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ABSTRACT

Nowadays, mobile users with global positioning devices can
access Location Based Services (LBS) and query about points
of interest in their proximity. For such applications to suc-
ceed, privacy and confidentiality are essential. Encryption
alone is not adequate; although it safeguards the system
against eavesdroppers, the queries themselves may disclose
the location and identity of the user. Recently, there have
been proposed centralized architectures based on K-anonymi-
ty, which utilize an intermediate anonymizer between the
mobile users and the LBS. However, the anonymizer must
be updated continuously with the current locations of all
users. Moreover, the complete knowledge of the entire sys-
tem poses a security threat, if the anonymizer is compro-
mised.

In this paper we address two issues: (i) We show that
existing approaches may fail to provide spatial anonymity
for some distributions of user locations and describe a novel
technique which solves this problem. () We propose PRIVE,
a decentralized architecture for preserving the anonymity
of users issuing spatial queries to LBS. Mobile users self-
organize into an overlay network with good fault tolerance
and load balancing properties. PRIVE avoids the bottleneck
caused by centralized techniques both in terms of anonymi-
zation and location updates. Moreover, the system state is
distributed in numerous users, rendering PRIVE resilient to
attacks. Extensive experimental studies suggest that PRIVE
is applicable to real-life scenarios with large populations of
mobile users.
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1. INTRODUCTION

The increased popularity of mobile communication de-
vices with embedded positioning capabilities (e.g., GPS) has
triggered the development of location-based applications.
General Motor’s OnStar navigation system, for example,
combines the vehicle’s position with real-time information
to avoid traffic jams, and automatically alerts the authori-
ties in case of an accident. More applications based on the
users’ location are expected to emerge with the arrival of
the latest gadgets (e.g., iPAQ hw6515, Mio A701) which
combine the functionality of a mobile phone, PDA and GPS
receiver.

Consider the following scenario: Bob uses his GPS en-
abled mobile phone to ask the query “Find the nearest hos-
pital to my present location”. This query can be answered
by a Location-Based Service (LBS) in a public server (e.g.,
Google Maps), which is not trusted. To preserve his privacy,
Bob does not contact the LBS directly. Instead he submits
his query via an intermediate trusted server which hides his
ID (services for anonymous web surfing are commonly avail-
able nowadays). However, the query still contains the exact
coordinates of Bob. One may reveal sensitive data by com-
bining the location with other publicly available informa-
tion. If, for instance, Bob uses his mobile phone within his
residence, the untrustworthy LBS may infer Bob’s identity
and speculate that he suffers from a medical condition.

In practice, users are reluctant to access a service that may
disclose sensitive information (e.g., corporate, military), or
their political/religious affiliations and alternative lifestyle.
To preserve privacy in LBS, recent research focused on adapt-
ing the well established K-anonymity technique to the spa-
tial domain. K-anonymity [19, 21] has been used in sta-
tistical databases as well as for publishing census, medical
and voting registration data. A dataset is said to be K-
anonymized, if each record is indistinguishable from at least
K—1 other records with respect to certain identifying at-
tributes. In the LBS domain, a similar idea is to employ
spatial cloaking [9, 10] to conceal user locations: instead of
reporting the exact coordinates to the LBS, an Anonymizing
Spatial Region (K-ASR) is constructed, which encloses the
locations of —1 additional users. Ref. [13, 17] extend this
method and also address processing of anonymized queries.

Most existing approaches utilize a centralized anonymizer:
a trusted server that acts as an intermediate tier between
the users and the LBS. All users subscribe to the anonymizer
and continuously report their location while they move. Each
user sends his query to the anonymizer, which constructs the
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appropriate JL-ASR and contacts the LBS. The LBS com-
putes the answer based on the IC-ASR, instead of the exact
user location; thus, the response of the LBS is a superset of
the answer. Finally, the anonymizer filters the result from
the LBS and returns the exact answer to the user.

Our work is motivated by the following shortcomings of
existing approaches: (i) The centralized anonymizer is a
bottleneck due to handling query requests, frequent updates
of user locations and result post-processing. Moreover, the
anonymizer is a single point of failure; the system cannot
function without it. (47) The complete knowledge of the lo-
cations and queries of all users is a serious security threat, if
the anonymizer is compromised. Even if there is no attack,
the centralized anonymizer may be subject to governmental
control, and may be banned or forced to disclose sensitive
user information (similar to the legal case of the Napster
file-sharing service). (iii) Independent of the centralized ar-
chitecture, the hierarchical partitioning method for I-ASR
construction [10, 17] fails to provide anonymity under cer-
tain conditions (see Section 3).

We propose PRIVE, a distributed architecture for anony-
mous location-based queries, which addresses the problems
of existing systems. Our contributions are: (i) We de-
velop a superior K-ASR construction mechanism based on
the Hilbert space-filling curve, that guarantees query ano-
nymity even if the attacker knows the locations of all users.
(#) We introduce a distributed protocol used by mobile en-
tities to self-organize into a fault-tolerant overlay network.
The structure of the network resembles a distributed B*-tree
(each mobile user corresponds to a data point), with addi-
tional annotation to support efficiently the Hilbert-based K-
ASR construction. In PRIVE, K-ASRs are built in a decen-
tralized fashion, therefore the bottleneck of the centralized
server is avoided. Moreover, since the state of the system is
distributed, PRIVE is resilient to attacks. (iii) We also con-
duct an extensive experimental evaluation. The results con-
firm that PRIVE achieves efficient anonymization and load
balancing with low maintenance overhead, while being fault-
tolerant. Therefore, it is scalable to large numbers of mobile
users.

The rest of the paper is organized as follows: Section 2
discusses the architecture of PRIVE. Section 3 introduces
spatial K-anonymity concepts and highlights the limitations
of existing solutions. In Section 4, we introduce our Hilbert-
based K-ASR construction mechanism and in Section 5 we
describe the distributed protocol of the overlay network.
Section 6 presents the experimental evaluation of our sys-
tem. A brief survey of the related work is included in Sec-
tion 7. Finally, Section 8 concludes the paper and discusses
directions for future work.

2. SYSTEM ARCHITECTURE

Fig. 1 depicts the architecture of PRIVE. We assume a
large number of users who carry mobile devices (e.g., mo-
bile phones, PDAs) with embedded positioning capabilities
(e.g., GPS). The devices have processing power and access
the network through a wireless protocol such as WiFi, GPRS
or 3G. Moreover, each device has a unique network identity
(e.g., IP address) and can establish point-to-point commu-
nication (e.g., TCP/IP sockets) with any other device in the
system through a base station (i.e., the two devices do not
need to be within communication range of each other). For
security reasons, all communication links are encrypted.
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In addition, we assume the existence of a trusted central
Certification Server (CS), where users are registered. Prior
to entering the system, a user u must authenticate against
the CS and obtain a certificate. Users having a certificate
are trusted by all other users. Typically, a certificate is
valid for a few hours; it can be renewed by recontacting the
CS. Apart from the certificate, the CS returns to u the IP
addresses of some users who are currently in the system.
uses this list to identify an entry point to the distributed
network. Note that the CS does not know the locations
of the users and does not participate in the anonymization
process. Therefore the workload of the CS is low (i.e., no
location updates); moreover it does not store any sensitive
information.

Each user corresponds to a peer. Peers are grouped into
clusters, according to their location. Within each cluster,
peers elect a cluster head, and the set of heads is grouped
recursively to form a tree. To achieve load balancing, cluster
heads are rotated in a round-robin manner. By definition,
cluster heads belong to multiple levels of the tree. In Fig. 1,
for instance, there is a two-level hierarchy, where users uas,
us, ug are the heads of cluster Ci, C2 and Cj3, respectively;
also, ug is the head of the upper layer cluster Cj.

Typically users ask Range or Nearest-Neighbor (NN) que-
ries with respect to their location. For example, user u; in
Fig. 2, may ask: “Find the nearest hospital to my present
location” (the answer is h2). Such queries reveal the exact
location of u;. To achieve anonymity, PRIVE requires users
to set a degree of anonymity K (note that I is based on
individual criteria and may vary among queries). In our ex-
ample, u; chooses K = 3. PRIVE identifies an appropriate
set of three users (i.e., u1, u2 and us) in a distributed manner
and constructs the corresponding K-ASR (i.e., the rectan-
gle which encloses the three users). Next, the transformed
query is sent to LBS by wi. In order to hide his IP address,
u1 uses a pseudonym. To obtain a pseudonym, any existing
service for anonymous web surfing can be used'. Note that
the pseudonym service does not know the location of any
user. Moreover, the auxiliary users inside the K-ASR col-
laborate only to hide the location, but do not know the exact
query of ui; therefore, a single point of attack is avoided.

PRIVE can collaborate with various untrustworthy spatial
databases providing LBS. The only requirement for the LBS
is to support NN queries of regions (i.e., K-ASRs) as opposed
to points. Intuitively, the nearest neighbors of a region are
all the data objects inside the region plus the NN of every

1Since each user can access his preferred pseudonym service,
that service is not a bottleneck or a single point of failure.
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Figure 2: Example: “Find the nearest hospital”

(users are shown as black dots).

point in the perimeter of the region. In our example (Fig. 2),
the NN of the K-ASR are {hs, hs, ha}; the set is filtered
by w1 to obtain the actual answer hz. The cardinality of
the NN set (thus the processing and communication cost)
depends on the IC-ASR; therefore we aim to minimize the
size of the K-ASR. Query processing at the LBS [11, 13,
17] is orthogonal to our work, but outside the scope of this

paper.

3. SPATIAL K-ANONYMITY

A user u who issues a location-based query is considered
to be K-anonymous if his identity is indistinguishable from
that of —1 other users [10]. Formally:

Definition [Spatial K-anonymity] Let H be a set of K
distinct user entities with locations enclosed in an arbitrary
spatial region K-ASR. A user u € H is said to possess K-
anonymity with respect to K-ASR if the probability of dis-
tinguishing? u among the other users in H does not exceed
1/K. We refer to K as the required degree of anonymity.

Note that: (i) The definition assumes a snapshot of user
locations. Although PRIVE supports user mobility, K-ano-
nymity is undefined across multiple snapshots. (i3) Spatial
K-anonymity does not depend on the size of the X-ASR. In
the extreme case, the IC-ASR can degenerate to a point, if /C
users are at the same location. In general, we prefer small
KC-ASRs, in order to minimize the processing cost at the
LBS and the communication cost between the LBS and the
mobile user. Nevertheless, some applications impose a lower
bound on the size of the K-ASR [17]. In such a case, the K-
ASR can be trivially enlarged to satisfy the lower bound, by
symmetrical scaling in all directions. The same procedure
can also be used to avoid having users on the perimeter of
the K-ASR.

A naive K-ASR construction algorithm would choose a
random KC-ASR. However, if the -ASR is too small it may
contain fewer than K users, whereas if it is larger than nec-
essary, it will affect the query cost. Constructing the K-ASR
in the neighborhood of the querying user u (e.g., using the
K nearest neighbors of u) is also inappropriate, because u
tends to be closest to the center of the K-ASR, thus easily
identified. Moreover, we cannot pick randomly K—1 auxil-
iary users and send K independent NN queries to the LBS,
because we would disclose the exact locations of K users;
this is undesirable in any anonymization method.

2Note that, we address location anonymity; attacks based
on background knowledge (e.g. user medical history) are
outside the scope of this work
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Figure 3: K-ASR Reciprocity Example, =5

We identify the following property that is sufficient for
a K-ASR construction technique in order to preserve user
privacy:

Definition [K-ASR Reciprocity] Consider a user u, is-
suing a query and its associated K-ASR A,. A, satisfies the
reciprocity property iff there exists a set of users AS lying
in Aq such that (i) |AS| > K, (i) uqg € AS and (iii) every
user u € AS lies in the C-ASRs of all other users in AS.

Fig. 3 shows an example with ten users. For =5, the K-
ASR of users u1,us, uq, us, w10 is area A; an the KC-ASR of
users ug, us, Ug, U7, Uy is area Ao. In this example, I-ASRs
of all users satisfy the reciprocity property. For instance,
for user ui, if we set AS = {u1,us,us,us, w10}, we may
easily verify that AS satisfies all the requirements of the
reciprocity property.

THEOREM 3.1. For a given snapshot of user locations,
and regardless of the query distribution among users, a K-
ASR construction technique guarantees spatial IC-anonymity
if every generated K-ASR satisfies the reciprocity property.

PRrROOF. We assume the worst case scenario, where an at-
tacker knows the exact location of all users in the system
(from an outside source). The attacker intercepts a set A of
KC-ASRs associated to user queries.

Consider £-ASR A, € A. The attacker attempts to infer
the user uq that constructed A,. Since A, satisfies the reci-
procity property, there exists a set of users AS (lying in Ag)
such that (i) |AS| > K, (it) uq € AS and (%ii) every user
u € AS lies in the K-ASRs of all other users in AS.

Moreover, since every K-ASR satisfies the reciprocity prop-
erty, it follows that when the attacker inspects any K-ASR
that includes uq, he will observe the same set of users AS.
Therefore, for all users v in AS, the probability P, of being
the query issuer is:

1 < 1

|AS| — K
Hence, the K-anonymity property is satisfied. [

P,=P,, =

In view of this property, an optimal C-ASR construction
algorithm would partition the user population into K-ASRs
that possess the reciprocity property, such that the sizes
of the resulting -ASRs are minimized. However, optimal
K-anonymity is an NP-Hard problem [16]. A number of on-
the-fly -ASR construction techniques have been proposed,
which attempt to achieve anonymity and reduce the K£-ASR
size. In the following, we briefly survey these solutions and
highlight their drawbacks.

3.1 Drawbacks of Existing Approaches

The anonymization technique of Ref. [10] indexes user lo-
cations in a PR-Quad-tree. When user u issues a query, the
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Figure 4: Limitations of QUADASR, K=3

Quad-tree is traversed until a quadrant which contains u
and less than C—1 other users is found. The parent of that
quadrant is returned as the KC-ASR. A similar idea is used
in Ref. [17]. We refer to this technique as QUADASR.

There are two drawbacks of QUADASR: (i) It may fail
to achieve anonymity for some user distributions. Consider
the example of Fig. 4. Each user resides in his own quad-
rant identified by its lower-left and upper-right coordinates.
When any of the users w1, uz or usz issues a query with de-
gree of anonymity K=3, the quadrant g2 = ((0,2),(2,4))
which encloses u;...3 will be returned as the £-ASR. On the
other hand, when the isolated user w4 issues a query with
K=3, the larger quadrant ¢; = ((0,0), (4,4)) is returned.
Note that if 1 < K < 3, the only reason to return quadrant
q1 is that u4 issued a query. If an attacker knows the loca-
tions of the users in the area®, he will be able to pinpoint u4
as the query origin. This vulnerability is the result of the
fact that QUADASR does not satisfy the reciprocity property
(i.e. w1..3 belong to the K-ASR associated to w4, but not the
other way around). (73) A second drawback of QUADASR is
that due to the non-uniform distribution of user locations,
the number of users enclosed by a K-ASR may grow much
larger than K (as for u4 in the previous example). This cor-
responds to larger spatial extent of the -ASR, hence higher
processing cost.

Recently, a P2P system has been proposed that performs
distributed query anonymization for location-based queries;
we refer to it as CLOAKP2P [7]. CLOAKP2P uses a technique
similar to iterative deepening [23] to construct K-ASRs. The
query source initiates a K-ASR request by contacting all
peers within a given physical radius r, which is a fixed sys-
tem parameter. If the set of peers Sp found in the initial
iteration is larger than K, the nearest K of them are cho-
sen to form the K-ASR; otherwise, the process continues,
and all peers in Sy issue a request to all peers within ra-
dius r. The process stops when K or more users have been
found. Intuitively, CLOAKP2P determines a query K-ASR
by finding the K —1 users nearest to the query source. Un-
fortunately, this simple heuristic fails to achieve anonymity
in many cases, since the query issuer tends to be near the
center of the K-ASR. In Section 6, we show experimentally
the vulnerability of CLOAKP2P.

None of the existing methods satisfies the reciprocity prop-
erty. Next, we describe our HILBASR algorithm, which over-
comes the aforementioned drawbacks.

4. THE HiLBASR ALGORITHM

Our HILBASR algorithm guarantees that the probabil-
ity of identifying the query initiator is always bounded by
1/K, even if the attacker knows the locations of all users.
HILBASR uses the Hilbert [6] ordering to group users into

3By triangulation, phone companies can estimate the loca-
tion of a user within 50-300 meters, as required by the US
authorities (E911).
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Figure 6: HILBASR, K=3 and =4

buckets of K. The Hilbert space-filling curve is a continu-
ous fractal which maps each region of a multi-dimensional
space to an integer. In our case, the 2D coordinates of user
locations are mapped to a 1D value. With high probabil-
ity, if two points are close in the 2D space, they will also
be close in the Hilbert transformation. Fig. 5, for instance,
shows the curve for a 4 x 4 and 8 x 8 space partitioning; the
granularity of the regions can be arbitrary small.

To compute the K-ASR, HILBASR employs a partition-
ing scheme that supports user mobility and varying IC with
minimal overhead. Intuitively, HILBASR computes and sorts
the Hilbert values of all users. Then, the algorithm concep-
tually groups the sorted Hilbert values into K-buckets that
contain K users, except from the last one which may con-
tain up to 2-KC—1 users. Let us consider a user u asking a
query with anonymity degree . To compute the K-ASR
of u, HILBASR computes the Hilbert value H(u) of v and
finds the K-bucket that H(u) belongs to. The minimum
bounding rectangle (MBR) of all the users in the K-bucket
corresponds to the IC-ASR.

For example, in Fig. 6, we illustrate the locations of ten
users and their sorted Hilbert values. To compute the 3-ASR
of user ug, HILBASR first finds the K-bucket which H(ug)
belongs to. In our case, this consists of four users, us, uo,
u19 and u7. Then, HILBASR returns the MBR of these users.
Thus, the 3-ASR of user ug is area As. Similarly, the 4-ASR
of user us is area Aj.

Note that for a given snapshot, HILBASR returns the same
KC-ASR for all users in the K-bucket. This makes the K users
of the C-bucket indistinguishable from each other. Thus, the
probability of identifying the query initiator is bounded by
1/K.

LEMMA 4.1. For a snapshot of user locations, HILBASR
guarantees query source anonymity against location-based
attacks.

Proor. HILBASR satisfies the reciprocity property, so
from Theorem 3.1 immediately results that HILBASR guar-
antees spatial K-anonymity. [

In general, techniques that use fixed buckets suffer from
lack of flexibility in accommodating queries with varying K.
Our method overcomes this limitation by avoiding to ma-
terialize the K-buckets. Instead, it maintains a balanced



WWW 2007 / Track: Pervasive Web and Mobility
37 <47, count =0

Compute rank(37)
— [ (10)
34<37<39, count=0+3+4=7 ¢

[((3) [38] @ [34] 3) [39] (3) ] [(3) [56] (4

[64] (3) |

\_‘

61]63][67]68]71]

8 [14]17][21]24]29]33][36[37[38][41]44]45] [49]52]55] [57]
count = 7 + local_rank(37) = 8

5

8]

a)

11 < 13, follow “<47" path only
(13)[47] (10)

v6-11
[ (3) [18] (4) [34] (3) [39] (3) | \

Find Range(6-11)

all but first entry intersect 6-11

[6a] 3) |

\_‘

8]61]63][67[68[71]

(3) [56] (4

33 7L o2y o1¥
(S TL4]57][22]24 25153 367138 W ilAalts] [3s[5215%) (7]
[ —

6-ASR b)

Figure 7: HILBASR with Annotated BT -tree

5

sorting tree, which indexes the Hilbert values of user loca-
tions. Let user u initiate a query with anonymization degree
K. Our algorithm performs a search for H(w) in the index
and computes rank,, which corresponds to the position of
H(w) in the in-order traversal of the tree. From rank,, we
calculate the start and end positions defining the -bucket
which includes H(u), as *

start =
end =

rank, — (rank, mod K,) (1)
start + Ky — 1

To compute rank, efficiently, we use an annotated BT-
tree (similar to the aR-tree [18]), where each tree node stores
the number of leaf nodes in each of its subtrees. Consider
the example in Fig. 7. For each internal node entry e, we
store the number of leaf entries that are rooted at e; annota-
tion counters are shown in parenthesis. Assume we want to
determine a KC-ASR for entry 37, with X=6. First, we com-
pute the rank of entry 37 (Fig. 7a): we follow the path in the
tree from root to the leaf that contains 37, and at each inter-
nal node we add to the rank value the sum of all counters in
the node situated at the left of the followed pointer. At the
leaf layer, we add to the rank the local rank value of key 37
in its leaf, and obtain rank 8 (ranks start from 0). Then, we
calculate the bucket delimiters using Eq. (1), and obtain the
interval [6..11]. Next (Fig. 7b), we perform a range search to
locate the entries with ranks [6..11]. Observe that this op-
eration uses the annotation, rather that the B*-tree keys.
Sub-ranges at each level are determined by splitting the ini-
tial range based on subtree sizes; the offset for the recursive
call at entry e is determined as the initial start value minus
the sum of counters of all entries in the node preceding e.
The resulting K-ASR is highlighted in the diagram.

The data structure is scalable, since the complexity of
constructing the K-ASR is O(log N+ K), whereas search,
insert and delete cost is O(log N). Therefore, HILBASR is
applicable to large numbers of mobile users who update their
position frequently and have varying requirements for the
degree of anonymity .

5. ANONYMIZATION IN PRIVE

In this section, we introduce PRIVE, a distributed proto-
col which supports decentralized query anonymization using
the HILBASR algorithm. PRIVE mimics the functionality of
a BT-tree in a distributed setting. Each mobile user u has

“For the last (incomplete) bucket, start and end are ad-
justed accordingly
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an associated index entry consisting of an ID (e.g., IP ad-
dress), and the Hilbert value H(u) of his location as index
key. A node (leaf or internal) in the B*-tree corresponds
to a cluster of users, with size bounded between a and 3c,
where « is a fixed system parameter. We use the terms clus-
ter and inder node interchangeably. The maximum cluster
size is 3c, instead of the usual 2« for BT -trees, to prevent
cascading splits and merges (i.e., a split followed by a user
departure), which are costly in the distributed environment.

Every user belongs to a leaf level cluster (level 0), and
the contents of each cluster are disjoint (see Fig. 8). The
users of each cluster C' elect a leader called head(C). The
head (marked with an asterisk) handles all index operations
on behalf of the users in the cluster. Cluster heads are re-
cursively grouped to form a tree; therefore, they belong to
multiple levels of the tree. We denote by C?, the level i
cluster which includes user u. In our example, user u, is the
head of cluster C? at level 0, and also the head of clusters C
and C?; therefore, it belongs to every level of the tree. There
is a single cluster at the top of the hierarchy, denoted as top.
The cluster head of top is denoted by root (u, in the exam-
ple). In our protocol description, we use remote procedure
call convention to specify interactions between users. The
notation . func(params) denotes the invocation of subrou-
tine func with parameters params at user u.

Each cluster is associated with its state information. The
state of a leaf level cluster consists of an ordered list of (IP
address, H(u)) pairs (user coordinates can be derived from
the H(u) value). The state of an upper layer cluster with
m elements consists of a list of m user addresses, separated
by m — 1 key values used to direct the search; the process
is similar to a BT-tree, with the role of memory pointers
fulfilled by the IP addresses of users. Each internal node
entry is annotated with a counter (depicted in parenthesis)
representing the total number of users at the subtree under
the entry. Only the head needs to know the state of the
cluster. However, in our implementation, we replicate the
state on every user within the cluster, to improve fault tol-
erance (in Section 6, we discuss the tradeoff between fault
tolerance and maintenance cost). The PRIVE hierarchy has
at most log,, N layers, where N is the total number of users.
Since the cluster size is bounded and a user may belong to
at most one cluster at each level, there is an upper bound
of O(alog, N) on the membership state stored at a user.

5.1 Index Operations

The index supports four operations: join, departure, re-
location and K-request (i.e., a request for a K-ASR with
anonymization degree K). We establish two performance
metrics for PRIVE: (i) latency: the number of hops an in-
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Figure 9: User Join and Relocation, a=2

u.RelocateMyself() /*executed by moving user®/
determine new key value H, = Hilbert(u.z,u.y)
call head(C?).Relocate(u, Ha,0)
u.Relocate(relocated_user,H,l)
if (H in indexed key range at level [ )
if (I1=0)
add relocated_user to leaf user list; return
else
let n be the next hop for H
call n.Relocate(relocated_user, H,l — 1)
else
call head(parent(C!)).Relocate(relocated_user, H,l + 1)

Figure 10: User Relocation

dex operation requires to complete. The latency is equal to
the longest tree path followed as a result of the operation.
Multiple paths may be followed in parallel during an op-
eration. (i) communication cost: the number of messages
generated by an index operation.

Join. User join corresponds to a BT-tree insertion opera-
tion. Newly joining users authenticate at the certification
server and receive the address of a user already inside the
system. Without loss of generality, we assume that join-
ing users know the root, since the root can be reached from
any user in O(log, N) cost. We stress that since we require
an index structure with annotation (in order to determine
the absolute ranks of users), all joins must occur through
the root. To avoid overloading the root, we devise a load-
balancing mechanism (Section 5.2). User join has O(log, N)
complexity in terms of latency and O(log, N + «) communi-
cation cost; the second term is for updating the cluster state
in all the users of the affected cluster.

Consider user u, with Hilbert value H(u,) = 46 that joins
the index of Fig. 8: u, contacts u, (at the root level) who
forwards the join request to u; and updates u,’s annotation
counter in Cg to 14. wp then forwards the request to up,
whose annotation counter in C¢ is updated to 4. Fig. 9(a)
shows the join outcome. User join may trigger a cluster
split, handled similarly to a BT-tree node split; the head
initiating the split leads one of the resulting clusters, and
appoints a random initial cluster node to lead the other.
Departure (informed). User departure is similar to a
BT -tree deletion. The effect of deletion must be propagated
to root to update the annotation counters. Deletion has
O(log,, N) latency and O(log, N + «) communication cost.
If the cluster size decreases below «, the head triggers a
merge operation with the neighbor leaf-level cluster that has
fewer members (to avoid a cascaded split). The head of the
resulting cluster can be any of the initial heads, except if one
of them (e.g., uq) is also head at the higher level. If so, uq
will be chosen as leader, to minimize membership changes.
Relocation. User mobility is treated as an entry update,
which in a BT-tree translates into a deletion and an inser-
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tion. Since users are likely to change location often, we opti-
mize this process by performing local reassignment of users
to nearby clusters. Due to the good locality properties of
Hilbert ordering, the number of clusters involved in reloca-
tion is likely to be small. Annotation counter updates are
only performed by affected clusters; this way, updates are
not propagated all the way to the root. The upper bound on
relocation latency is O(log,, V), but in most cases relocation
only involves a few clusters, at the low layers of the index.
The pseudocode for user relocation is given in Fig. 10.
Consider user us from Fig. 8 who relocates to a new po-
sition with Hilbert value 60. He forwards the request to
Uqg = head(Cg). uq cannot keep us within the same leaf en-
try, since the new value is outside the interval [49..55]. Since
uq = head(C}), with no additional message, u, decides that
us can be relocated to C?, forwards the request to uy and
updates the annotation counters of u, and uy accordingly.
Fig. 9(b) illustrates the relocation outcome.
K-request. This operation corresponds to the HILBASR
algorithm described in Section 4. Consider the example in
Fig. 11, where user u,, issues a K-request with K=6. The
request follows the path: um, — ug — up — uq (solid arrows
in Fig. 11(a)). The root u, determines the K-bucket (i.e.,
start = 6, end = 11) and sends a K-ASR request to u, (dot-
ted arrows in Fig. 11(a)). wup sends in parallel requests for
partial K-ASRs with ranges [6..6], [7..9] and [10..11] to wua,
ue and up, respectively. up, which is the head of the lowest-
layer cluster that completely covers the K-bucket (shown
hashed in Fig. 11(b)) collects the partial K-ASRs, assem-
bles the final query K-ASR and sends it back to the query
issuer on the reverse path of the request. Note that, the clus-
ter head that covers the K-bucket sustains the highest load
among all other users involved in the query. This potential
load imbalance issue is addressed in Section 5.2. A K-request
has O(log,, N)+O(log, K) latency and O(log, N)+O(K/a)
communication cost. The pseudocode for K-request is shown
in Fig. 12. Once the K-ASR is constructed, the query is-
suer (i.e., um) can send the anonymized query to the LBS
through a pseudonym service, as explained in Section 2.

5.2 Fault Tolerance and Load Balancing

PRIVE implements a soft-state based mechanism to deal
with user failures or disconnections without notification. Each
cluster leader sends periodically (i.e., every 0t seconds) a
membership_update message to all cluster members. The
message contains the membership list of the current clus-
ter C' and that of parent(C). Cluster members respond to
these messages; if a cluster member does not respond to
two consecutive messages, it is considered disconnected and
removed from the cluster. The change is broadcast by the
cluster head to the remaining cluster members.
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u.K-request() /*executed by query source*/
determine key value H, = Hilbert(u.x, u.y)
call head(C?).ForwardRequest(H., 0,0)
u.ForwardRequest(H, count, )
if (I = 0) count = ranky in leaf entry
else count+ = sum of annotation counters of keys < H
if (u is root)
compute start and end using eq (1)
K-ASR = root. findM BR(start, end, root_height)
else call head(CLT) . ForwardRequest(H, count, | + 1)
u.findMBR(start,end,l)
if (1 =0) /*leaf level*/
return MBR of members with local rank in [start,end]
find set of next hops U for range [start,end]
MBR =10
for ' €U
MBR = MBR U/ .findMBR(start,, end,,l — 1)
return M BR

Figure 12: K-request

If a non-head cluster member u does not receive a mem-
bership_update from its head for a 20t period, it initiates a
leader election process. Alternatively, when u attempts to
initiate a operation, such as query or relocation, but cannot
contact the cluster head for two consecutive attempts, it
triggers the leader election protocol without waiting for the
timer to expire. u checks the membership it had at the last
update, and chooses as leader (i.e., new_head) the user with
the smallest identifier. It then sends a transfer_head message
to new_head, which in turn sends a membership update mes-
sage to all cluster users and also contacts head(parent(C))
to notify the change in leadership. new_head will replace
the old head in all layers where the latter was leader before
disconnection.

The hierarchical structure can cause significant differences
between the load sustained by cluster heads and ordinary
cluster members, as well as among cluster heads at different
layers of the hierarchy. To alleviate the inherent imbalance,
we propose a cluster head rotation mechanism, where users
take turns in fulfilling the cluster head role. Since the pro-
motion to cluster head translates into presence at a higher
layer of the hierarchy, the rotation also ensures that users
equally share the load at different layers.

Rotation is triggered when a node reaches a certain load
threshold, denoted by load unit. In wireless devices, the
communication cost is dominant. It is also important from
the user’s perspective, since mobile phone operators charge
by the amount of transferred data. Therefore, in PRIVE the
load is best represented by the number of messages sent and
received by the user.

When user u reaches one load unit, it triggers a head ro-
tation in all the clusters it currently heads, starting with its
highest layer. For each node along the path to its level 0
cluster, the member with the least load is appointed as new
head. Note that, since u stores the membership state about
all clusters it belongs to at different layers, the appointment
of a new leader can be done directly by u, without the need
for a complex protocol or additional messages. Choosing the
cluster member with the lowest load prevents the newly ap-
pointed head to start a fresh rotation soon after promotion.

Fig. 13 illustrates the rotation mechanism. For simplic-
ity, all clusters have size 2. Assume all queries originate at
user ug with =4. After u, reaches one load unit, it hands
over the root role to ue (at layer 2) from the right-hand
subtree. Also, at layer 1, u. becomes the head and is au-
tomatically promoted to layer 2. Similarly, at layer 0, wuy
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Figure 13: Load Balancing Mechanism

becomes the head and is promoted to layer 1; the result is
shown in Fig. 13(b). Next, u. reaches its load unit, because
more requests pass through it (it must inject queries and col-
lect partial K-ASRs). wu. triggers a rotation at level 1 and
appoints up as cluster head (see Fig. 13(c)). Subsequently,
up may be the next one to reach the load threshold, and start
a new rotation in the left subtree. Observe that at step (d),
the left subtree has already performed a complete rotation
round, whereas the right subtree has only performed one
change. Hence, our rotation mechanism alleviates hotspots
(an entire subtree shares the load generated by uq) and at
the same time provides a degree of fairness, not allowing a
localized hotspot to affect a large partition of the index.

The granularity of load unit choice is important in prac-
tice, in order to achieve a good tradeoff between load bal-
ancing and communication cost, since a rotation may incur
a number of messages as large as O(alog, N). We further
discuss this issue in Section 6.

6. EXPERIMENTAL EVALUATION

To evaluate PRIVE, we have implemented an event-driven
packet level simulator in C++. Since we are mostly inter-
ested in the overlay-layer performance, we consider a full
mesh topology with lossless 500ms round-trip time links be-
tween any pair of users. Our workload consists of user lo-
cations and movement patterns, and is generated using the
Network-based Generator of Moving Objects [5], which mod-
els user movement on public road networks. We consider
user velocities ranging from 18 to 68km/h. We present our
results for a data set consisting of the San Francisco bay area
(Fig. 16(a)), with number of users N varying from 1000 to
10000. We vary the anonymization degree K from 10 to
160. We consider both uniform and Zipfian distributions of
queries over the set of users.

Anonymity Strength. In Section 4, we have proved that
HILBASR guarantees anonymity against location-based at-
tacks, under any query distribution. We illustrate this prop-
erty in comparison with CLOAKP2P[7] and QUADASRJ[10].
We assume that an attacker knows (from an external source)
the locations of all users, and employs a simple strategy
which infers the query source as u., the user who is nearest
to the center of the K-ASR. We consider a 10000 users sce-
nario in which 10000 random queries are issued. In Fig. 14
we plot the identification success probability (i.e. of u. being
the query source), for various values of . The dotted line
represents the value 1/ K, the ideal performance for an ano-
nymization algorithm. In the case of CLOAKP2P, for =40,
the probability of u. being the query source is 10%, four
times the 1/K=2.5% maximum allowed bound. For larger
values of I, the situation gets worse, as the number of users
included in the IC-ASR increases. The users are likely to
come uniformly from all directions; hence, u. is disclosed
as the query source. On the other hand, HILBASR achieves
the required anonymity degree K at all times. Due to its
poor anonymization strength, we omit CLOAKP2P from our
further discussion. QUADASR has lower probability of iden-
tification for this particular type of attack. However, this
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does not mean that it provides stronger anonymization than
HILBASR: the ideal probability is given by the 1/K bound.
QUADASR includes an excessively large number of users in
the IC-ASR, yielding high query processing cost; further-
more, it is still vulnerable to attacks such as those described
in Section 3.1, while HILBASR provides anonymity guaran-
tees under all circumstances.

K-ASR Size. In this experiment, we compare HILBASR
against QUADASR in terms of spatial extent (i.e., area) of
the generated KC-ASR. We consider a snapshot of user lo-
cations and generate a number of queries equal to the pop-
ulation size N. Each query is initiated by a random user.
Fig. 15(a) shows the results for varying K and 10K users.
HILBASR is better in all cases. In Fig. 15(b) we set K=80
and vary the number of users. The decrease in K-ASR size
with increasing N is explained by the higher user density in
the same dataspace (i.e., K users can be located in a smaller
region). HILBASR again outperforms QUADASR in terms of
KC-ASR extent. Recall that smaller K-ASR translates into
reduced execution cost at the LBS and communication cost
between the LBS and the user.

Note that QUADASR has been proposed only for central-
ized anonymization. Still, the size of the resulting IC-ASR
is independent of whether it is constructed in a central-
ized or distributed setting. Nevertheless, HILBASR outper-
forms QUADASR in terms of both K-ASR size and anony-
mity strength (recall from Section 3.1 that QUADASR may
fail for certain user distributions). The only other system
that considers anonymization in a decentralized setting is
CLOAKP2P, but we have shown that it fails to provide ano-
nymity by a large margin. Hence, HILBASR is the only
protocol that guarantees anonymity. Furthermore, it can
be deployed in decentralized environments, and outperforms
existing methods in terms of KC-ASR size. We further investi-
gate the performance of PRIVE, which implements HILBASR
in a decentralized fashion.

Join and Departure. In a system with N users, we per-
form 0.1 N random user joins, followed by 0.1 N random user
departures. Fig. 16(b) shows the join latency measured as
hop count from the time a user issues a join request un-
til he receives a join response message from its leaf-level
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head. We observe that the latency is lower than the theo-
retical 1 + log, N, as a user may appear in multiple levels
and can avoid sending redundant messages to himself. The
communication cost (i.e., total messages) per join and de-
parture operation (Fig. 16(c)) varies linearly with «, since
every join/departure translates into a membership_update
broadcast message within one leaf-level cluster. Note the
role of « in the latency-cost tradeoff: an increase of a de-
creases latency as log, NV, but triggers a linear cost increase
in membership notification. A larger « also increases the
cost of periodic cluster membership maintenance.
K-request. Fig. 16(d) and 16(e) show the K-request la-
tency and communication cost for varying «, where K=40.
Larger o decreases the latency as the height of the index
decreases. The communication cost also decreases, as fewer
leaf-level cluster heads need to be contacted to build the K-
ASR. However, « cannot grow very large from index mainte-
nance considerations. Fig. 16(f) and 16(g) show the latency
and communication cost variation with anonymization de-
gree K, @ = 5. Latency is only marginally affected by K
(the dominant factor in latency is log, IV, since in practice
K< N), while the communication cost grows linearly with
K. The percentage of the user population involved in an-
swering a single -request operation is shown in Fig. 16(h)
and 16(i). For small N values, at most 2% of all users are
needed to answer a IC-request, while for larger N, less than
0.5% of the users are required.

Relocation. PRIVE addresses user mobility by using an
index update algorithm that attempts to resolve relocation
at the lower levels of the hierarchy, in order to reduce both
latency and communication cost. In our simulated scenario,
we consider 10000 users across 20 consecutive time frames,
with half of the indexed users moving at each time frame.
We consider three velocities: 68, 40 and 18km/h. Fig. 16(j)
and 16(k) show that relocation is efficiently handled: for
the moderate a = 10 value, the relocation is done on aver-
age in 2.5 hops for fast-moving users and 1.5 hops for slow-
moving users. The dominant communication cost is that of
the membership change propagation; for a = 10 this cost
is roughly a quarter compared to the cost of an index dele-
tion followed by insertion for the 68km/h case, and 1/8 for
18km/h. Fig 16(1) shows the frequency of relocations com-
pleted at various levels of the hierarchy for a 6-level, o = 3,
10000 users system. Most relocations are solved at the low
levels of the hierarchy: for slow movement, 70% are solved at
the leaf level and 86% at levels 0 and 1; for fast movement,
32% of relocations are completed at the leaf level, 63% at
levels 0 and 1, and 86% at levels 0, 1 or 2.
Fault-tolerance. Starting with a system having correct
cluster membership, we fail simultaneously 10, 20 or 30%
of the nodes. We use maintenance timer values of 30 sec-
onds for refreshing cluster membership and 60 seconds for
purging a failed member. Fig. 16(m) shows the evolution of
membership state correctness over time (1 represents com-
pletely correct state). The system recovers to a correct state
within 3 purge cycles (138 sec) for 10% failure and 4 purge
cycles (197 sec) for 30% failure.

Load-balancing. We measure the load incurred by each
user for a 10000 users system, a = 5, K=80, load unit =
200 messages and a simulated time of 1 hour, during which
an average of 8 queries/user were generated. We consider
both uniform and skewed (Zipf 0.8) query source distribu-
tion. Fig. 16(n) shows the cumulative distribution function
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Figure 16: Privé Experimental Evaluation

(CDF) of sorted user loads. The load is highly unbalanced
if no rotation is performed, with 10% of users sustaining
more than 80% of the load. With rotation, for uniform
query distribution, the load is close to the ideal one (i.e.,
diagonal line). For skewed query distribution, most of the
users share equal load, while part of the users (roughly 10%)
share a slightly higher load, as dictated by the fairness re-
quirement discussed in Section 5.2. This is illustrated better
in Fig. 16(o) which shows the absolute load of each user.

7. RELATED WORK

K-anonymity was first discussed in relational databases
where published statistical data (e.g., census, medical) should
not be linked to specific persons. Samarati and Sweeney
[19, 21] proposed the following definition: A relation satis-
fies K-anonymity if every tuple in the relation is indistin-
guishable from at least —1 other tuples with respect to a
set of quasi-identifier attributes. Quasi-identifiers are sets
of attributes (e.g., date of birth, gender, zip code) which
can be linked to publicly available data to uniquely iden-
tify individuals. Two techniques are used to transform a
relation to a K-anonymized one: suppression, where some
of the attributes or tuples are removed, and generalization,
which involves replacing specific values (e.g., phone num-
ber) with more general ones (e.g., only area code). Both
techniques result in information loss. Ref. [4] and Ref. [14]
discuss efficient algorithms for anonymizing an entire rela-
tion while preserving as much information as possible. In
Ref. [22] the authors consider the case where each individ-
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ual requires a different degree IC of anonymity, while Aggar-
wal [1] shows that anonymizing a high-dimensional relation
results to unacceptable loss of information due to the dimen-
sionality curse. Finally, Machanavajjhala et al. [15] propose
{-diversity, an anonymization method which protects against
disclosure of sensitive attribute values.

K-anonymity has also been adopted in the LBS domain:
in Ref. [9, 10], the location of the user is concealed by con-
structing an Anonymizing Spatial Region (K-ASR) which
encloses the locations of the query source and K—1 addi-
tional users. However, their methods of K-ASR construc-
tion are inefficient, and anonymization may fail for some
data distributions. Ref. [13, 17] extend further these ideas
and present a framework for the entire process of anonymi-
zation and query processing at the LBS. Nevertheless, the
aforementioned methods assume a centralized anonymizer,
which may constitute a bottleneck or a single point of at-
tack. Prior to our work, the only decentralized solution was
a P2P-based system, presented in Ref. [7]. However, that
system fails to achieve anonymity in many situations (see
Section 6).

Key and range search has been studied extensively in
distributed environments. Several structured Peer-to-Peer
systems (e.g, Chord [20]) support distributed key search
with O(log N) complexity. The drawback of such systems is
that they cannot support efficiently node annotation. With-
out node annotation, the communication cost for satisfying
the reciprocity property (which guarantees -anonymity) is
O(N); this cost is too high for large scale systems (recall
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that PRIVE needs only O(log,N) messages). Closer to our
work is the P-tree [8], which supports range queries by em-
bedding a Bt-tree on top of an overlay network. No global
index is maintained; instead each node maintains its own
Bt-tree-like structure. BATON [12] also addresses range
queries, by embedding a balanced tree onto an overlay net-
work. It uses additional cross-links to prevent hotspots, and
achieves O(log N) complexity for search and maintenance.
Similar to Chord, these systems cannot support efficiently
node annotation.

Hierarchical clustering in distributed environments has
been an active research topic in recent years. In Ref. [3],
a hierarchical-clustering routing protocol for wireless net-
works is presented. The NICE project [2] proposes a scal-
able application-layer multicast protocol, based on delivery
trees built on top of a hierarchically connected control topol-
ogy. Nodes participating in a multicast group are organized
into a multi-layer hierarchy of clusters with bounded size.
NICE trees obtain delays in the order of O(log N), where
N is the size of the multicast group, and there is an up-
per bound of O(log N) in terms of control state maintained
per node. PRIVE also uses hierarchical clustering of mobile
users, but the requirements of total ordering and annotation
impose particular challenges that have not been addressed
by existing research.

8. CONCLUSIONS

In this paper we introduced PRIVE, a distributed system
for query anonymization in LBS. In PRIVE, mobile users
who issue location-based queries organize themselves into
a hierarchical overlay network and anonymize queries in a
fully decentralized fashion. PRIVE supports our HILBASR
anonymization technique, which guarantees anonymity un-
der any user distribution. We show experimentally that our
system is efficient, scalable, fault tolerant and achieves load
balancing.

LBS for mobile users are already a reality in some coun-
tries (e.g., Japan), where new mobile phones are equipped
with a positioning device, and high-speed wireless networks
are common. As such applications gain popularity, privacy
and confidentiality concerns are expected to rise. In the
future, we plan to address anonymity of continuous spatial
queries, and extend our algorithm to trajectories, as opposed
to points. We also plan to deploy PRIVE in infrastructure-
less environments, such as ad-hoc wireless networks (Wi-Fi,
Bluetooth), without point-to-point links between all users.
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