ex
pe

ct
ed

 p
ay

m
en

t f
or

 o
ne

 r
ep

or
t

Figure 3: Expected cost of a payment mechanism
that is robust against collusion.

that when designed together, the payment mechanism and
the flltering mechanism enforce one another and consistently
decrease the expected cost of the RM by a factor of 10. The
combination of the two techniques brings down the expected
payments to below 1% of the price of service, making them
practical.

By modifying the optimization problem as suggested in
Section 6, we obtain a payment mechanism that is also ro-
bust against coalitions that cover at most a fraction ‚ of
the reports. The dependence of the expected cost on ‚ is
plotted in Figure 3.

8. RELATED WORK
Our present work extends the line of research that argues

for the use of reputation information in service markets.
RMs have emerged as e–cient tools for service discov-

ery and selection [25]. When electronic contracts cannot
be enforced, users can protect themselves against cheating
providers by looking at past behavior (i.e., the provider’s
reputation). Lie et al. [11] present a QoS-based selection
model that takes into account the feedback from users as
well as other business related criteria. The model is exten-
sible and dynamic. In the same spirit, [10] proposes verity,
a QoS measure that takes into account both reputation and

the terms of the SLA. An interesting approach is proposed
in [6]. The authors argue that the expectations of a client
greatly in°uence the submitted feedback, and therefore both
should be used when assessing the QoS of a provider. Both
[14] and [1] propose concrete frameworks for service selection
based on the reputation of the service provider. However,
reputation-based selection gives only indirect incentives, as
clients learn to avoid deceitful providers.

As opposed to the above solutions, we mainly use the
feedback reported by the clients to substitute QoS monitor-
ing. We believe that the information contained in the re-
ports should be used directly and immediately to assess the
honesty of the advertisement made by the provider. More-
over, this information should have direct repercussions on
the gains of the provider through contractual penalties. In
this way, providers get immediate incentives to exert efiort.

The present paper extends our previous work [8] in several
essential directions. First, we describe a detailed framework
for reliable QoS monitoring based on client feedback and in-
clude the interaction protocols between the difierent actors
in our environment. Second, we relax the assumptions be-
hind our previous mechanism, and accommodate QoS mon-
itoring along several dimensions. Third, we describe simpler
payment systems that minimize the budget required by the
RM and address the problem of collusion.

This paper also relates to the large body of research on
monitoring and enforcing of electronic contracts ([29], [18],
[13],[7],[3]).

Reliable information regarding the QoS of advertised ser-
vices is essential for service selection and composition. In
references [30, 31] the authors present AgFlow, a middleware
for quality-driven service composition. In AgFlow, the QoS
of web services is evaluated using an extensible multidimen-
sional QoS model, and the selection of individual services
aims at optimizing the QoS of the composite service.

Reference [27] introduces QoS-based selection of seman-
tic web services, i.e., web services that provide well-deflned,
computer-interpretable semantics [16]. In reference [27] the
authors describe a QoS model using the Web Service Mod-
eling Ontology [28].

9. CONCLUSION
A service market based on SLAs between service providers

and clients can only function well if advertised SLAs are
credible. However, service providers may deviate from their
advertised QoS in order to reduce the costs of service pro-
visioning. Hence, QoS monitoring is essential, but neither
service-side nor client-side monitoring can be trusted.

In this paper we presented a novel approach to achieve ob-
jective QoS monitoring by aggregating quality ratings from
clients within a RM, which provides incentives for the clients
to report honestly. The RM pays clients for submitting qual-
ity ratings, and the payments are designed such that lying
generates expected losses that ofiset the potential beneflts
from misreporting.

10. ACKNOWLEDGEMENTS
We thank Romain Revol for his important contribution

to the implementation of the QoS monitoring framework
described in this paper.

WWW 2007 / Track: Web Services Session: SLAs and QoS

1010

11. REFERENCES
[1] B. Alunkal, I. Veljkovic, G. Laszewski, and K. Amin.

Reputation-Based Grid Resource Selection. In
Proceedings of AGridM, 2003.

[2] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey,
H. Ludwig, J. Pruyne, J. Rofrano, S. Tuecke, and
M. Xu. Web Services Agreement Speciflcation
(WS-Agreement), Version 2005/09,
http://www.ggf.org.

[3] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti.
Run-Time Monitoring of Instances and Classes of
Web-Service Compositions. In Proceedings of ICWS
2006, 2006.

[4] V. Conitzer and T. Sandholm. Complexity of
mechanism design. In Proceedings of the Uncertainty
in Artiflcial Intelligence Conference (UAI), 2002.

[5] A. Dan, D. Davis, R. Kearney, A. Keller, R. P. King,
D. Kuebler, H. Ludwig, M. Polan, M. Spreitzer, and
A. Youssef. Web services on demand: WSLA-driven
automated management. IBM Systems Journal,
43(1):136{158, 2004.

[6] V. Deora, J. Shao, W. Gray, and J. Fiddian. A
Quality of Service Management Framework Based on
User Expectations. In Proceedings of ICSOC, 2003.

[7] Y.-J. Hu. Trusted Agent-Mediated E-Commerce
Transaction Services via Digital Certiflcate
Management. Electronic Commerce Research, 3, 2003.

[8] R. Jurca and B. Faltings. Reputation-based Service
Level Agreements for Web Services. In Service
Oriented Computing (ICSOC - 2005), volume 3826 of
LNCS, pages 396 { 409. 2005.

[9] R. Jurca and B. Faltings. Minimum payments that
reward honest reputation feedback. In Proceedings of
the ACM Conference on Electronic Commerce, Ann
Arbor, Michigan, USA, June 11-15 2006.

[10] S. Kalepu, S. Krishnaswamy, and S. Loke. Verity; A
QoS Metric for Selecting Web Services and Providers.
In Proceedings of WISEW, 2003.

[11] Y. Liu, A. Ngu, and L. Yeng. QoS Computation and
Policing in Dynamic Web Service Selection. In
Proceedings of WWW, 2004.

[12] H. Ludwig, A. Dan, and R. Kearney. Cremona: An
architecture and library for creation and monitoring of
WS-Agreements. In ICSOC ’04: Proceedings of the
2nd international conference on Service oriented
computing, pages 65{74, New York, NY, USA, 2004.
ACM Press.

[13] K. Mahbub and G. Spanoudakis. A framework for
requirements monitoring of service based systems. In
Proceedings of ICSOC, 2004.

[14] E. M. Maximilien and M. P. Singh. Toward
Autonomic Web Services Trust and Selection. In
Proceedings of ICSOC, 2004.

[15] M. Maximilien and M. Singh. A Framework and
Ontology for Dynamic Web Services Selection. IEEE
Internet Computing, 8(5):84{93, 2004.

[16] S. A. McIlraith and D. L. Martin. Bringing semantics
to web services. IEEE Intelligent Systems,
18(1):90{93, 2003.

[17] N. Miller, P. Resnick, and R. Zeckhauser. Eliciting
Informative Feedback: The Peer-Prediction Method.
Management Science, 51:1359 {1373, 2005.

[18] Z. Milosevic and G. Dromey. On expressing and
monitoring behaviour in contracts. In Proceedings of
EDOC, Lausanne, Switzerland, 2002.

[19] OWL-S. DAML Services,
http://www.daml.org/services/owl-s/.

[20] I. Papaioannou, D. Tsesmetzis, and M. Roussaki, I.
abd Anagnostou. A QoS Ontology Language for
Web-Services. In Proceedings of the International
Conference on Advanced Information Networking and
Applications (AINA 2006), 2006.

[21] M. P. Papazoglou and D. Georgakopoulos.
Introduction: Service-oriented computing.
Communications of the ACM, 46(10):24{28, Oct. 2003.

[22] D. Prelec. A bayesian truth serum for subjective data.
Science, 306(5695):462{466, 2004.

[23] S. Ran. A Model for Web Service Discovery with QoS.
ACM SIGecom Exchanges, 4(1):1{10, 2003.

[24] A. Sahai, V. Machiraju, M. Sayal, A. P. A. van
Moorsel, and F. Casati. Automated SLA monitoring
for web services. In DSOM, volume 2506 of Lecture
Notes in Computer Science, pages 28{41. Springer,
2002.

[25] M. P. Singh and M. N. Huhns. Service-Oriented
Computing. Wiley, 2005.

[26] W3C. Web services description language (WSDL)
version 1.2, http://www.w3.org/TR/wsdl12.

[27] X. Wang, T. Vitvar, M. Kerrigan, and I. Toma. A
QoS-aware selection model for semantic web services.
In 4th International Conference on Service Oriented
Computing (ICSOC 2006), Chicago, USA, Dec. 2006.

[28] WSMO. Web Service Modeling Ontology,
http://www.wsmo.org/.

[29] L. Xu and M. A. Jeusfeld. Pro-active Monitoring of
Electronic Contracts. Lecture Notes in Computer
Science, 2681:584{600, 2003.

[30] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam,
and Q. Z. Sheng. Quality driven web services
composition. In WWW, pages 411{421, 2003.

[31] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang. QoS-aware middleware
for web services composition. IEEE Trans. Software
Eng., 30(5):311{327, 2004.

WWW 2007 / Track: Web Services Session: SLAs and QoS

1011

