
ABSTRACT
Given a large collection of sparse vector data in a high dimensional 
space, we investigate the problem of finding all pairs of vectors 
whose similarity score (as determined by a function such as cosine 
distance) is above a given threshold. We propose a simple algorithm 
based on novel indexing and optimization strategies that solves this 
problem without relying on approximation methods or extensive 
parameter tuning. We show the approach efficiently handles a 
variety of datasets across a wide setting of similarity thresholds, 
with large speedups over previous state-of-the-art approaches.

Categories: H.3.3 [Information Search and Retrieval]: Search 
Process, Clustering
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Many real-world applications require solving a similarity search 
problem where one is interested in all pairs of objects whose 
similarity is above a specified threshold. Consider for example:
• Query refinement for web search: Search engines often suggest 

alternate query formulations. One approach to generating such 
suggestions is to find all pairs of similar queries based on the 
similarity of the search results for those queries [19]. Since the 
goal is to offer only high quality suggestions, we only need to 
find pairs of queries whose similarity score is above a threshold.

• Collaborative filtering: Collaborative filtering algorithms make 
recommendations by determining which users have similar 
tastes. Thus the algorithms need to compute pairs of similar users 
whose similarity is above some threshold.

• Near duplicate document detection & elimination: Especially 
in the area of document indexing, it is important to detect and 
purge documents that are equivalent. In many cases, the presence 
of trivial modifications make such detection difficult, since a 
simple equality test no longer suffices. Near duplicate detection 
is made possible through similarity search with a very high simi-
larity threshold.

• Coalition detection: Recent work has applied algorithms for 
finding all similar pairs within an application for identifying coa-
litions of click fraudsters [13].
While these applications are not all new, the scale of the problem 

has increased dramatically due to the web. The number of distinct 
search queries issued over a single week to any large search engine 
is in the tens of millions. Similarly, if one wishes to perform 
collaborative filtering on data from sites such as Amazon or 
NetFlix, the algorithms need to scale to tens of millions of users. 
Depending on the application, these domains could involve 
dimensionality equal to if not larger than the number of input 
vectors.

One solution often applied to deal with data of this scale is to 
apply approximation techniques. While in theory many 
approximation techniques allow for making the probability of error 
negligibly small by tuning appropriate parameters, in practice these 
algorithms are applied in a manner that results in a non-trivial 
amount of error (e.g. see [4, 8].) Recent work from the database 
community [1, 21] on finding all similar pairs has focused instead 
on solving the problem exactly, and within the context of a database 
management system. We also propose an exact solution to the 
problem, though we ignore issues of DBMS integration and focus 
solely on performance issues. We show that a parsimonious 
indexing approach combined with several other subtle yet simple 
optimizations yield dramatic performance improvements. We 
validate our algorithms on a dataset comprised of publicly available 
data from the DBLP server, and on two real-world web 
applications: generating recommendations for the Orkut social 
network, and computing pairs of similar queries among the 5 
million most frequently issued Google queries represented as 
vectors generated from their search result snippets.

Paper outline: We give a formal problem statement and define 
our terminology in Section 2. In Section 3 we describe related 
work. We present our algorithm in Section 4, where we limit 
attention to the cosine similarity metric. In some applications, the 
vector elements are binary; we therefore specialize the algorithms 
for this case. In the final part of this section, we extend the 
algorithms to disk resident data. We present the results of our 
empirical evaluation on large-scale memory and disk resident 
datasets in Section 5, and generalize our results to other similarity 
metrics in Section 6. In Section 7 we conclude with a summary of 
our contributions.

2.  PROBLEM STATEMENT
Given a set of real-valued vectors V v1 v2 … vn, , ,{ }=  of fixed 

dimensionality m , a similarity function sim x y,( ) , and a similarity 
threshold t , we wish to compute the set of all pairs x y,( )  and their 
similarity values sim x y,( )  such that x y, V∈  and sim x y,( ) t≥ . 
We assume the similarity function is commutative. Thus, if the pair 

x y,( )  meets the threshold, so does y x,( ) , and we need only 
include one in the result. We also assume vector values are non-
negative.

For concreteness, we initially focus on the case of unit-length 
normalized vector input and cosine similarity. Cosine similarity is 
widely used, and produces high quality results across several 
domains [8, 9, 19, 20]. Restricted to unit-length input vectors x  and 
y , cosine similarity is simply the vector dot product:

dot x y,( ) x i[ ] y i[ ]⋅
i
∑=

For many problem domains, especially those involving textual 
data, input vectors are sparse in that a vast majority of vector 
weights are 0. A sparse vector representation for a vector x  is the 
set of all pairs i x i[ ],( )  such that x i[ ] 0>  over all i 1…m= . We 
sometimes refer to such pairs as the features of the vector. The size 
of a vector x , which we denote as x , is the number of such pairs. 
Vector size should not be confused with vector length, or 
magnitude, which is typically denoted by x .

Scaling Up All Pairs Similarity Search
Roberto J. Bayardo

Google, Inc.
bayardo@alum.mit.edu

Ramakrishnan Srikant
Google, Inc.

srikant@google.com

Yiming Ma*

U. California, Irvine
maym@ics.uci.edu

WWW 2007 / Track: Data Mining Session: Similarity Search

131



Given a set of sparse vectors V , an inverted list representation 
of the set consists of m  lists I1 I2 … Im, , ,  (one for each 
dimension), where list Ii  consists of all pairs x w,( )  such that 
vector x  is in V , x i[ ] w= , and w  is non-zero. Each Ii  is a list 
and not a set since we may impose requirements on the order in 
which its elements appear.

For a given vector x  we denote the maximum value x i[ ]  over 
all i  as maxweight x( ) . For a given dimension i , we denote the 
maximum value x i[ ]  over all vectors x  in the dataset V  as 
maxweighti V( ) .

3.  RELATED WORK
The all-pairs similarity search problem is a generalization of the 

well-known nearest neighbor problem in which the goal is to find 
the nearest neighbors of a given point query. There is a wide body 
of work on this problem, with many recent works considering 
various approximation techniques [6, 10, 11, 12]. Approximation 
methods aim to reduce the dimensionality and/or size of the input 
vectors. The all-pairs similarity search problem has been directly 
addressed by Broder et al. in the context of identifying near-
duplicate web pages [4]. In this work, the problem is solved 
approximately by applying a sketching function based on min-wise 
independent permutations in order to compress document vectors 
whose dimensions correspond to distinct n-grams (called shingles). 
To further improve performance, and to avoid issues of false 
resemblance, the implementation removes the most frequent 
shingles, though the actual effect of this heuristic is not quantified. 
Our methods do not resort to approximation or discarding of 
frequent features, and thus our contribution is to scale exact 
methods to larger datasets. Additionally, the techniques we 
propose are orthogonal to some approximation approaches that 
reduce vector size such as min hashing, and can be combined with 
them for even greater improvements in scalability.

Our work is also related to work in information retrieval (IR) 
optimization [5, 14, 15, 16, 17, 22, 23]. In IR, each document can 
be represented by a sparse vector of weighted terms, indexed 
through inverted lists. The user query, itself a list of terms, can be 
represented by a sparse vector of those terms with certain (usually 
equal) weights. Answering the query then amounts to finding all, 
or the top k, document vectors with non-zero similarity to the 
query vector, ranked in order of their similarity. The above-cited 
works propose various optimizations for this problem, which 
Turtle and Flood [23] classify into two categories: term-at-a-time 
and document-at-a-time approaches. Optimization strategies for 
document-at-a-time processing typically exploit the fact that the 
user is looking for the top r  documents, and hence do not directly 
apply to our problem domain. The term-at-a-time strategies that 
are “safe” (complete), such as Turtle and Flood’s term-at-a-time 
max_score  optimization, are more applicable. Our work develops 
more powerful optimizations that exploit the particular 
requirements of the all-pairs similarity search problem.

The all-pairs similarity search problem has also been addressed 
in the database community, where it is known as the similarity join
problem [1, 7, 21]. The techniques proposed in this work fall into 
two categories. Signature based solutions convert an imprecise 
matching problem to a precise matching problem followed by a 
filtering phase to eliminate false positives. Inverted list based 
solutions exploit IR techniques such as those discussed above. We 
leverage and extend upon some of the ideas proposed in this work, 
and use them as comparison points in our experiments.

Other related work includes clustering of web data [2, 8, 19, 20]. 
These applications of clustering typically employ relatively 
straightforward exact algorithms or approximation methods for 
computing similarity. Our work could be leveraged by these 
applications for improved performance or higher accuracy through 
less reliance on approximation.

4.  ALGORITHMS
We now describe our algorithm that can be used to exactly 

(without approximation) solve the all-pairs similarity search 
problem. We present the algorithm as a series of refinements to 
simplify understanding of the various optimizations and 
engineering choices we made. We initially assume memory 
residence of the vectors and/or index structures, which allows each 
algorithm to solve the all-pairs problem with only a single pass 
over the data. Extensions for datasets that are larger than available 
memory appear in Section 4.6.

4.1 A Basic Inverted Index-Based Approach
One can naively solve the all-pairs similarity search problem by 

employing an IR system to build an inverted list index of the input 
vectors, and issuing each input vector as if it were a query to find 
the set of matching documents. Matching documents could then be 
filtered according to the similarity threshold, or the IR system itself 
could be modified to only return documents that meet the 
threshold. It is easy to see that such an algorithm produces correct 
results for any similarity function that must compare only those 
dimensions for which both inputs have non-zero weights. 
Unfortunately, there are several inefficiencies to this approach: (1) 
For each similar pair x y,( )  it wastes computation effort also 
generating the pair y x,( ) . (2) It builds a full inverted list index 
prior to generating any output, and (3) it requires both the index 
and the vectors themselves remain memory resident for high 
performance.

A better approach is to instead build the index dynamically as 
suggested in [21], and to store the vector weights within the 
inverted index itself. Score accumulation [14] can then be applied 
to compute the similarity function using the inverted index 
structure alone. An important detail is exactly how the index is 
accessed in order to accumulate the similarity score. Previous 
works in IR [23] and similarity join processing [21] use a heap data 
structure to merge the inverted lists corresponding to each feature 
of a given vector x . Such an approach is appealing in IR when 
only the first n  answers may be required, since only the initial 
portion of many lists may need to be accessed. However, in the 
case where all answers (meeting a particular score threshold) are 
required, each inverted list participating in the merge may often be 
scanned in its entirety. Our approach at exploiting the inverted lists 
is to instead scan each one individually and accumulate scores in a 
hash-based map. This approach offers improved locality and 
avoids the logarithmic overhead of the heap structure.

Pseudo-code for our map-based score accumulation approach, 
which we call All-Pairs-0, appears in Figure 1. The top-level 
function scans the dataset and incrementally builds the inverted 
lists. The Find-Matches-0 subroutine scans the inverted lists to 
perform score accumulation. We call any vector y  that is added to 
the weight accumulation map a candidate vector for x , and the 
vector pair x y,( )  a candidate pair. The algorithm checks the score 
of each candidate pair, and adds the pair in the result set if it meets 
the threshold.

4.2 Exploiting the Threshold During Indexing
Up to now we have consulted the similarity score threshold only 

to determine which candidate pairs make it into the result set. 
Previous work has described how to exploit a similarity threshold 
more aggressively in order to limit the set of candidate pairs that 
are considered [21, 23], but these approaches still involve building 
the complete inverted index over the vector input. Our approach is 
different than previous work in that rather than simply exploiting 
the threshold to reduce candidate pairs, we exploit the threshold to 
reduce the amount of information indexed in the first place. This 
approach dramatically reduces the number of candidate pairs 
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Figure 1.  A basic inverted index based approach.

ALL-PAIRS-0( , )

for each  do
FIND-MATCHES-0( , , )

for each  s.t.  do

return 

V t
O ∅←
I1 I2 … Im ∅←, , ,

x V∈
O O ∪← x I1 … Im, , t

i x i[ ] 0>
Ii Ii x x i[ ],( ){ }∪←

O

FIND-MATCHES-0( , , )

for each  s.t.  do
for each  do

for each  with non-zero weight in  do
if  then

return 

x I1 … Im, , t
A empty map from vector id to weight←
M ∅←

i x i[ ] 0>
y y i[ ],( ) Ii∈

A y[ ] A y[ ] x i[ ] y i[ ]⋅+←
y A

A y[ ] t≥
M M x y A y[ ], ,( ){ }∪←

M

considered and reduces overhead such as index construction and 
inverted list scanning during score accumulation.

The threshold-based refinement to our algorithm appears in 
Figure 2.

Figure 2.  An algorithm that exploits the threshold during indexing.

ALL-PAIRS-1( , )
Reorder the dimensions  such that dimensions with

the most non-zero entries in  appear first.
Denote the max. of  over all  as .

for each  do
FIND-MATCHES-1( , , )

for each  s.t.  in increasing order of  do

if  then

 ;; create 
return 

V t
1…m

V
x i[ ] x V∈ maxweighti V( )

O ∅←
I1 I2 … Im ∅←, , ,

x V∈
O O ∪← x I1 … Im, , t
b 0←

i x i[ ] 0> i
b b maxweighti V( ) x i[ ]⋅+←

b t≥
Ii Ii x x i[ ],( ){ }∪←
x i[ ] 0← x'

O

FIND-MATCHES-1( , , )

for each  s.t.  do
for each  do

for each  with non-zero weight in  do
;; Recall that  is the unindexed portion of 

if  then

return 

x I1 … Im, , t
A empty map from vector id to weight←
M ∅←

i x i[ ] 0>
y y i[ ],( ) Ii∈

A y[ ] A y[ ] x i[ ] y i[ ]⋅+←
y A

y' y
s A y[ ] dot x y',( )+←

s t≥
M M x y s, ,( ){ }∪←

M

 The main loop of the All-Pairs function now iterates over 
features from most to least frequent, and avoids indexing any 
vector features until a particular condition is met. The result is to 
index just enough of the least frequent features to ensure that any 
vector y  that has the potential of meeting the similarity threshold 
given x  must be identified as a candidate of x  during matching. 
The frequency-based feature ordering is not required for 
correctness; its effect is to heuristically minimize the length of the 
inverted lists.

By indexing only a subset of vector features, All-Pairs-1 reduces 
the overall number of candidate pairs that are considered by Find-
Matches. Also note that vector features that are indexed are 
removed from the vector itself in order to preserve memory and 
speed up the computation that remains after accumulating weights 
from the partial index. Overall, each vector feature is stored only 
once, either within the partial index or within the vector itself.

Because of the fact that only a portion of each vector is indexed, 
after processing the inverted lists within Find-Matches, only a 
portion of the similarity score will be accumulated. 
Find-Matches-1  must therefore compute cosine similarity over the 
unindexed portion of any candidate vector in order to complete the 
similarity score computation. Even though explicit similarity 
computation over a pair of input vectors is required by this 
algorithm, it is almost always substantially faster than All-Pairs-0 
because of the vast reduction in the maximum size of its inverted 
lists. We further optimize away this overhead in subsequent 
refinements.

To demonstrate correctness of this approach, we must establish 
two facts: (1) the algorithm correctly computes the similarity score 
between any candidate pair x  and y , and (2) for the current vector 
x , any indexed vector y  such that dot x y,( ) t≥  must be produced 

as a candidate of x . Before we begin, recall that we denote the 
unindexed features from vector y  as y' . Let us further denote the 
indexed features of vector y  as y'' . Now, to see why (1) holds, 
note that after accumulating scores over the indexed portion of y  
given x , we have accumulated in A y[ ]  the value dot x y', '( ) . Since 
dot x y,( ) dot x y',( ) dot x y'',( )+= , the final sum in Find-Matches-
1 (indicated by the arrow) computes the actual cosine similarity 
score.

To see why (2) holds, note that when indexing a vector, All-
Pairs-1 maintains a trivial upperbound b  on the score attainable by 
matching the first features of the current vector against any other 
vector in the dataset. As soon as this upperbound exceeds t , it 
begins indexing the remaining features. It thus follows that for any 
indexed vector y  and vector x , we have that dot x y',( ) t< . We 
again note that dot x y,( ) dot x y',( ) dot x y'',( )+= , hence for any 
vector x  and indexed vector y  for which cos x y,( ) t≥ , we have 
that cos x y'',( ) 0> . It follows that at least one indexed feature of y  
is in common with some feature of x , so y  is produced as a 
candidate for x .
4.3  Exploiting a Specific Sort Order

Recall that the correctness of All-Pairs-1 relies on the fact that it 
indexes enough of each vector y  to guarantee that y  is produced 
as a candidate when matched against any other vector x  in the 
dataset such that x  and y  satisfy the similarity threshold. Note 
however that correctness is maintained even under a more 
restrictive condition: a vector y  must be produced as a candidate 
only when matched against those vectors that follow it in the order 
in which the dataset is processed. This suggests that by exploiting 
a particular dataset sort order, we may be able to further reduce the 
amount of features indexed, and consequently further improve 
algorithm performance. While previous work [21] has noted that 
sorting the dataset according to particular criteria such as vector 
size can improve algorithm performance due to the nature of the 
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data structures employed, this work did not otherwise exploit the 
sort order.

Figure 3a provides our refinement of the All-Pairs procedure 
that exploits a particular dataset sort order to further minimize the 
number of indexed features. The ordering over the vectors 
guarantees any vector x  that is produced after a vector y  has a 
lower maximum weight. Significantly fewer features of each 
vector can now be indexed while still guaranteeing candidacy of a 
vector when matched against those that follow it in the iteration 
order. To show why, we apply an argument analogous to the 
correctness claim we made for All-Pairs-1. Note that All-Pairs-2 
now maintains an upperbound b  on the score attainable by 
matching the first features of a vector against any other vector that 
follows it in the dataset. As before, as soon as this upperbound 
exceeds t  it begins indexing the remaining features. Thus, for any 
indexed vector y  and vector x  that follows it in the dataset 
ordering, we have that dot x y',( ) t< , from which correctness 
follows.

4.4 Exploiting the Threshold During Matching
The modifications we made to Find-Matches in Find-Matches-1 

indirectly exploit the similarity threshold to reduce candidate pairs 
by virtue of the partially indexed vectors, but the threshold can be 

exploited more directly in order to further improve performance. 
Our final refinement of Find-Matches (Figure 3b) exploits the 
threshold directly in three ways. The first two ways we describe do 
not rely on the dataset sort order, while the third does.

The first method of exploiting the threshold relies on the fact 
that as we iterate over the features of x , we eventually get to the 
point where if a vector has not already been identified as a 
candidate of x , then there is no way it can meet the score 
threshold. Find-Matches-2 therefore keeps track of such a point by 
maintaining an upperbound remscore  on the score attainable 
between x  and any vector y  that shares none of the “already 
processed” features (lines 3 & 10). Once the upperbound drops 
beneath the score threshold, the algorithm switches to a phase 
where it avoids putting new candidates into the map, and instead 
only updates accumulated scores of those vectors already in the 
map (line 8).

Figure 3a.  A version of All-Pairs that exploits a sort order of the input vectors to further reduce the 
amount of indexed data, and hence candidate pairs.

FIND-MATCHES-2( , , )
1
2
3

4
5 for each  s.t.  do
6 Iteratively remove  from the front of  while .
7 for each  do
8 if  or  then
9
10
11 for each  with non-zero weight in  do
12 if  then
13
14 if  then
15
16 return 

x I1 … Im, , t
A empty map from vector id to weight←
M ∅←
remscore x i[ ] maxweighti V( )⋅

i
∑←

minsize t maxweight x( )⁄←
i x i[ ] 0>

y w,( ) Ii y minsize<
y y i[ ],( ) Ii∈

A y[ ] 0≠ remscore t≥
A y[ ] A y[ ] x i[ ] y i[ ]⋅+←

remscore remscore x i[ ]– maxweighti V( )⋅←
y A

A y[ ] min y' x,( ) maxweight⋅ x( ) maxweight y'( )⋅+ t≥
s A y[ ] dot x y',( )+←

s t≥
M M x y s, ,( ){ }∪←

M

Figure 3b.  A version of Find-Matches that directly exploits the similarity threshold.

ALL-PAIRS-2( , )
Reorder the dimensions  such that dimensions with

the most non-zero entries in  appear first.
Denote the max. of  over all  as .
Denote the max. of  for  as .
Sort  in decreasing order of .

for each  do
FIND-MATCHES-2( , , )

for each  s.t.  in increasing order of  do

if  then

 
return 

V t
1…m

V
x i[ ] x V∈ maxweighti V( )
x i[ ] i 1…m= maxweight x( )

V maxweight x( )
O ∅←
I1 I2 … Im ∅←, , ,

x V∈
O O  ∪← x I1 … Im, , t
b 0←

i x i[ ] 0> i
b b min maxweighti V( ) maxweight x( ),( ) x i[ ]⋅+←

b t≥
Ii Ii x x i[ ],( ){ }∪←
x i[ ] 0←

O

The second method of exploiting the threshold takes place in the 
candidate iteration loop. Note now that Find-Matches-2 does not 
unconditionally compute the dot product over x  and each partial 
candidate vector y' . Instead, it computes a cheap upperbound on 
dot x y,( ) , and only explicitly computes the dot product should the 
upperbound meet the threshold (line 12). With this optimization, 
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most candidates of x  are quickly excluded without iterating over 
their (potentially numerous) unindexed features.

The third optimization exploits the fact that for a vector x , we 
can show that any vector y  that satisfies the similarity score 
threshold must meet the following minimum size (“minsize”) 
constraint:

y t maxweight x( )⁄≥
To see why, by definition, if two vectors x  and y  meet the 

similarity score threshold then dot x y,( ) t≥ . Now, note that 
dot x y,( ) maxweight x( ) y⋅< . Thus, we have that 
maxweight x( ) y⋅ t≥ , from which the claim follows. 

Now, because vectors are processed by All-Pairs-2 in decreasing 
order of maxweight x( ) , the minimum allowable matching vector 
size increases monotonically as the algorithm progresses. We can 
therefore safely and permanently remove from the index any 
vector encountered that fails to meet the size constraint at any 
given point. We remove such vectors lazily during Find-Matches at 
the time a particular inverted list is required for score accumulation 
(line 6). Note that for efficiency we only remove such vectors from 
the beginning of each inverted list, which implies we do not 
necessarily remove all vectors that fail meet the size constraint. 
But note that the inverted lists are themselves grown in decreasing 
order of maxweight , and that maxweight  is highly inversely 
correlated with vector size. The beginning of each list will thus 
typically contain most of the vectors eligible for removal.

In implementations (such as ours) that use arrays for inverted 
lists, removing elements from the beginning of a list can be costly 
due to the shifting of the remaining elements. In such a case, one 
can instead maintain a start offset into each inverted list array that 
can be incrementally advanced over vectors that no longer meet 
the size constraint. If desired, inverted lists could still be 
periodically filtered in order to reclaim memory occupied by the 
vectors too small to meet the similarity threshold.

4.5 Specializations for Binary Vector Data
Many applications have data that is most naturally represented 

using binary valued sparse vectors. While one could directly apply 
All-Pairs to binary vector data by simply normalizing the inputs to 
unit length and operating on the resulting weighted vectors, 
specialization avoids the need to perform any such conversion, and 
also allows for other optimizations. For example, when the input 

vectors are binary, there is no need to store vector weights within 
the inverted index as long as we can get at the vector sizes in order 
to appropriately compute the similarity function. In the case of 
cosine similarity, the similarity between two non-normalized 
binary valued vectors is as follows:

x y,( )cos

xi yi⋅
i
∑

x y⋅
------------------------

dot x y,( )

x y⋅
------------------------= =

Because binary input vectors are no longer of unit length, 
instead of sorting the input and computing bounds based on the 
maxweight  vector property, the property of interest becomes the 
size of the input vectors. Recall that a vector’s size is simply its 
number of features, and hence after unit-length normalization of 
binary valued vectors, the maximum weight of a vector is inversely 
proportional to its size. The binary-valued input specialization of 
All-Pairs algorithm appears in Figure 4.

FIND-MATCHES-BINARY( , , )

, 

for each  s.t.  do
Remove all  from  s.t. .
for each  do

if  or  then

for each  with non-zero count in  do

if  then

if  then

return 

x I1 … Im, , t
A empty map from vector id to int←
M ∅← remscore x←
minsize x t2⋅←

i x i[ ] 1=
y Ii y minsize<

y Ii∈
A y[ ] 0≠ remscore minsize≥
A y[ ] A y[ ] 1+←

remscore remscore 1–←
y A

A y[ ] y'+
x y⋅

------------------------ t≥

d A y[ ] dot x y',( )+
x y⋅

---------------------------------------←

d t≥
M M x y d, ,( ){ }∪←

M

Figure 4.  The All-Pairs algorithm specialized for binary vector input.

ALL-PAIRS-BINARY( , )
Reorder the dimensions  such that dimensions with

the most non-zero entries in  appear first.
Sort  in increasing order of .

for each  do
FIND-MATCHES-BINARY( , , )

for each  s.t.  in increasing order of  do

if  then

 
return 

V t
1…m

V
V x

O ∅←
I1 I2 … Im ∅←, , ,

x V∈
O O ∪← x I1 … Im, , t
b 0←

i x i[ ] 1= i
b b 1+←

b x⁄ t≥
Ii Ii x{ }∪←
x i[ ] 0←

O

 
Correctness of the reduced indexing condition used in All-Pairs-

Binary follows from the fact that the algorithm indexes all but a 
number of features b  of a given vector y  such that b y⁄ t< . 
Recall that we denote the unindexed and indexed features of y  and 
y'  and y''  respectively. We show that if vectors x  and y  satisfy 
the similarity threshold, they share at least one indexed term. Note 
first that since x y≥ :

dot x y',( )
x y⋅

------------------------ b
x y⋅

------------------------ b
y y⋅

------------------------≤ ≤ b
y
----- t<=

Next, since cos x y,( ) dot x y',( )
x y⋅

------------------------ dot x y'',( )
x y⋅

------------------------+=  and cos x y,( ) t≥ , 

we must have that:
dot x y'',( )

x y⋅
------------------------ 0>

Hence x  and y  share at least one indexed term.
We have highlighted the minsize index pruning optimization 

used by Find-Matches-Binary, since it has been strengthened for 
the case of binary data. First, note that since inverted lists are 
grown in increasing order of vector size, all vectors that fail to 
meet the minimum size constraint appear at the front of the list. All 
such vectors can therefore be efficiently removed or advanced 
over, instead of just most of them as was the case with weighted 
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vector data. Now, for any pair of vectors x  and y  that meet a 
cosine similarity threshold t , we exploit the following minsize 
constraint, which as before increases monotonically as the 
algorithm progresses:

y x t2⋅≥
To see why this condition holds, we have by definition:

dot x y,( )
x y⋅

------------------------ t≥

and hence,

dot x y,( )2

y
---------------------- x t2⋅≥

Since dot x y,( ) y≤ , we must also have that

y 2

y
-------- y x t2⋅≥= , and the condition is established.

4.6 Extensions for Disk Resident Data
We have described All-Pairs as storing each feature in RAM at 

most once during its execution. For datasets whose features exceed 
available memory, virtual memory thrashing would make such an 
approach impractical. For such situations, we have developed an 
out-of-core variant of the All-Pairs algorithm. For starters, All-
Pairs must use an out-of-core sorting algorithm to impose the 
desired vector ordering. The remaining problem is to prevent the 
various memory resident data structures used for vector matching 
from exceeding available memory. Our solution is to have the 
algorithm index newly encountered vectors only up to the point 
where further indexing would exceed available memory. At this 
point, the algorithm switches to a “matching only” phase in which 
each remaining vector is kept in memory only for the duration of 
the Find-Matches call. To ensure completeness, once the end of the 
dataset is reached during the matching only phase, the algorithm 
clears out the index and other memory resident vector features, and 
performs a seek into the dataset to resume indexing anew from the 
last point it previously stopped indexing. This strategy is 
conceptually similar to the well-known block nested loops strategy 
employed by database systems for out-of-core table joins [18]. Due 
to the nature in which vectors are removed from the index during 
matching, it is possible for the partial index to become completely 
empty. Should this happen, our implementation immediately 
terminates the current dataset scan and proceeds to indexing and 
matching against the next dataset block.

5.  EXPERIMENTS
In this section we compare All-Pairs to previous inverted list 

[21] and signature based methods [1, 11]. We run these algorithms 
on three real world datasets which we describe in Section 5.1. Two 
of these datasets come from web applications, while the third is a 
much smaller but publicly available dataset compiled from DBLP 
data. All our implementations are in C++, and use the standard 
template library vector class for inverted lists and most other 
structures. We used the Google dense_hash_map class for 
performing score accumulation in Find-Matches and the 
dense_hash_set class for signature matching (both freely available 
from http://code.google.com/). All experiments in this subsection 
were performed on a 3.4 GHz Pentium-4 class machine with 3 
Gbytes of RAM and a 7200 RPM SATA-IDE hard drive.

5.1 Datasets
QSC: The first dataset we used was motivated by applications 

of query snippet data to determine semantic similarity between 
queries [19] and for taxonomy generation [9]. We selected roughly 
the 5 million most frequent queries that were submitted to the 
Google search engine from the United States during one week in 
January 2006. Queries in the list were then normalized (e.g. 
excessive whitespace stripped). We then used the Google SOAP 
search API (http://www.google.com/apis/) to generate the top-20 
search results and their snippet data for each query. We used the set 
of queries as candidate terms in the vector for each query, i.e., if 
query xj  appeared in the snippets for query xi  (and also met the 
criteria described next), then xi j[ ] 1= . We only included term xj  
in the vector for xi  if xj  appeared at least twice in xi ’s snippets, 
and the frequency of xj  in xi ’s snippets was significantly higher 
than the background frequency of xj  across all queries.

The indegree (feature frequency) and outdegree (features per 
vector) distributions for this particular query snippet containment
(QSC) dataset appear in Figure 5.

Figure 5.  Outdegree and Indegree distributions of the DBLP and query snippet containment data.
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 While our significance 
thresholding resulted in a relatively restrained outdegree with an 
average of 36, the indegree follows a power law distribution. This 
dataset fits entirely in a 2 gigabyte process space, so the runtimes 
we report for it are almost entirely dominated by CPU overhead.

Orkut: The second dataset is the Orkut (http://orkut.com/) 
social network, in which each user is represented by a binary 
vector over the space of all users. A user’s vector has a 1 in any 
dimension that represents himself or anyone the user has listed as a 
“friend.” The Orkut graph is undirected since friendship is treated 
as a symmetric relationship. It consists of almost 20 million nodes 
(vectors) and 2 billion links (non-zero weights), yielding roughly 
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100 features per vector on average. Similar pairs from this data 
reflect users who have a significant overlap in friends. This 
similarity data could be used in a variety of ways. For example, 
users with high similarity scores who are not already friends may 
be good targets for introductions.

Figure 6.  Degree distribution of the Orkut social network.

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1  10  100  1000

F
re

qe
nc

y

Degree

Orkut

The degree distribution for the Orkut graph appear in Figure 6. 
As can be clearly seen from this figure, Orkut limits the number of 
friends of each user to 1000. This dataset is too large to fit into 
main memory on our test machine, so all experimental results on 
this dataset report the wall-clock time of the out-of-core algorithm 
variants. These variants were configured to halt indexing and enter 
the matching only phase after loading 250 million non-zero 
weights. Each algorithm thus required 8 passes over the dataset to 
process it in its entirety.

DBLP: The third dataset is compiled from a snapshot of the 
DBLP data as described in [1]. Our snapshot consisted of almost 
800,000 vectors and 14 features per vector on average. The total 
number of dimensions was roughly 530,000.

All datasets are sorted in increasing order of vector size. 
Runtimes are for the sorted dataset even if the algorithm does not 
explicitly exploit the sort order. We confirmed the finding from 
previous work [21] that performance was always better on the 
sorted dataset. We did not include the time required to perform the 
dataset sort, which for QSC and DBLP was negligible. Because 
Orkut required an out-of-core sort (the linux “sort” command was 
used with a 2 gigabyte memory buffer), sorting required 21 
minutes.

We use similarity thresholds between .5 and .9 in our 
experiments. We chose .5 as the lowest setting based on previous 
work on semantic query similarity that found semantically similar 
query pairs to typically have scores above .5 [19]. The number of 
result pairs for each threshold and each dataset appears in Figure 7.

Figure 7.  Algorithm output size for a given threshold.
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5.2 Comparison of Inverted List-Based Approaches
We compared All-Pairs to another inverted-list based approach, 

ProbeOpt-sort [21]. ProbeOpt-sort is an algorithm that 
dynamically builds an inverted index and consults the index to 
identify candidate vectors much like All-Pairs. Unlike All-Pairs, it 
indexes every feature, but it does use the similarity threshold to 
reduce the inverted lists that must be scanned in full in order to 
generate candidates. For each candidate identified by the inverted 
list scans, any remaining relevant inverted lists are probed using a 
doubling binary search. Before each binary search, a score 
upperbound is computed, and if the score upperbound falls beneath 
the threshold, the algorithm moves on to the next candidate. 
ProbeOpt-sort was presented in [21] for the Overlap similarity 
metric, so for an apples-to-apples comparison, we modified our 

implementation for cosine distance by having ProbeOpt-sort apply 
the same cosine distance upperbounding technique used by All-
Pairs-Binary within its candidate evaluation loop. We did not 
compare against a variant of ProbeOpt-sort called ProbeOpt-
cluster since ProbeOpt-cluster was found to be only slightly faster.

To shed more insight on the impact of the optimizations within 
All-Pairs, we implemented a version of the algorithm which, like 
ProbeOpt-sort, did not explicitly rely on the dataset sort order. The 
algorithm is called All-Pairs-Unsorted within the graphs. The 
difference between All-Pairs-Unsorted and All-Pairs is that All-
Pairs-Unsorted does not explicitly exploit the sort order of the 
records (even though we still run it on the sorted datasets.) So All-
Pairs-Unsorted uses only maxweighti V( )  and not maxweight x( )  
to determine how much of the vector needs to be indexed. For 
binary datasets, the reduced indexing condition of All-Pairs-
Unsorted is b v⁄ t2<  instead of b v⁄ t< . All-Pairs-Unsorted 
also cannot exploit the minsize pruning method that iteratively 
removes small records from the front of the inverted lists.

Results for all three datasets appear in Figure 8. Even though it 
lacks any explicit sort-order-dependent optimizations, All-Pairs-
Unsorted always outperforms ProbeOpt-sort, typically by at least a 
factor of 2. Much of the speedup is due to indexing only part of 
each input vector, though hash-based score accumulation in place 
of queue-based merging is also a factor. Note that for all datasets, 
the sort-dependent optimizations lead to an even larger 
performance gain. On the QSC dataset, All-Pairs outperforms 
ProbeOpt-sort from a factor of 22x at .9 threshold to a factor of 8x 
at .7. ProbeOpt-sort failed to complete at lower threshold settings 
within the 1000 minute time limit we imposed.

On the Orkut dataset, All-Pairs is much faster (2-3x) than All-
Pairs-Unsorted, but the performance difference is less than 
witnessed on the other datasets for the following reasons: (1) The 
artificial 1000 friend limit prevents highly frequent features -- a 
key source of inefficiency, and (2) the fact that the data was disk-
resident led to some IO overhead, which was similar across all 
algorithms. Our ProbeOpt-sort variant modified to handle out-of-
core datasets based on the approach described Section 4.6 was not 
able to complete within 1000 minutes even with a .9 similarity 
threshold. We suspect ProbeOpt-sort performed poorly on this 
dataset due to the longer average vector size.

Performance characteristics on the DBLP data was similar to 
QSC, with All-Pairs providing a speedup of approximately 6x over 
ProbeOpt-Sort across all similarity thresholds.

5.3 Comparison with Signature-Based Methods
Here we compare All-Pairs with two signature-based methods 

for finding all similar pairs: LSH [11] and PartEnum [1]. LSH 
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Figure 8.  Inverted List Algorithm Performance
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(Locality Sensitive Hashing) is a well-known approximate 
algorithm for the problem. It first generates d  random projections 
of the set of dimensions. Next, for each input vector and each 
random projection, the algorithm generates a signature by 
combining the vector features belonging to that projection. Thus d  
signatures are generated for each vector. If two vectors have a 
matching signature along the same projection, a candidate pair is 
generated. The false negative rate is controlled using the number of 
projections d . In our experiment, we set d  to allow for at most 5% 
false negatives measured as actual error.

PE (PartEnum) is another signature based algorithm that like 
All-Pairs is guaranteed to generate all pairs that satisfy the 
similarity threshold. The intuition is that a similarity threshold t  
can be converted to a threshold k  on the Hamming distance 
between two vectors. Signatures are generated in such that any two 
vectors whose Hamming distance is less than k  will have at least 
one matching signature. The conversion of Jaccard similarity to 
Hamming distance is covered in [1]:

k 1 t–( )
1 t+( )

--------------- x y+( )⋅=

To use PartEnum with the cosine similarity metric, we derived 
the following conversion from cosine similarity to Hamming 
distance:1

k x y 2–+ t x y⋅⋅ ⋅=
Given a vector x , an upper bound lu  on the size of any vector 

that matches x  with cosine similarity at least t  is as follows:

lu x t2⁄=

We use this bound to partition the vectors into groups by size, 
such that only the vectors in each group or in adjacent groups need 
to be compared. Since we follow the same approach as in Figure 6 
of [1], we omit further details, except to point out that the 
equations corresponding to lines (b) and (c) in Figure 6 for cosine 
similarity are: ri li t2⁄=  in line (b), and ki 2 1 t–( ) ri⋅ ⋅=  
in line (c).

Figure 9 shows the running times for PartEnum, LSH and All-
Pairs on the DBLP data using both cosine similarity (left graph) 
and Jaccard similarity (right graph). With cosine similarity, 
PartEnum fails to complete for all but the highest 2 threshold 
settings within the 200 minute time limit we imposed; at these 
settings, All-Pairs is 16 to 700 times faster. The speedup given 
Jaccard similarity is less dramatic, but still at least an order of 
magnitude. The reason for the wider performance discrepancy 
when using cosine distance is that the bound on Hamming distance 
is a factor of 1 t+  higher. Without tight bounds on Hamming 
distance, PartEnum needs to generate many candidates to 
guarantee completeness. Even though LSH only provides an 
approximate solution to the problem, All-Pairs outperforms it by 2 
to 15 times for cosine similarity, and 1.3 to 6 times for Jaccard 
similarity. This discrepancy in speedups is due to the fact that at 
the same threshold, LSH needs to use more signatures for the 
cosine similarity than Jaccard similarity to ensure a 5% or lower 
false negative rate.

To understand the performance advantage of All-Pairs over the 
signature based schemes, note that signature based algorithms fully 
scan each vector in a candidate pair to compute their similarity 
score. So for example if a vector x  appears in 10 candidate pairs, 
x  will be scanned in its entirety 10 times. In contrast, All-Pairs 
only scans x  once for all vectors shorter than x . For vectors y  
longer than x , only the portions of x'  (the indexed part of x ) that 
intersect y  are scanned. The unindexed portion of x  is rarely 
scanned due to the effectiveness of the score bound condition. All-
Pairs also exhibits better cache locality, since it sequentially scans 
inverted lists, rather than jumping between candidate pairs. Finally, 
and perhaps most importantly, signature based schemes are less 
effective in reducing the number of candidate pairs at lower 

1 We give the derivation for completeness. Hamming distance is defined as 
x y 2–+ dot x y,( )⋅ . Given vectors x  and y  that satisfy a cosine sim-

ilarity threshold t :
 cos x y,( ) dot x y,( ) x y⋅( )⁄ t≥= , and thus:

dot x y,( ) t x y⋅⋅≥ . Finally, we get:

x y 2–+ dot x y,( )⋅ x y 2–+ t x y⋅⋅ ⋅≤
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Figure 9.  Signature-Based Algorithm Performance
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similarity thresholds. It is also worth noting that both PartEnum 
and LSH performance are highly dependent on their parameter 
settings. We spent considerable time tuning parameters to optimize 
their runtime.

6.  OTHER SIMILARITY MEASURES
Although our main algorithm explicitly exploits the cosine 

similarity metric, it can be generalized to several other similarity 
measures. We demonstrate this generalization capability with the 
following common similarity measures: Jaccard coefficient, dice 
coefficient, and overlap coefficient. These similarity measures are 
defined over binary vector inputs as follows:

Table 1: Similarity Measures

Cosine sim x y,( ) dot x y,( )
x y⋅

--------------------=

Overlap sim x y,( ) dot x y,( )
min x y,( )
---------------------------=

Dice sim x y,( ) 2 dot x y,( )⋅
x y+

---------------------------=

Jaccard sim x y,( ) dot x y,( )
x y dot x y,( )–+
-------------------------------------------=

Conveniently, the reduced indexing condition used in All-Pairs-
Binary already preserves completeness given any of these 
similarity measures. Recall that the algorithm indexes all but a 
number of features b  of a given vector y  such that b y⁄ t< . We 
therefore need only show that the unindexed portion of the vector 
y  (denoted y' ), which consists of the last b  unit valued weights in 
y , contributes an amount to the similarity score that alone is not 
enough to meet the threshold. For an indexed vector y  and any 
vector x  following it in the ordering ( x y≥ ), the following 
inequalities establish these results.

Overlap coefficient:
dot x y',( )

min x y,( )
--------------------------- b

min x y,( )
---------------------------≤ b

y
----- t<=

Dice coefficient:
2 dot x y',( )⋅

x y+
---------------------------- 2b

y y+
-----------------≤ b

y
----- t<=

Jaccard coefficient: 
dot x y',( )

x y dot x y,( )–+
------------------------------------------- b

x y dot x y,( )–+
-------------------------------------------≤

Note that dot x y,( ) x≤ , hence:
b

x y dot x y',( )–+
-------------------------------------------- b

x y x–+
-----------------------------≤ b

y
----- t<=

Given that the existing reduced indexing condition is sufficient, 
the only modifications required are of Find-Matches-Binary where 
we compute the similarity score, upperbound the similarity score, 
and compute a monotone minimum size constraint on candidate 
vectors. We forego providing details to these variations due to 
space constraints, though they can be derived by appropriately 
adapting the techniques used to handle cosine distance. Similar 
generalizations are also possible for other similarity functions over 
weighted vector data.

Performance of the All-Pairs algorithm when using these 
alternate similarity metrics appears in the left-hand graph of Figure 
10. Note that there is a modest increase in runtime for some of 
these alternate metrics. The explanation for this runtime increase 
can be seen from the accompanying graph which reports the 
number of similar pairs in the output. For the same threshold 
setting, the overlap measure allows many more pairs, which results 
in an increase in the number of vector intersections that must be 
performed by Find-Matches. Dice is slower than cosine distance 
despite producing similar size output because the minsize of 
matching vectors cannot be bounded as effectively.

7.  CONCLUSIONS AND FUTURE WORK
The problem of finding all pairs of similar vectors arises in 

many applications such as query refinement for search engines and 
collaborative filtering. We presented two key insights in this paper 
not identified in previous work:
• An inverted list based approach to the problem need not build a 

complete inverted index over the vector input.
• Appropriately ordering the vectors in addition to the dimensions 

can vastly reduce the search space.
We aggressively exploited these insights to produce an 

algorithm, All-Pairs, that is easy to implement and does not require 
any parameter tuning. The simplicity of the approach is combined 
with dramatic performance gains: We found All-Pairs to be 5 to 22 
times faster than ProbeCount-sort, and between 10 to over 700 
times faster than PartEnum. All-Pairs is even 1.3 to 15 times faster 
than an approximate algorithm, LSH tuned to have a 5% false 
negative rate.
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Figure 10.  All-Pairs performance with alternate similarity functions.
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While we have focused primarily on scalability with respect to 
the number of records in sparse data, we believe scalability of all-
pairs similarity search algorithms with respect to feature density 
merits further study. Finally, in addition to developing further 
performance improvements for the all-pairs similarity search 
problem, we believe future work might address how algorithms for 
the problem can serve as useful primitives for other mining tasks. 
Interesting possibilities include exploiting all similar pairs for 
improving the quality of heuristic clustering approaches, 
performing deeper social network analysis, or in improving 
performance of related problems [3].
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