
GlobeTP: Template-Based Database Replication
for Scalable Web Applications

Tobias Groothuyse
Vrije Universiteit

De Boelelaan 1081a
Amsterdam, The Netherlands

tobias.groothuyse@xs4all.nl

Swaminathan
Sivasubramanian

Vrije Universiteit
De Boelelaan 1081a

Amsterdam, The Netherlands

swami@cs.vu.nl

Guillaume Pierre
Vrije Universiteit

De Boelelaan 1081a
Amsterdam, The Netherlands

gpierre@cs.vu.nl

ABSTRACT
Generic database replication algorithms do not scale linearly
in throughput as all update, deletion and insertion (UDI)
queries must be applied to every database replica. The
throughput is therefore limited to the point where the num-
ber of UDI queries alone is sufficient to overload one server.
In such scenarios, partial replication of a database can help,
as UDI queries are executed only by a subset of all servers.
In this paper we propose GlobeTP, a system that employs
partial replication to improve database throughput. Glo-
beTP exploits the fact that a Web application’s query work-
load is composed of a small set of read and write templates.
Using knowledge of these templates and their respective ex-
ecution costs, GlobeTP provides database table placements
that produce significant improvements in database through-
put. We demonstrate the efficiency of this technique using
two different industry standard benchmarks. In our experi-
ments, GlobeTP increases the throughput by 57% to 150%
compared to full replication, while using identical hardware
configuration. Furthermore, adding a single query cache im-
proves the throughput by another 30% to 60%.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distri-
buted Systems; C.4 [Performance of systems]: Design
studies; H.3.4 [Information Storage and Retrieval]: Sys-
tems and Software.

General Terms
Performance.

Keywords
Database replication, partial replication, scalability, Web
applications.

1. INTRODUCTION
Over the past few years the World-Wide Web has taken

significant importance into our lives, and many businesses
and public services now rely on it as their primary commu-
nication medium. This drives the need for scalable hosting

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

architectures capable of supporting arbitrary levels of load
with acceptable performance. However, while this problem
is now well understood for static content [11, 14, 20, 22],
providing scalable infrastructures for hosting dynamically
generated Web content still remains a challenge.

Dynamic Web content allows Web sites to personalize the
delivered contents to individual clients, and to take action
upon certain requests such as processing an order in an e-
commerce site. Content is dynamically generated upon each
client request by application-specific business logic, which
typically issues one or more queries to an underlying database.

Numerous systems for scalable hosting of Web applica-
tions have been proposed. These systems typically cache
(fragments of) the generated pages [7], distribute the com-
putation across multiple application servers [1, 23] or cache
the results of database queries [2, 4, 19, 27, 30]. However,
although these techniques can be very effective depending
on the application, in many cases their ultimate scalability
bottleneck resides in the throughput of the origin database
where the authoritative version of the application state is
stored. Database replication techniques can of course help
here, but the generic replication algorithms used by most
databases do not scale linearly as they require to apply
all update, deletion and insertion (UDI) queries to every
database replica. The system throughput is therefore lim-
ited to the point where the quantity of UDI queries alone is
sufficient to overload one server, regardless of the number of
machines employed [12]. The only solutions to this problem
are to increase the throughput of each individual server or to
use partial replication so that UDI queries can be executed
at only a subset of all servers. However, partially replicat-
ing a database is in turn difficult because queries can poten-
tially span data items which are stored at different servers.
Current partially replicated solutions rely on either active
participation of the application programmer [15] or on one
special server holding the full database to execute complex
queries (and thereby becoming the new throughput bottle-
neck) [26].

This paper presents GlobeTP, a database replication sys-
tem that exploits the fact that the database queries issued
by typical Web applications belong to a relatively small
number of query templates [2, 19, 27]. A query template
is a parametrized SQL query whose parameter values are
passed to the system at runtime. Prior knowledge of these
templates allows one to select database table placements
such that each query template can be treated locally by at

WWW 2007 / Track: Performance and Scalability Session: Scalable Systems for Dynamic Content

301

Edge server Edge server Edge server

Clients Clients Clients

Cache

Origin
database

Cache Cache Cache

Figure 1: Typical Edge-Server Architecture.

least one server. We demonstrate that careful table place-
ments based on the data span and the relative execution
costs of different templates can provide major scalability
gains in terms of sustained throughput. We further show
that this technique can easily be used in combination with
any existing template-based database query caching system,
thereby obtaining reduced access latency and yet some more
throughput scalability.

This paper is organized as follows: Section 2 presents the
related work. Section 3 discusses our system model, and
Section 4 details our table placement algorithms. Section 5
presents performance results and Section 6 discusses a num-
ber of issues that arise from our approach. Finally, Section 7
concludes the paper.

2. BACKGROUND AND RELATED WORK
Traditional content delivery networks (CDNs) often host

Web applications using techniques such as fragment caching
whereby (fragments of) the generated pages are cached at
the edge servers [7, 10, 18]. This technique performs well if
the temporal locality of requests is high and if the underlying
database is updated rarely. However, applications that do
not exhibit these behavior require more sophisticated edge-
server-based techniques.

A typical edge-server architecture used by many advanced
systems to host Web applications is depicted in Figure 1.
Client requests are issued to edge servers located across the
Internet. Each edge server has a full copy of the applica-
tion code but no database. Database queries are sent out
to a local query cache that can answer previously issued
queries without incurring wide area latency. Cache misses
and UDI queries are issued to the origin server. Queries
are then potentially intercepted by another cache and, in
the case of another miss, reach the origin database server to
be processed. This architecture has been adapted in many
versions depending on the specifics of each system.

The first type of edge-server architecture is edge com-
puting infrastructures, where the application code is repli-
cated at all edge servers and no cache is present [1, 23].
The database is kept centralized at the origin server so all
database queries are forwarded to the origin server. Al-
though this technique allows to distribute the computations
to generate pages, it remains limited by the wide-area la-
tency incurred for each query, and by the throughput bot-
tleneck of the origin database.

To remove this bottleneck, various techniques have been
proposed to cache the results of database queries at the
edge servers [2, 4, 19, 27, 30]. Consistency of cached re-
sults must also be maintained when the underlying database
is updated. This is usually done by requiring the applica-
tion programmer to specify a number of query templates
that are issued by the application. The programmer must
also specify conflicts between templates. When a given UDI
query template is invoked, all conflicting read templates are
invalidated. This technique allows to reduce the database
query latency as a number of queries can be answered lo-
cally. The total system throughput is also increased because
less queries are addressed to the origin server. However,
database caching systems have good hit ratio only if the
database queries exhibit high temporal locality and contain
relatively few updates.

A common technique used to improve the performance
of a database is replication. Traditional RDBMS replica-
tion solutions replicate the complete database across several
machines located within a cluster [6, 17, 21, 24]. The in-
coming read query workload is distributed evenly across all
the replicas. Consistency is maintained by applying UDI
queries to all replicas using 2-phase commit protocols or
snapshot isolation. Database replication improves through-
put as the incoming read query workload is shared among
multiple servers. However, if the workload contains a sig-
nificant fraction of UDI queries, then these systems incurs
a limited throughput as all UDI queries must be applied to
all replicas. As we show in our experiments, when the load
of UDI queries alone is sufficient to overload any one of the
servers, then the system cannot improve its throughput any
more.

A number of commercial systems such as Oracle keep
database servers consistent not by executing UDI queries
at each replica but by executing these queries at the mas-
ter server only, and by propagating update logs to the slave
servers. Applying such logs is significantly more efficient
than re-executing the queries. However, this technique does
not improve the maximum throughput as it requires a single
master server to execute all UDI queries. The master server
then determines the total system’s throughput.

A few database systems based on peer-to-peer technolo-
gies have been proposed to distribute the query processing
load across arbitrary number of servers [9, 13]. These sys-
tems typically aim to achieve scalability by partioning the
dataset across peers. However, the features offered by these
systems are rather limited and handling complex queries
that span the entire data set remains a challenge.

In [15], the authors propose an edge computing infrastruc-
ture where the application programmers can choose the data
replication and distribution strategies that are best suited
for the application. This approach can yield considerable
gains in performance and availability, provided that the se-
lected strategies are well suited for the application. How-
ever, coming up with the right strategies requires significant
insight of the application programmers in domains such as
fault-tolerance and weak data consistency. Contrary to this
approach, we strive for requiring minimum support from
the application programmers, and try to keep replication as
transparent to the application as possible. Note that the
main focus of this paper is not replication for availability.
We however return briefly to this issue in Section 6.2 to

WWW 2007 / Track: Performance and Scalability Session: Scalable Systems for Dynamic Content

302

show how availability constraints can be taken into account
in GlobeTP.

Some of our previous research already proposed to employ
partial database replication to improve the performance of
Web applications [26]. However, this architecture relies on
record-level replication granularity. This design choice offers
excellent query latency, but does not improve on throughput
as a central server must maintain a copy of the full database
(and therefore constitutes the throughput bottleneck of the
system). Note that replication for throughput and replica-
tion for latency do not contradict each other. We show in
Section 5.5 how GlobeTP can easily be coupled with a wide-
area database caching system so that both throughput and
latency can be improved at the same time.

3. SYSTEM MODEL

3.1 Application Model
Web applications are usually implemented by some busi-

ness logic running in an application server, which is invoked
each time an HTTP request is received. This business logic,
in turn, may issue any number of SQL queries to the un-
derlying database. Queries can be used to read information
from the database, but also to update, delete or insert in-
formation. We refer to the latter as UDI queries.

We assume that the queries issued by a given Web appli-
cation can be classified as belonging to a relatively small
number of query templates. A database query template
is a parametrized SQL query whose parameter values are
passed to the system at runtime. This scheme is deployed,
for example, using Java’s prepared statement. Examples of
parametrized read query templates include QT1: “SELECT
price, stock, details FROM book WHERE id=?” and QT2 :
“SELECT price, stock, details FROM book, author WHERE
book.name LIKE (?) AND author.name = ?”. An exam-
ple of update template is UT1: “UPDATE price=price+1
FROM book WHERE id=?”. In our current implementation,
we require the application developer to explicitly define the
templates. However, our implementation can be easily ex-
tended to apply static analysis techniques to identify the
query templates automatically [19].

The explicit definition of query templates is at the basis
of several database caching systems as it allows an easy def-
inition of cache invalidation rules [2, 19, 27]. In contrast,
the work presented in this paper uses the same notion of
query templates but in a different manner: we exploit the
list of templates to derive table placements that guarantee
that at least one server is able to execute each query from
the application.

3.2 System Model
The aim of our work is to increase the scalability of the

origin database depicted in Figure 1 in terms of the maxi-
mum throughput it can sustain, while maintaining reason-
able query execution latency. As shown in Figure 2, in our
system the origin database is implemented by an array of
database servers. We assume that all origin database servers
are located within a single data center. The replication gran-
ularity in our system is the database table, so each database
server hosts a replica of one or more table(s) from the ap-
plication.

Since not all servers contain all the data, it is necessary to
execute each query at a server that has all the necessary data

DB server
Tables 1,2 Table 3

DB serverDB server
Tables 2,3

Edge servers

Query router

Figure 2: Architecture of a partially replicated ori-
gin server.

locally. This is ensured by the query router, which receives
all incoming queries and routes each query to a server that
contains all the necessary tables to answer the query. To this
end, the query router knows the current placement of tables
onto databases servers. It is also in charge of maintaining
the consistency of the replicated databases. It issues UDI
queries to all the servers that hold the tables to be modified;
if all queries are successful then the operation is committed,
otherwise it is rolled back. This simple algorithm guarantees
sequential consistency.

In our implementations, all read and write queries are
first received by the query router which in turn executes
the query at appropriate replica. Since all UDI queries are
queued in a single location at the query router, the router
servers a serialization point and maintains consistency across
replicas. Note that the current implementation of our sys-
tem does not support transactions. Instead, GlobeTP treats
each read and write query as independent operations. We
believe that this is not a major restriction, as most Web ap-
plications do not require transactional database behavior.
However, should transactions be required, adding support
for them in our system would be relatively straightforward.
Since the query router receives all incoming queries before
they are executed, it can also act as the transaction moni-
tor and implement any classical protocol such as two-phase
commit. We however do not investigate this issue further in
this paper.

Our work focuses on the structure of a Web application’s
origin database. Consequently, we make no assumption
about the origin of the queries addressed to our system.
In the simplest setup, queries can be issued directly by one
or more application server(s). However, our system can also
be easily coupled with a distributed database query cache
such as DBProxy [2] and GlobeCBC [27]. In this case, the
same definition of query templates can be used both by the
caching system in order to maintain consistency, and the
origin database in order to optimize throughput.

3.3 Issues
The work presented in this paper is motivated by the ob-

servation that the explicit definition of query templates of
a Web application allows to select the placement of par-
tially replicated data such that the total system through-
put is optimized. We consider that such knowledge allow
us to avoid two pitfalls that generic replicated databases
necessarily face. First, application-unaware database sys-
tems do not know in advance the full set of query templates
that will be issued to them. In particular, this means that
it is impossible for them to determine a priori which ta-
bles must be kept together, and which ones can be sepa-

WWW 2007 / Track: Performance and Scalability Session: Scalable Systems for Dynamic Content

303

rated. Generic database systems usually address this issue
by supporting only full replication, so that the data neces-
sary to answer any query are always available at the same
place. However, this has an important impact on the sys-
tem’s throughput. Second, the middleware that determines
which replica should treat each read query does not take
query characteristics into account. However, the execution
times of different queries issued by a given Web application
may vary by several orders of magnitude. In such a context,
simple round-robin algorithms may not lead to optimal load
balancing.

To be able to determine the placement of database ta-
bles on replica servers that allows to sustain the highest
throughput, we must solve three main issues. First, not all
possible placements of tables onto servers will allow to find
at least one server capable of executing each of the appli-
cation’s query templates. We therefore need to analyze the
set of query templates to determine a subset of placements
that are functionally correct. Second, we must take the re-
spective query execution times of different templates and
their classification as read or UDI queries to determine the
best placement in terms of throughput. Besides requiring
accurate estimations of query execution times, finding the
optimal placement incurs a huge computational complexity,
even for relatively small systems. We therefore need a good
heuristic. Finally, once the resulting system is instantiated
we need to define a load balancing algorithm that allows the
query router to distribute read queries efficiently across the
servers that can treat them.

4. DATA PLACEMENT
The underlying idea behind our approach is to partially

replicate the database so that UDI workload can be split
across different replicas. This process involves the follow-
ing three steps: (i) Cluster Identification: the process by
which we determine the set of database tables that needs
to be replicated together, (ii) Load Analysis: the process by
which we determine the load received by each of the clus-
ter, and (iii) Cluster Placement: determining the placement
of the identified clusters across the set of database servers
so that the load incurred by each of the database replica is
minimized.

4.1 Cluster Identification
Our system relies on placement of individual tables on

database servers to minimize the number of servers that
must process UDI queries. However, not all placements are
functionally correct as all tables accessed by a query tem-
plate must be present in the same server for the query to
be executed. The goal of cluster identification is to deter-
mine sets of tables that must be placed together on at least
one server, such that there is at least one server where each
query template can be executed.

We must characterize each query template with two at-
tributes: (i) whether it is a read or a UDI query; (ii) the
set of tables (also called table cluster) that it accesses. For
instance, in the aforementioned query templates, template
QT1 will be associated to a single-table cluster {book}, while
QT2 will be associated to {book, author}. Clusters can over-
lap, as a table can belong to multiple clusters.

The problem of finding functionally correct table place-
ments can then be reduced to a cluster placement problem;
any table cluster placement will be functionally correct.

4.2 Load Analysis
Even though any cluster placement will lead to a function-

ally correct system, not all placements will lead to the same
system throughput. To maximize throughput, it is crucial
that no database server is overloaded. In other words, we
need to place the table clusters such that we minimize the
load of the most loaded server. This process is done in two
steps. First, we evaluate the load imposed on each of the
identified clusters for a representative workload. Second, we
identify the placement that will create the best repartition
of load across the servers.

4.2.1 Estimation of Load on Table Clusters
The load that each table cluster will impose on the server(s)

where it is hosted depends on three factors: (i) the classifi-
cation as belonging to a read or UDI template: read queries
can be executed on one server, while UDI queries must be
applied on all servers holding the corresponding cluster; (ii)
the occurrence frequency of the template in the expected
workload; and (iii) the computational complexity of execut-
ing the query on a given database server. Classifying queries
as read or UDI can be done by simple query analysis. Sim-
ilarly, the occurrence frequency of templates can be derived
from observation of an existing workload. However, estimat-
ing the load that each query imposes on the database where
it is run requires careful attention.

Mature database systems such as MySQL and PostgreSQL
make their own estimations of the internal execution of dif-
ferent queries as part of their query optimization procedure.
These execution time estimations are made available, for ex-
ample using PostgreSQL’s EXPLAIN <query> and EXPLAIN
ANALYZE <query> commands. However, these estimations
take only the actual execution time into account, and ig-
nore other factors such as the connection overhead. Another
possible method consists of simply measuring the response
time of each query template in a live system. The advantage
of this method is that it measures the end-to-end response
time of the database tier and includes connection overhead.
Note that query execution times should be measured under
low load to avoid polluting measurements with load-related
overheads such as the queuing latency [29].

Figure 3 shows the accuracy of the three cost estimation
techniques applied to the query templates from the RUBBoS
benchmark [25]. In each graph we estimated the cost of each
query template and compared it with the actual execution
time under high load. A perfect estimator would produce
points located on the y = x diagonal line. Clearly, the
estimations produced by the database query optimizers are
not as accurate as actual measurements made under low
loads. In the rest of this paper we therefore restrict ourselves
to this last method.

4.2.2 Estimation of Load on Database Servers
In a replicated database, read queries are executed at

one database node, whereas UDI queries are executed at
all nodes that hold the data modified by the UDI query. To
determine the load that each database server will incur for a
given table placement and a given query workload, we must
distinguish the two types of queries.

Each UDI query in the studied workload will result in ap-
plying the associated execution cost to each of the database
servers holding the corresponding table(s). On the other
hand, each read query will create execution cost on only

WWW 2007 / Track: Performance and Scalability Session: Scalable Systems for Dynamic Content

304

E
st

im
at

ed
 e

xe
cu

tio
n

co
st

 (
se

c)
 100

 10

 1

 0.1

0.01

1e−4

1e−5

1e−6

1e−3

1e−6 1e−51e−4 0.01 0.1 1 10 100
Real execution cost (sec)

1e−3

(a) EXPLAIN query.

E
st

im
at

ed
 e

xe
cu

tio
n

co
st

 (
se

c)

10

1

0.1

0.01

0.001

1e−4

1e−5
1e−5 1e−4 0.001 0.01 0.1 1 10

Real execution cost (sec)

(b) EXPLAIN ANALYZE query.

E
st

im
at

ed
 e

xe
cu

tio
n

co
st

 (
se

c)

10

1

0.1

0.01

0.001
0.001

Real execution cost (sec)
0.01 0.1 1 10

(c) Measurement under low load.

Figure 3: Accuracy of different methods for query cost estimation.

Distribute table clusters uniformly across server nodes;1

S = set of server nodes ;2

while S �= ∅ do3

/*We want to minimize the maximum server load*/
while (max(estimated server load) is decreased) do4

N = Most loaded server in S ;5

foreach Table cluster C placed in N do6

Try to reduce N ’s load by migrating or7

replicating C to other servers;
end

end
S = S - (the most loaded server in S);8

end

Algorithm 1: Pseudocode of the table cluster place-
ment algorithm.

one server; we count that, on average, each database server
holding the corresponding cluster will incur the execution
cost of the query, divided by the number of replicas.

This analysis allows us to roughly compute the execution
cost that each database server will incur for a given table
placement and a given query workload. To maximize the
system throughput, it is essential that no database server
is overloaded. We therefore aim at balancing the load such
that the cost of the most loaded server is minimized.

4.3 Cluster Placement
Finding the optimal table placement can be realized by

iterating through all valid table placements, evaluating the
respective cost of each database server under each place-
ment, and selecting the best one. However, the computa-
tional complexity of this exhaustive search is O(2N∗T /N !),
where T is the number of table clusters to be placed and N is
the number of nodes to place them on. This very high com-
plexity makes it unpractical even for relatively small system
sizes. We must therefore find a heuristic instead.

As shown in Algorithm 1, our heuristic starts with a very
roughly balanced placement, and iteratively tries to improve
it by applying simple transformations in table placement.

The first step (step 1) is to place clusters uniformly onto
servers to create an initial configuration. The heuristic then
iteratively attempts to improve the quality of the placement
(steps 3-8). Since the goal is to find the placement where
the maximum server load is minimized, we identify the most
loaded server (step 5) and try to offload some of its clusters

to other servers (steps 6 and 7). Two techniques can be
used here (step 7): either migrating one of the clusters to
another server (thereby offloading the server of the whole
associated load), or replicating one of the clusters to an-
other server (thereby offloading the server of part of the
read query load). The algorithm evaluates all possible oper-
ations of this type, and checks if one of them improves the
quality of the placement. This operation is repeated until
no more improvement can be gained (step 4). The most
loaded server, which cannot be offloaded any more without
overloading another one is considered to be in its ’optimal’
state and is removed from the working set of servers (step 8).
The algorithm then tries to optimize the load of the second
most loaded server, and so on until all servers have reached
their ’optimal’ state.

Even though there is no guarantee that this heuristic will
find the optimal placement, in our experience it always iden-
tifies a reasonably good placement within seconds (whereas
the full search algorithm would take days).

4.4 Query Routing
Query routing is an important issue that affects the per-

formance of replicated databases. Simple round-robin schemes
are efficient only when all the incoming queries have similar
cost. However, when applications tend to have queries with
different execution costs, round-robin scheduling can lead to
load skews across database servers, resulting in poor access
latencies.

Query routing gains a higher significance in GlobeTP. In
a partially replicated database system such as ours, queries
can no longer be sent to arbitrary database nodes. The
query router used in GlobeTP thus differs from the tradi-
tional query routers used in fully replicated databases in the
following aspects. First, read queries can be scheduled only
among a subset of database servers instead of all servers.
Second, UDI queries must executed at all database servers
that store the tables modified by the incoming UDI query.

The process of selecting a database server to route an
incoming read query has considerable impact on the overall
performance of the system. This is usually determined by
the routing policy adopted by the replication system. In our
work, we experimented with the following policies.

4.4.1 RR-QID: Round-Robin per Query ID
RR-QID is an extension to the round-robin policy that

is suitable for partially replicated databases. In this pol-
icy, the query router maintains a separate queue for each

WWW 2007 / Track: Performance and Scalability Session: Scalable Systems for Dynamic Content

305

query template identified by its query identifier, QID. Each
queue is associated with the set of database servers that
can serve the incoming queries of type QID. Subsequently,
each incoming read query is scheduled among the candidate
servers (associated with its queue) in a round-robin fashion.

4.4.2 Cost-Based Routing
The underlying idea behind the cost-based routing policy

is to utilize the execution cost estimations to balance the
load among database servers. To this end, upon arrival of an
incoming query, the query router first estimates the current
load of each database server. Subsequently, it schedules the
incoming query to the least loaded database server (that
also has the required set of tables).

To this end, the query router maintains a list of queries
that have been dispatched to each database server and still
awaiting response. This list contains the list of queries cur-
rently under (or awaiting) execution at a database server.
Subsequently, the load of a database server is approximated
as the sum of the estimated cost of these queries. Finally,
the server with least cost is scheduled to execute the next
incoming query.

We show the respective performance of these two routing
policies in the next section.

5. PERFORMANCE EVALUATION
In this section, we compare the performance of full database

replication to GlobeTP for two well-known Web application
benchmarks. TPC-W is a standard e-commerce benchmark
that models an online bookstore such as amazon.com [28],
while RUBBoS is a bulletin-board benchmark modeled af-
ter slashdot.org [25]. We selected these two applications
for their different data access characteristics. For exam-
ple, in a typical news forum, most users are interested in
the latest news. On the other hand, in a bookstore ap-
plication, the shopping interests of customers can be very
diverse, thereby leading to much lower query locality. This
allows us to study the behavior of our systems for different
data access patterns. In addition to these experiments, we
also evaluate the benefit of adding a database query caching
layer to GlobeTP.

5.1 Experimental Setup
The TPC-W application uses a database with seven ta-

bles, which are queried by 23 read and 7 UDI templates. In
our experiments the database is initially filled with 288, 000
customer records. Other tables are scaled according to the
TPC-W requirements. TPC-W defines three standard work-
load mixes that exercise different parts of the system: ‘brows-
ing’ generates 5% update interactions; ‘shopping’ generates
20% update interactions; and ‘ordering’ generates 50% up-
date interactions. We use the ‘shopping’ mix, which results
in a database workload containing 5.6% of UDI queries1.

The RUBBoS application consists of a set of PHP scripts
and a database containing five tables regarding users, sto-
ries, comments, submissions and moderator activities. The
database is initially filled with 500, 000 users, out of which

1Note that one must distinguish the update interactions
from the UDI queries. Update interactions are user-
generated HTTP requests that lead to at least one UDI
query, plus any number of read queries. Since GlobeTP
only operates at the database query level, the proportion of
update interactions is irrelevant here.

10% have moderator privileges, and 200, 000 comments. The
size of the database is approximately 1.5 GB. The applica-
tion defines 36 read and 8 UDI query templates. In our
experiments, we used the default user workload which gen-
erates 0.76% of UDI queries.

The client workload for both applications is generated by
Emulated Browsers (EBs). The run-time behavior of an
EB models a single active client session. Starting from the
home page of the site, each EB uses a Customer Behav-
ior Graph Model (a Markov chain with Web pages acting
as nodes and navigation action probabilities as edges) to
navigate among Web pages and perform a sequence of Web
interactions. The behavior model also incorporates a think
time parameter that controls the amount of time an EB
waits between receiving a response and issuing the next re-
quest, thereby modeling a human user more accurately. We
set the average think time to 6 seconds.

To generate flexible yet reproducible workloads, we run
each benchmark under relatively low load (i.e., with 30 to
100 EBs) multiple times and collect the corresponding data-
base query logs. Query logs from different runs can then be
merged to generate higher load scenarios. For instance, to
evaluate the performance of our system for 600 EBs, we
merge the query logs from six different runs with 100 EBs,
and stream the result to the query router. This allows us to
study the performance of the database tier alone indepen-
dently of other tiers.

The query router is implemented as a stand-alone server
written in Java. It maintains a pool of connections to each
database server and schedules each incoming query based
on the adopted routing policy. Database servers run Post-
greSQL version 8.1.3. Both full and partial database repli-
cation are performed at the query router level as described
in Section 3.2.

All our experiments are performed on a Linux-based server
cluster. Each server is configured with dual-processor Pen-
tium III 900 MHz CPU, 2 GB of memory and a 120 GB IDE
hard disk. These servers are connected to each other with a
gigabit LAN, so the network latency between the servers is
negligible.

5.2 Potential Reductions of UDI Queries
One important goal of GlobeTP is to reduce the replica-

tion degree of individual database tables to reduce the num-
ber of UDI queries to be processed. However, the extent to
which this is feasible greatly depends on the query templates
issued by the application and the workload distribution.

Figure 4(a) shows to which extent table-level partial repli-
cation allows to reduce the number of UDI queries to be
processed, expressed as the ratio of UDI queries to execute
between full and partial replication. The higher the ratio,
the greater the gain. Obviously, with just one server to host
the database, partial and full replication are identical so the
ratio is equal to 1. As the number of servers increases, par-
tial replication allows to reduce the number of UDI queries
by a ratio close to 3 for both applications.

To evaluate more accurately the potential load reduction
that we can expect from partial replication, we should take
into account the respective estimated costs of different query
templates, as well as the read queries from the workload.
Figure 4(b) shows the reduction ratio of estimated costs im-
posed on each server, for different numbers of servers. As we
can see, the reduction factor is much lower than when count-

WWW 2007 / Track: Performance and Scalability Session: Scalable Systems for Dynamic Content

306

R
ed

uc
tio

n
ra

tio
 o

f U
D

I q
ue

ry
 n

um
be

r 3

 2.5

 2

 1.5

 1

 0.5

 0
 0 5 10 15 20 25

Number of servers

RuBBoS
TPC−W

(a) Reduction of the number of UDI
queries.

R
ed

uc
tio

n
ra

tio
 o

f t
ot

al
 e

xe
cu

tio
n

co
st 2

 1.8

 1.6

 1.4

 1.2

 1

 0.8
 0 10 20 30 40 50

Number of servers

TPC−W
RuBBoS

(b) Reduction of estimated execution
cost per server.

R
ed

uc
tio

n
ra

tio
 o

f t
ot

al
 e

xe
cu

tio
n

co
st 1.2

 1.15

 1.1

 1.05

 1

 0.95
 1 2 3 4 5 6 7 8

RuBBoS
TPC−W

Number of servers

(c) Reduction of estimated execution
cost per server (zoom).

Figure 4: Potential Reduction of UDI queries.

ing UDI queries alone. The reason is that both workloads
are dominated by read queries, which are equally spread in
full and partial replication.

The experiments described in the remaining of this paper
are based on configurations using up to 8 database servers.
Figure 4(c) shows the respective potential of partial replica-
tion for both benchmarks under these conditions. TPC-W
shows a relatively good potential, up to 15% reduction in
workload per server. On the other hand, RUBBoS has a
lower potential. This is mainly due to the fact that RUB-
BoS generates very few UDI queries; reducing their number
even further by ways of partial replication can therefore have
only a limited impact.

Note that other workloads may show somewhat differ-
ent behavior. For example, RUBBoS defines a workload
where search queries are disabled. Since searches are imple-
mented as very expensive read queries, removing them from
the workload mechanically improves the cost ratio of UDI
queries and thereby the gains to be expected from GlobeTP.
Conversely, we cannot exclude that other Web applications
may dictate to keep all database tables together, making our
form of partial replication equivalent to full replication. For
these, GlobeTP will not provide any improvement unless the
application itself is updated (see Section 6.1).

In this paper we focus on standard benchmarks which offer
real yet limited potential for use in our system. However,
as we will see in the following sections, even the relatively
modest reductions in estimated costs shown here allow for
significant gains in execution latency and in total system
throughput.

5.3 Effect of Partial Replication and Template-
Aware Query Routing

To illustrate the benefits of GlobeTP, we measured the
query execution latencies of read and UDI queries together
using different configurations. For each of the two bench-
marks, we compared the performance of full replication,
GlobeTP using RR-QID query routing, and GlobeTP using
cost-based query routing. In all cases we used 4 database
servers and one query router. We selected a load of 900 EBs
for TPC-W and 330 EBs for RUBBoS, so that the tested
configurations would be significantly loaded.

Figure 5 shows the cumulative latency distributions from
both sets of experiments. As one can see, in both cases Glo-
beTP processes queries with a much lower latency than full
replication. For example, in RUBBOS GlobeTP processes

40% more queries than full replication within 10 ms. In
TPC-W, GlobeTP processes 20% more queries within 10 ms
than full replication.

In TPC-W, the RR-QID query routing policy delivers bet-
ter performance than its cost-based counterpart. This can
be explained by the fact that in TPC-W the costs of dif-
ferent query templates are relatively similar. The unavoid-
able inaccuracy of our cost estimations therefore generates
unbalanced load across servers, which leads to sub-optimal
performance. On the other hand, RR-QID is very effective
at balancing the load when queries have similar cost.

In RUBBoS, GlobeTP combined with cost-based routing
outperforms both other configurations. In this case, the
costs of different queries vary by three orders of magnitude
(as shown in Figure 3(c)). In this case, cost-based routing
works well because even relatively coarse-grained estima-
tions of the cost of each query helps avoiding issuing simple
queries to already overloaded servers.

In the following experiments we restrict ourselves to the
most effective routing policy for each application. We there-
fore use RR-QID for measurements of TPC-W, and cost-
based routing for RUBBoS.

One should note that GlobeTP has greater effect on the
latency in the case of RUBBoS than for TPC-W. This may
seem contradictory with results from the previous section.
However, the latency and the throughput of a given system
are not necessarily correlated. As we will see in the next sec-
tion, the throughput improvements that GlobeTP provides
are significantly greater for TPC-W than RUBBoS.

5.4 Achievable Throughput
To evaluate the scalability of our approach, we measured

the maximum sustainable throughput of different approaches
when using identical hardware resources. We first set a per-
formance target in terms of query execution latency: in our
experiments we aim at processing at least 90% of database
queries within 100 ms. Note that this performance target
is quite challenging, as several query templates have execu-
tion times greater than 100 ms, even under low loads (see
Figure 3(c)).

We then exercise system configurations with full and par-
tial replication, and increase the workload by steps of 50 EBs
for TPC-W and 30 EBs for RUBBoS. For each configuration
we record the maximum number of EBs that each configu-
ration can serve while respecting the latency target. The
results are shown in Figure 6.

WWW 2007 / Track: Performance and Scalability Session: Scalable Systems for Dynamic Content

307

C
um

ul
at

iv
e

di
st

rib
ut

io
n

(%
)

 100

 80

 60

 40

 20

 0 0.001 0.01

GlobeTP−cost−based

Full Replication

GlobeTP−RRID

Query execution latency (s)
 0.1 1 10

(a) TPC-W, 900 EBs.

C
um

ul
at

iv
e

di
st

rib
ut

io
n

(%
)

 100

 80

 60

 40

 20

 0
 0.001 1

Query execution latency (s)
 10 0.1 0.01

GlobeTP−cost−based

Full Replication

GlobeTP−RRID

(b) RUBBoS, 330 EBs.

Figure 5: Query latency distributions using 4 servers.

N
um

be
r

of
 e

m
ul

at
ed

 b
ro

w
se

rs

 500

 400

 300

 200

 100

 0
 2 3 4 5 6 7 8 1

Number of servers

GlobeTP

Full replication

(a) TPC-W.

N
um

be
r

of
 e

m
ul

at
ed

 b
ro

w
se

rs

 0

 50

 100

 150

 200

 250

 300

 350

 1 2 3 4 5 6 7 8
Number of servers

Full replication

GlobeTP

(b) RUBBoS.

Figure 6: Maximum achievable throughputs with 90% of queries processed within 100ms.

In TPC-W, one server alone can sustain up to 50 EBs. As
we increase the number of database servers, partial replica-
tion performs significantly better than full replication. In
particular, the maximum throughput of the fully replicated
system does not improve with more than four servers. This
corresponds to the point when the treatment of UDI queries
alone saturates each server. This can be explained by the
fact that the execution time of a UDI query is typically an
order of magnitude higher than that of a simple read query.
On the other hand, GlobeTP can sustain up to 150% higher
throughput while using identical hardware resources. Unlike
full replication, it is capable of exploiting 8 servers to sustain
higher throughput than when using only 4. This is due to
the fact that each server has less UDI queries to process, and
thereby experiences lower load and better execution latency.

In RUBBoS, GlobeTP again performs better than full
replication, yet with a lower difference. With 4 and 8 servers,
GlobeTP sustains 120 more EBs than full replication, which
accounts for 57% of throughput improvement. Given that
RUBBoS generates very few UDI queries, little improvement
can be gained by further reducing their number with partial
replication. In this case, the major reason for throughput
improvement is the cost-aware query routing policy which
takes the relative costs of different queries into account to
better balance the load between servers.

5.5 Effect of Query Caching
As noted in Section 3.2, GlobeTP can easily be coupled

with a database query caching system as most query caching

Table 1: Maximum throughput of different configu-
rations.

TPC-W RUBBoS
Full replication (4 servers) 200 EBs 150 EBs
GlobeTP (4 servers) 450 EBs 210 EBs
GlobeTP (4 servers) + 1 cache 600 EBs 330 EBs

systems rely on the same assumption as GlobeTP regarding
the explicit definition of query templates. However, Glo-
beTP focuses on improving the throughput of the applica-
tion’s origin database, while query caching systems aim at
reducing the individual query execution latencies. We there-
fore consider that both types of system complement each
other very well. As a side effect, a query caching system can
also improve the system throughput, as it prevents a number
of read queries from being issued to the origin database.

In our experiments, we use our own in-house query caching
solution, GlobeCBC [27]. GlobeCBC acts as a very simple
object cache: unlike other similar systems it does not at-
tempt to merge multiple query results into a single view of
the database. Instead, GlobeCBC stores the result of each
query independently from the others. This allows for very
fast processing, and facilitates the execution of the replace-
ment policy when the size of the cached items exceeds a
given limit. In our experiments, we limited the cache size to
approximately 5% of the size of the database itself.

WWW 2007 / Track: Performance and Scalability Session: Scalable Systems for Dynamic Content

308

Table 1 shows the effect of adding a single cache server in
front of the query router when using four database servers.
In TPC-W, the cache had a hit rate of 18%. This relatively
modest hit rate is due to the fact that the standard TPC-
W workload has very low query locality compared to real
e-commerce sites [3]. However, even in this case the system
throughput is increased by 33%, from 450 to 600 EBs.

Unlike TPC-W, the RUBBoS workload has quite high
database query locality. In this case the query cache delivers
48% hit ratio, which effectively increases the throughput by
57%, from 210 to 330 EBs. This result is quite remarkable
considering that search queries, which are by far the most
expensive ones in the workload, are based on random strings
and are therefore always passed to the origin database for
execution.

6. DISCUSSION

6.1 Potential of Query Rewriting
This paper demonstrates that relatively simple techniques

allow to significantly improve the throughput of standard
benchmarks, without requiring any modification to the ap-
plications themselves. However, we believe that increased
throughput can also be gained from simple changes of the
application implementation.

The main limitation of the approach of table-granularity
partial replication comes from database queries that span
multiple tables. As the business logic of an application be-
comes more complex, we can expect that more join queries
are introduced. Such queries oblige the table placement al-
gorithm to place all relevant tables together on at least one
server, which in turn increases the replication degree and
reduces the maximum throughput. Of course, queries span-
ning multiple tables are occasionally indispensable to the
application. But we have observed from the TPC-W and
RUBBoS benchmarks that many such queries can easily be
rewritten as a sequence of simpler queries spanning one table
each.

One simple example is the following query from TPC-
W, which aims at obtaining the most recent order issued
by a particular customer: “SELECT o id FROM customer,

orders WHERE customer.c id = orders.o c id AND

c uname = ? ORDER BY o date, orders.o id DESC LIMIT

1.” This query spans two tables. However the customer ta-
ble is used here only to convert a full-text username into a
user ID, after which the most recent order issued from this
ID can be researched in the order table. It is then trivial
to rewrite the application to first issue a query to customer

table alone, then another one to search for the most recent
order.

We found such unnecessarily complex queries to be very
frequent in the applications that we studied. Rewriting them
into multiple simpler queries can only reduce the constraints
put on the table placements, and therefore result in higher
throughput.

6.2 Fault-Tolerance
Although the main focus of this paper is not replication

for availability, one cannot ignore this issue. With increased
number of server machines involved in a given application,
the probability that one of them fails grows quickly. How-
ever, the most general form of fault-tolerance for this kind
of system cannot be realized, as providing both consistency

and availability in the presence of network partitions is im-
possible [5, 16]. On the other hand, if we ignore the possi-
bility of network partitions and restrict ourselves to server
failures, then the problem has an elegant solution.

To guarantee that the partially replicated database re-
mains able to serve all the expected query templates, it is
essential that each query template be available at one or
more servers. Therefore, to tolerate the failure of at most N
servers one only has to make sure that each query template
is placed on at least N + 1 servers. This requires database
replication algorithms suitable for fault-tolerance, which is
a well-understood problem. Replicating the query router
is also relatively simple as long as the applications do not
need transactional guarantees. As the query router does not
maintain any dynamically updated state that is essential for
application correctness, no state consistency between multi-
ple instances of the query router needs to be implemented.

Starting from a configuration designed for throughput only,
planning for fault-tolerance can be done in two different
ways. First, one may keep the number of servers unchanged
but artificially increase the replication degree of table clus-
ters across the existing machines. However, this will likely
degrade system throughput as more UDI queries must be
processed per server. Alternatively, one may provision for
additional servers, and adjust table placement to keep the
worst-case throughput constant. As long as not too many
servers fail, this configuration will exceed its throughput re-
quirements, which may have the desirable side-effect of pro-
tecting the Web site to a certain extent against unexpected
variations in load.

7. CONCLUSION
In this paper we have presented GlobeTP, which exploits

table-granularity partial database replication to optimize
the system throughput. This solution relies on the fact that
the query workload of Web applications is composed of a
restricted number of query templates, which allows us to
determine efficient data placements. In addition, the identi-
fication of query templates allows for efficient query routing
algorithms that take the respective query execution costs to
better balance the query load. In our experiments, these two
techniques allow to increase the system throughput by 57%
to 150% compared to full replication, while using identical
hardware configuration.

To increase the system’s scalability even further, a natu-
ral extension is to combine GlobeTP with a database query
caching system such as GlobeCBC, as both systems rely
on the same definition of query templates. These systems
complement each other very well: query caching improves
the execution latency in a wide-area setting by filtering out
many read queries, while GlobeTP shows its best poten-
tial for improving throughput under workloads that contain
many UDI queries. In our experiments, the addition of a sin-
gle query cache allows to improve the achievable throughput
by approximately 30% to 60%.

The work presented in this paper does not take into ac-
count the long-term load variations that must be expected
when operating a popular dynamic Web site. Adapting
the system capacity without any service interruption re-
quires dynamic database provisioning, which is a very dif-
ficult problem that is only beginning to be addressed [8].
In the near future we plan to study whether knowledge of
query templates can help here.

WWW 2007 / Track: Performance and Scalability Session: Scalable Systems for Dynamic Content

309

8. REFERENCES

[1] Akamai EdgeSuite. http://www.akamai.com/en/
html/services/edgesuite.html.

[2] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan.
DBProxy: A dynamic data cache for Web
applications. In Proc. Intl. Conf. on Data Engineering,
pages 821–831, March 2003.

[3] M. Arlitt, D. Krishnamurthy, and J. Rolia.
Characterizing the scalability of a large web-based
shopping system. ACM Transactions on Internet
Technology, 1(1):44–69, August 2001.

[4] C. Bornhövd, M. Altinel, C. Mohan, H. Pirahesh, and
B. Reinwald. Adaptive database caching with
DBCache. Data Engineering, 27(2):11–18, June 2004.

[5] E. A. Brewer. Towards robust distributed systems
(abstract). Proc. ACM Symp. on Principles of
Distributed Computing, July 2000.

[6] E. Cecchet. C-JDBC: a middleware framework for
database clustering. Data Engineering, 27(2):19–26,
June 2004.

[7] J. Challenger, P. Dantzig, A. Iyengar, and K. Witting.
A fragment-based approach for efficiently creating
dynamic web content. ACM Transactions on Internet
Technologies, 5(2):359–389, May 2005.

[8] J. Chen, G. Soundararajan, and C. Amza. Autonomic
provisioning of databases in dynamic content web
servers. In Proc. Intl. Conf. on Autonomic Computing,
Dublin, Ireland, June 2006.

[9] Z. Chen, Z. Huang, B. Ling, and J. Li. P2P-Join: A
keyword based join operation in relational database
enabled peer-to-peer systems. In Proc. Intl. Conf. on
Database and Expert Systems Applications, Sept. 2006.

[10] A. Datta, K. Dutta, H. Thomas, D. VanderMeer,
Suresha, and K. Ramamritham. Proxy-based
acceleration of dynamically generated content on the
world wide web: an approach and implementation. In
Proc. ACM SIGMOD/PODS Conf., pages 97–108,
June 2002.

[11] J. Dilley, B. Maggs, J. Parikh, H. Prokop,
R. Sitaraman, and B. Weihl. Globally distributed
content delivery. IEEE Internet Computing, 6(5),
September-October 2002.

[12] B. Fitzpatrick. Inside LiveJournal’s backend, or “holy
hell that’s a lot of hits!”. Presentation at the O’Reilly
Open Source Convention, July 2004. http:
//www.danga.com/words/2004_oscon/oscon2004.pdf.

[13] W. Fontijn and P. Boncz. AmbientDB: P2P data
management middleware for ambient intelligence. In
Proc. PERWARE Workshop, Mar. 2004.

[14] M. Freedman, E. Freudenthal, and D. Mazières.
Democratizing content publication with Coral. In
Proc. Symp. on Networked Systems Design and
Implementation, pages 239–252, San Francisco, CA,
USA, March 2004.

[15] L. Gao, M. Dahlin, A. Nayate, J. Zheng, and
A. Iyengar. Application specific data replication for
edge services. In Proc. Intl. WWW Conf., May 2003.

[16] S. Gilbert and N. Lynch. Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant
web services. ACM SIGACT News, 33(2):51–59, June
2002.

[17] B. Kemme and G. Alonso. Don’t be lazy, be
consistent: Postgres-R, a new way to implement
database replication. In Proc. Intl. Conf. on Very
Large Data Bases, pages 134–143, Cairo, Egypt,
September 2000.

[18] W.-S. Li, O. Po, W.-P. Hsiung, K. S. Candan, and
D. Agrawal. Engineering and hosting adaptive
freshness-sensitive web applications on data centers.
In Proc. Intl. WWW Conf., pages 587–598, May 2003.

[19] C. Olston, A. Manjhi, C. Garrod, A. Ailamaki,
B. Maggs, and T. Mowry. A scalability service for
dynamic web applications. In Proc. Conf. on
Innovative Data Systems Research, pages 56–69,
Asilomar, CA, USA, January 2005.

[20] G. Pierre and M. van Steen. Globule: a collaborative
content delivery network. IEEE Communications
Magazine, 44(8):127–133, August 2006.

[21] C. Plattner and G. Alonso. Ganymed: Scalable
replication for transactional web applications. In Proc.
ACM/IFIP/USENIX Intl. Middleware Conf., Toronto,
Canada, October 2004.

[22] M. Rabinovich and A. Aggarwal. RaDaR: a scalable
architecture for a global web hosting service. In Proc.
Intl. WWW Conf., May 1999.

[23] M. Rabinovich, Z. Xiao, and A. Agarwal. Computing
on the edge: A platform for replicating internet
applications. In Proc. Intl. Workshop on Web Content
Caching and Distribution, pages 57–77, Hawthorne,
NY, USA, September 2003.

[24] M. Ronstrom and L. Thalmann. MySQL cluster
architecture overview. MySQL Technical White Paper,
April 2004.

[25] Rubbos: Bulletin board benchmark.
http://jmob.objectweb.org/rubbos.html.

[26] S. Sivasubramanian, G. Pierre, and M. van Steen.
GlobeDB: Autonomic data replication for web
applications. In Proc. Intl. WWW Conf., Chiba,
Japan, May 2005.

[27] S. Sivasubramanian, G. Pierre, M. van Steen, and
G. Alonso. GlobeCBC: Content-blind result caching
for dynamic web applications. Technical Report
IR-CS-022, Vrije Universiteit, Amsterdam, The
Netherlands, June 2006. http:
//www.globule.org/publi/GCBRCDWA_ircs022.html.

[28] W. D. Smith. TPC-W: Benchmarking an ecommerce
solution. White paper, Transaction Processing
Performance Council.

[29] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer,
and A. Tantawi. An analytical model for multi-tier
internet services and its applications. In Proc. ACM
SIGMETRICS, pages 291–302, June 2005.

[30] W. Zhao and H. Schulzrinne. Enabling on-demand
query result caching in DotSlash for handling web
hotspots effectively. In Proc. Workshop on Hot Topics
in Web Systems and Technologies, Boston, MA, USA,
November 2006.

WWW 2007 / Track: Performance and Scalability Session: Scalable Systems for Dynamic Content

310

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

