
Turning Portlets into Services: The Consumer Profile

Oscar Díaz
oscar.diaz@ehu.es

Salvador Trujillo
struji@ehu.es

Sandy Pérez
sandy-perez@ikasle.ehu.es

ONEKIN Research Group
University of the Basque Country

San Sebastián, Spain

ABSTRACT
Portlets strive to play at the front end the same role that Web ser-
vices currently enjoy at the back end, namely, enablers of appli-
cation assembly through reusable services. However, it is well-
known in the component community that, the larger the compo-
nent, the more reduced the reuse. Hence, the coarse-grained nature
of portlets (they encapsulate also the presentation layer) can jeop-
ardize this vision of portlets as reusable services. To avoid this
situation, this work proposes a perspective shift in portlet devel-
opment by introducing the notion of Consumer Profile. While the
user profile characterizes the end user (e.g. age, name, etc), the
Consumer Profile captures the idiosyncrasies of the organization
through which the portlet is being delivered (e.g. the portal owner)
as far as the portlet functionality is concerned. The user profile can
be dynamic and hence, requires the portlet to be customized at run-
time. By contrast, the Consumer Profile is known at registration
time, and it is not always appropriate/possible to consider it at run-
time. Rather, it is better to customize the code at development time,
and produce an organization-specific portlet which built-in, custom
functionality. In this scenario, we no longer have a portlet but a
family of portlets, and the portlet provider becomes the “assembly
line” of this family. This work promotes this vision by introduc-
ing an organization-aware, WSRP-compliant architecture that let
portlet consumers registry and handle “family portlets” in the same
way that “traditional portlets”. In so doing, portlets are nearer to
become truly reusable services.

Categories and Subject Descriptors
D.2.13 [Reusable Software]: Domain engineering

General Terms
Design, Standardization

Keywords
SOA, portlets, product lines, adaptability, portals, WSRP

1. INTRODUCTION
Portlets are presentation-oriented Web Services which are packed

to be delivered through third-party Web applications (e.g. a por-
tal). Portlets are user-facing (i.e. return markup fragments rather
than data-oriented XML) and multi-step (i.e. they encapsulate a
chain of steps rather than a one-shot delivering). So far, portlets

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

are mainly used as a modularization technique to structure portal
content. However, their ability to be delivered through other Web
applications, make portlets be the enablers of service-oriented ar-
chitectures (SOAs) but now at the front end.

From this perspective, portlets strive to play at the front end
the same role that Web services currently enjoy at the back end,
namely, enablers of application assembly through reusable services.
On the portlet case, the difference stems from what is being reused
(i.e. which includes the presentation layer) and where is the inte-
gration achieved (i.e. at the front end).

This SOA scenario first requires portlet interoperability, whereby
portlets developed in, lets say, Oracle Portal, can be deployed at
a Plumtree portal, and vice versa. The Web Services for Remote
Portlets (WSRP) specification [20] brings this interoperability by
providing a protocol that decouples portlet providers from port-
let consumers. This provides the infrastructure to make feasible a
portlet market à la COST so that portals can deliver portlets being
provided by third parties. Indeed, the Open Source Portlet Reposi-
tory Project has been launched in 2006 to foster the free and open
exchange of portlets. The Portlet Repository is "a library of ready-
to-run applications that you can download and deploy directly into
your portal with, in most cases, no additional setups or configura-
tions" [4]. Other similar initiatives include Portlet Swap (jboss.org)
and Portlet Exchange (portletexchange.com).

However, this SOA scenario not only requires portlet interoper-
ability (through WSRP) and portlet dissemination (through stan-
dard repositories) but also portlet variability. Portlets tend to
be more coarse-grained than traditional Web services since they
encapsulate the presentation layer as well as the functional layer.
These coarse-grained components have less chances to be reused
and this can jeopardize the vision of portlets as reusable services.

Variability implies two main questions, namely, what can vary
and when is this variation considered. The what side captures the
diversity of the settings where a portlet might be consumed (i.e.
the context). Web applications are increasingly becoming context
aware, making them ubiquitous with respect to time, location, de-
vice or user profiles (see [16] for an overview). Portlets are Web
applications, so these aspects are applicable here. Additionally,
and unlike “traditional” Web applications, portlets are delivered
through third-party applications, and this introduces a new context,
the Consumer Profile. This Consumer Profile includes not only
the consumer’s platform (e.g. Oracle Portal, WebSphere, eXo, etc)
but also presentation and functional requirements posed by the por-
tal owner that needs to be catered for by the portlet producer.

Besides what is the context, we should also consider when should
this context be appraised to customize the portlet. At this respect,
it is most important to distinguish between adaptability and exten-
sibility. Adaptability gives us the ability to adapt a component to

WWW 2007 / Track: Web Engineering Session: Web Modeling

913



different requirements without changing the code base (i.e with-
out writing code). Adaptability is built into the services which
care for the context automatically (adaptive applications) or semi-
automatically through user intervention (adaptable applications).
By contrast, extensibility techniques introduce additional code to
extend and change a software component to support a specific “cus-
tom” behavior.

Portlet development standards (e.g. JSR168) account for adapt-
ability by accessing and storing persistent configuration (a.k.a. ini-
tialization parameters), customization data (a.k.a. portlet prefer-
ences) and user profile parameters whose values are provided by
the portal at runtime. However, the Consumer Profile frequently
implies extensions on new markups, controllers or persistent data
that would be very cumbersome to develop and, most important,
maintain from a single block of code using adaptability approaches
to custom dynamically the code to the current profile.

This situation can be better served by extensibility techniques
where additional code is introduced to extend the base portlet.

This new scenario where portlets can be extended as well as
adapted, changes the role of the portlet provider. Currently, the
portlet provider is just a container of end portlets. By contrast,
now portlets can be generated on consumer registry, and the portlet
provider becomes a portlet assembly line (a.k.a. software product
lines).

This work introduces an architecture for portlet product lines and
reports on the implications for the WSRP protocol. We do not ad-
dress here the development of portlet product lines but the impli-
cations for WSRP. The architecture has been realized using eXo
[9] as the portal IDE (Integrated Development Environment), and
WSRP4Java as the portlet provider [10].

The rest of the paper is structured as follows. Section 2 provides
basic background on portlets. Section 3 and 4 motivate the issue by
addressing the subject of variations and the time of variations with
the help of an example. Section 5 outlines how to handle those vari-
ations using product-line techniques. The main contribution of the
paper rests on Section 6 that introduces a “portlet-line architecture”
using WSRP. Some conclusions end the paper.

2. BACKGROUND
Web service standardization efforts facilitate the sharing of the

business logic, but suggest that Web service consumers should write
a new presentation layer on top of the business logic. As an ex-
ample, consider a Web service that offers two operations, namely,
searchFlight and bookFlight. The former retrieves flights that match
some input parameters (e.g. departureAirport, flightDates and so
on), while bookFlight takes the selected flight and payment data,
and books a seat on this flight.

This WSDL-based API can then be used by a consumer appli-
cation. First, the application would collect the departureAirport,
flightDates and other parameters via an input form. Within the
form, an http request might support a call to searchFlight which, in
turn, returns a set of flights whose presentation is left to the calling
application. Next the user selects one of the flights and, through
another form, the Web application collects the user’s information
and payment data. This interaction will in turn invoke bookFlight.
This example illustrates the traditional approach where Web ser-
vices provide the business logic, and both presentation and naviga-
tion strategies are left to the calling application.

But what if now we want to re-use the whole application, i.e. the
business logic as well as the presentation and navigation code? It is
worth noticing that presentation and navigation realization are very
time consuming activities that convey costly marketing strategies
that companies are interested in capitalizing when their services

Figure 1: The flightSearch portlet.

Figure 2: The portlet architecture.

are offered through third-party Web applications. So far, most SOA
approaches achieve integration at the back end. Portlets open the
door to achieve similar gains but now through front end integration.

Let’s go back to the flight-booking sample, but now delivered
as a portlet. A flightSearch portlet is defined that encapsulates not
only the business logic but also the navigation and presentation re-
alizations. Unlike the traditional Web-service approach, now the
consumer of flightSearch re-uses both the presentation and the nav-
igation. As for the presentation, portlet operations are still WSDL
compliant, but now their XML results might convey not only raw
data but rendering markup such as XHTML (known as "fragments"
in the portlet parlance). This XHTML fragment is ready to be in-
cluded within the consumer page. As for the navigation, now all in-
teractions with a given portlet belong to the very same session, and
hence, session and state management should be preserved along
these interactions. Although different approaches exists, this can be
the duty of the portlet producer, and hence, the consumer is relieved
from the burden of complex and intricate session management and
control flow. Figure 1 shows the flightSearch portlet when offered
through a portal.

Portlets rest on two main standardization efforts: WSRP [20]
and JSR168 [14]. WSRP standardizes the interfaces of the Web
services a portlet producer must implement to allow another appli-
cation (typically a portal) to consume its portlets. As for JSR168,
it is a Java Community Process that standardizes an API for im-
plementing local, WSRP-compatible portlets. Java portlets run in a
portlet container, a portal component that provides portlets with a
runtime environment. Therefore, the main actors involved are the
WSRP consumer, the WSRP producer, the portlet and the browser
agent (see figure 2).

WWW 2007 / Track: Web Engineering Session: Web Modeling

914



The interaction among these actors goes as follows. First, port-
let registration is achieved by the portal administrator normally
through a portal IDE (e.g. Oracle Portal, WebSphere, etc), and ends
up with a portal being registered to a given portlet producer. Fig-
ure 3 outlines the protocol. First, an introductory description of the
producer is obtained through getServiceDescription(). If registra-
tion is required then, consumers must register with a producer be-
fore accessing any of the producer’s portlets. Once registered, the
consumer queries again the producer but now, a detailed descrip-
tion of the available portlets is returned. With all this information,
the portal IDE creates a WSRP consumer1.This WSRP consumer is
within the portal realm.

Once registered, the portal is ready to engage the portlet in con-
versation to deliver its service. This is achieved through a two-step
protocol (see figure 3). To begin with, the very first markup re-
alizing the service is obtained through getMarkup(). The returned
markup is aggregated to other markup that built up the portal page
which is finally rendered to the end user. Whenever the user clicks
on a link of the portlet markup, the portal receives the HTTP request
which is in turn, forwarded to the portlet producer (by means of the
performBlockingInteraction()) till it finally reaches the portlet it-
self. As a result, the portlet can change its state2. But no markup
is returned to the consumer. This requires the consumer to issue a
getMarkup() to recover the eventually new markup associated with
this new state.

According to the JSR168 specification, a portlet should render
different content and perform different activities depending on the
current context. Part of this context is the portlet mode. A portlet
mode is a way of behaving. For instance, when in the "view" mode,
the portlet renders fragments which support its functional purpose
(e.g. booking a flight seat). This is what we usually mean by in-
teracting with a traditional Web application. Other modes include
the "edit" mode, where the portlet provides content and logic that
let a user customize the behavior of this portlet; the "help" mode,
where a portlet may provide help screens that explain the portlet
purpose, and its expected usage, and, finally, the "preview" mode,
which serves to previsualize the portlet before adding it to a portal
page. Other non-standard modes include the "config" mode which
can be used during configuration to set the appropriate parameter
values.

The mode example illustrates how portlets can adapt their behav-
ior to the current context. Besides the mode, this context includes
the so-called window state (i.e. the space available for portlet ren-
dering), the user profiles3, the browser agent, the consumer portal
and additional portlet-specific data collected as portlet preferences.

A portlet preference is a named piece of string data. As an
example, go back to our flightSearch portlet. Its preferences can
include arrivalAirport with values “San Sebastián”, “London” or
“New York”, and departureAirport with values “Madrid”. These
preferences offer a parameterization-based mechanism to adapt the
portlet (in this case, the input forms). These preferences can be
changed at configuration time (by the portal administrator) or at
enactment time. In this latter case, the values can be automatically

1An extended practice is to support the WSRP consumer as a local
portlet that acts as a proxy to the producer. In WSRP4Java this
portlet has two preferences, the producer and the portlet.
2This state can be shared with other portlets of the same producer.
Therefore, an interaction with a portlet can result in changes in
distinct portlets. This is the rational behind this two-phase protocol.
3User Information Attributes Names are derived from the Plat-
form for Privacy Preferences 1.0 (P3P 1.0) by OASIS where
attributes are described such as user.name.given, user.business-
info.telecom.telephone.intcode and the like.

Figure 3: WSRP Protocol

set by the portlet itself based on the user profile (adaptive approach)
or prompting the current user through the “edit” mode (adaptable
approach).

The deployment descriptor portlet.xml holds this information.
Figure 4 shows a snippet for our sample case that states that ar-
rivalAirport can be set as a preference by the user at execution
time through the edit mode, whereas the departureAirport (read-
only) can only be set by the administrator at configuration time.

Previous paragraphs describe the current situation. Variability
wise, adaptability techniques are provided to tune portlet behav-
ior to the user profile and preferences. However, SOA poses more
stringent demands on portlet variability. SOA promotes a vision
where distinct services collaborate to achieve a more complex of-
fering. But collaboration is not only a matter of interoperability. Of
course, standards are needed in order to define protocols that permit
services from different providers to interact. But this is not enough.
Collaboration often implies to adapt the service to fit into the big
picture. The more adaptive is the service, the higher the changes
to participate in a SOA. However, portlets are coarse-grained, and
this can jeopardize the vision of portlets as reusable services.

Next sections delve into the what, when and how issues posed
by portlet variability.

WWW 2007 / Track: Web Engineering Session: Web Modeling

915



Figure 4: A sample “portlet.xml” deployment file.

3. WHAT CAN VARY
Being full-fledged applications, portlet variations can manifest in

any of the three layers: the presentation layer, the functional layer
and the data layer. For the presentation layer, variations can imply
rebranding the rendering with customer-specific logos and banners,
changing the labels and text that appear in the user interface so that
they are appropriate and familiar to the employees and customers
of the portal, changing the entry fields that are prompted to the user
and even, given the consumer the ability to inlay new markup inside
portlet’s fragments [7]. As for the functional layer, the multi-step
nature of portlets indicates the existence of a process that can be
tuned to fit the consumer demands which include the existence of
optional steps that can be provided in a consumer basis. Finally,
distinct functionalities will probably require distinct data.

This large number of variations advices to focus on some spe-
cific re-use contexts. An artifact is not universally variable, and
making it variable on A can prevent the artifact from being variable
on B. Since, it is most important to identify the distinct situations in
which the portlet is most likely to be re-used. All these variations
are captured through features. A feature is a product characteris-
tic that customers feel is important in describing and distinguishing
members within a family. These features, their structure and car-
dinalities are depicted as a feature model using the notation intro-
duced by FODA [15].

As an example, consider an air carrier that sells tickets through
distinct travel agencies. To this end, the flightBooking portlet is
developed where the air carrier is the portlet provider, and the por-
tals of the travel agencies are the portlet consumers. A feature of
the flightBooking portlet is any characteristic, placed by the carrier
and used by the travel agency to describe how the flight booking
process should be tailored to the agency’s idiosyncrasies. For our
running sample, the following features are considered (see figure
5):

• Payment, which indicates how travel agencies are compen-
sated by their cooperation. Alternatives include (1) click-
Through fees, where the carrier will pay the agency based on
the number of users who access the portlet; bounties, where

the carrier will pay the agency based on the number of users
who actually sign up for the carriers services through the
agency portal; and transaction fees, where the incomes of
the ticket sales are split between the carrier and the agency.
These variants are alternatives.

• Checkin, which provides the namesake functionality. It is a
boolean.

• FlightTypes, which offers two variants: domestic and inter-
national. The travel agency should select at least one.

• PortletPref. Portlet preferences can be set by the end user or
the portal administrator. PortletPref permits to tune which
parameters are going to be set as portlet preferences (i.e. li-
able to be provided by these actors). One of the variants of
this feature includes usrSetDepart. By selecting this variant,
the agency (i.e. the portal owner) lets end users set their fa-
vorite departure airport through the edit mode. Other option
is Arrival which allows for two compatible variants usrSetAr-
rival and admSetArrival. This permits to provide a default
for the arrival airport to either end users or administrators,
respectively.

Moreover, features are not always independent, but dependencies
can exist among them (e.g., requires or excludes). For our sample
case, the usrSetMeal feature depends on the selection of the inter-
national variant, i.e. it only makes sense to care about the meal if
the portlet supports international flights since domestic flights do
not offer this option. For a detail account about feature models see
[2].

This feature model conforms the Consumer Model. This model
acts as a catalog of the variability space offered by the portlet to
accommodate the idiosyncrasies of the consumer organization. A
Consumer Profile instantiates the Consumer Model for a particular
organization.

4. WHEN CAN IT VARY
Once features have been identified, we need to indicate for each

feature when it needs to be committed to a particular variant of the
feature (a.k.a the binding time) [23]. The following options are
considered for the portlet case:

• development time, where the decision is taken when the port-
let is being compile, adding the components required to sup-
ply the selected variant,

• configuration time, where the decision is set by the portal ad-
ministrator any time during the lifetime of a running portlet,

• runtime, where the decision is resolved during the enact-
ment of the portlet either automatically (e.g. based on the
user profile) or by prompting the end user (e.g. through the
edit mode). The terms “adaptive” and “adaptable” are used
throughout the paper to refer to this two kinds of runtime
binding.

One extreme approach could be to defer all decisions till runtime,
making the system totally adaptive, provided this is technically pos-
sible. However, as pointed out in [23] “when determining when to
bind a variant feature to a particular variant, what needs to be con-
sidered is when binding is absolutely required. As a rule of thumb,
one can in most cases say that the later the binding is done, the
more costly (e.g. in terms of performance or resource consump-
tion) it is. Deferring binding from product architecture derivation

WWW 2007 / Track: Web Engineering Session: Web Modeling

916



Figure 5: The Consumer Model.

to compilation means that developers need to manage all variants
during implementation, and deferring binding from compilation to
runtime means that the system will have to include binding func-
tionality. This introduces a cost in terms of, for example, perfor-
mance to conduct the binding”.

This decision can also be influenced by business strategies, de-
livery models and development processes. For instance, if your
business strategy advices payment variants to be open for discus-
sion rather than being a fix range of alternatives then, this feature
could not be bound at compilation time but deferred till registra-
tion time. It is also worth noting that the binding option not only
has implementation implications, but it also influences who takes
the decision of which variant is finally selected. And this has to do
with the business model.

Back to our sample case, figure 5 is extended with annotations
to reflect the binding strategy. In this way,

• Payment is set at development time (D),

• Checkin is resolved at configuration time (C),

• FlightTypes are decided based on the user profile at runtime
execution (Aive stands for adaptive) (e.g. only users with the
CEO profile can book for international flights), and

• PortletPref is decided at development time (D).

5. HOW IS IT SUPPORTED
Features serve to scope the organization context. They relate

to requirements, but do not preclude how the portlet is finally de-
signed or implemented. A first approach is to use some kind of pa-
rameterization technique. Even if this were possible, the resulting
code could be very cumbersome to develop and maintain. As an ex-
ample, consider our sample case. Making a single, adaptive portlet
that could handle all variants at runtime would make the implemen-
tation too complex as the number of possible variant combinations
goes quickly above fifty.

This advices to have distinct “versions” of the portlet at least for
those features whose decisions can be resolved at development time
(e.g. Payment and PortletPref in our sample case). Nevertheless,
the number of combinations still goes up to six different versions,
and this for just two features!

If it is necessary to maintain a portlet version for each combi-
nation of all these potential variants, portlets will grow in size and
number. The cumulative effect of this uncontrolled growth may
make to reuse portlets prohibitive [13]. More to the point consid-
ering that Web applications are reckoned to be in continuous evo-
lution, and shorter life cycles are commonly achieved at the cost

of maintainability [11]. Therefore, the Web setting can not always
afford the high maintenance cost that goes with the versioning ap-
proach.

This maintenance penalty partly stems from the fact that features
tend to impact more than one artifact, i.e. they cross cut distinct
groups of artifacts, which makes variations more difficult to track
and maintain. Since a product is defined by selecting a group of
features, this implies that a carefully coordinated and complicated
mixture of parts of different components are involved [17].

Figure 6: Feature scattering along distinct artifacts.

Figure 6 shows the “feature x artifact” matrix that highlights
the distinct artifacts that are affected by the inclusion of a given
feature. For our sample case, as for the artifact axis, portlet real-
ization follows a MVC pattern with a single controller that governs
the distinct portlet modes (e.g. view, edit, config) where each mode
includes a model, a view and the deployment descriptor file where
portlet preferences are set (i.e. the portlet.xml). On the other hand,
the feature axis enumerates the distinct characteristics that realize
the Consumer Model. The “base” stands for the common behavior.
Adding feature Checkin to this base implies to add/modify some
JSP pages for interacting with the user, enlarging the Java classes
to access the database, and including this additional step in the ap-
plication flow. This is reflected in figure 6 by marking the cells for
the controller, the mView model and the mView view.

Other example is enhancing this portlet with usrSetMeal. This
feature allows for the user to be prompted about meal preferences,
and requires a new entry form as well as storing this information in
the database. Moreover, “meal” is made a portlet preference. This
implies changes in “portlet.xml” as well as enhancing the views
that support the “edit” mode which now should permit the user

WWW 2007 / Track: Web Engineering Session: Web Modeling

917



Figure 7: The DomainProducer communicates to the PortalIDE the Consumer Model.

Figure 8: The PortaIDE communicates to the DomainProducer its Consumer Profile.

WWW 2007 / Track: Web Engineering Session: Web Modeling

918



to provide a default for this parameter. More to the point, this
usrSetMeal feature requires the portlet being tuned for international
flights (domestic flights do not have meals), hence the effect of a
feature can ripple even to artifacts realizing other features!

Therefore, handling variability implies engineering core artifacts
for reuse in a planned way. Approaches to reuse can be opportunis-
tic or systematic. The former does not represent an organization-
wide strategy but rather, an opportunity exploited on a project-by-
project basis. Common “clone&own” practices are a case in point.
In this way, the flightBookingWithCheckin portlet would be con-
structed by copying the flightBooking basic portlet, and extending
it with the Checkin additions.

By contrast, systematic reuse takes an organizational perspective
rather than a project view. The assumption is that projects in the
same business area tend to build systems that satisfy similar needs,
so that these systems can be regarded as instances of a family or
a product from a product line. Therefore, there is a shift from de-
veloping individual portlets to create a portfolio of closely related
portlets with controlled variations. That is, developing a product
line of portlets.

A Software Product Line (SPL) is "a set of software-intensive
systems, sharing a common, managed set of features that satisfy the
specific needs of a particular market segment or mission and that
are developed from a common set of core assets in a prescribed
way" [6]. This “particular market segment” corresponds to a busi-
ness area also known as a domain. For our sample case, the domain
would be “flight booking”. Both the mission of an organization and
the changing needs of its customers determine the objectives of that
business-area organization.

This implies a shift of focus from a specific application to a do-
main. This, in turn, leads to distinguish between two processes,
namely, the domain engineering process, and the application en-
gineering process. Using a “design-for-reuse” approach, domain
engineering is in charge of determining the commonality and the
variability among product family members (through a feature model
as described in the previous section). The commonality constitutes
the software platform i.e. “the set of software subsystems and in-
terfaces that form a common structure from which a set of derived
products can be efficiently developed and produced” [19]. This in-
cludes the architecture, software components, design models and,
in general, any artifact that is liable to be reused. On the other
hand, and using a “design-with-reuse” approach, application engi-
neering is responsible for deriving a specific product from the SPL
platform.

Distinguishing between these processes permits to separate con-
struction of the software platform from production of the custom
application. Domain engineering is responsible for providing the
right amount of variability for the custom application to be pro-
duced. Application engineering focuses on reusing the software
platform, and binding the variability as required for the different
applications [21]. Details about using product-line techniques in a
Web setting can be found at [1, 5, 8, 12, 22, 24]. These previous
works introduce SPL as a means to reduce the time and costs of
production and to increase the software quality by reusing elements
which have already been tested and secured. Our work however,
looks at SPLs also as a cost-effective way to enhance variability
and hence, improving the “serviceness” of portlets. Next section
introduces a SPL architecture to portlet families. Implementation
issues are not addressed here.

Figure 9: Conforming the Consumer Profile through the portal
IDE.

Figure 10: The architecture.

6. A PRODUCT-LINE ARCHITECTURE TO
PORTLET FAMILIES

SPLs achieve systematic reuse for a set of applications sharing
a “family flavor”. What are the specificities brought to SPLs when
the product to be built is a portlet? Differences mainly stem from:

1. domain engineering. Besides the user profile, browser agent
and other context features, portlets have an additional source
of variation: the Consumer Profile. Unlike, standalone soft-
ware thought to be run on its own, services in general, and
portlets in particular, are born to be “consumed” to conform
higher functional units. Customization to the consumer then
becomes a main ability to achieve seamless, tight higher func-
tional units.

2. application engineering. Current practices assume portlets to
be already deployed at the provider. An approach is to create
a portlet clone where some configuration parameters can be
singularized for the consumer. But variations are always con-
sidered at runtime. As argued in previous sections, this can
lead to convoluted portlet implementations due to the cross-
cutting nature of features. This issue is addressed through
“hot deployment” i.e. generating the portlet on demand us-
ing generative techniques.

The rest of the section presents how to accommodate these de-
mands in WSRP. The proposal has been validated with WSRP4Java
[10].

6.1 WSRP Parameter Extensions
Before a consumer obtains the service (portlet instance), a rela-

tionship needs to be established with the producer, determine its
capabilities, and set the preferences. This is achieved through the
WSRP getServiceDescription() and register() operations (see sec-
tion 2). These operations need now to account for the Consumer

WWW 2007 / Track: Web Engineering Session: Web Modeling

919



Figure 11: Registration time: sequence diagram.

Model. Specifically, the service description is extended with the
Consumer Model, whereas service registration serves to communi-
cate the Consumer Profile of the current consumer.

Once registered, getServiceDescription returns the producer’s me-
tadata and the list of the "Producer-offered-Portlets". Figure 7 shows
a snippet of the returned ServiceDescription structure. Using the
extensional facilities of WSRP, a new parameter is introduced to
describe the Consumer Model using the XML notation proposed
in [3] for the description of feature models in XML. Basically, the
snippet serializes in XML the model of figure 5. The portalIDE
takes this model as input and produce a GUI for the portal adminis-
trator to input the Consumer Profile that better fits his preferences
(see figure 9).

Next, the portal administrator selects the feature variants that bet-
ter fit its organization, and conforms the Consumer Profile. This
profile is returned back to the domainProducer through the regis-
ter() operation. This requires to extend the parameters of register()
to convey the new profile. Figure 8 illustrates this situation for our
sample case where the profile includes click as Payment, domestic
as FlightType and availability of Checkin.

6.2 Portlet Registration Extensions
To avoid the cluttering code that crosscutting features can cause,

this work argues for the use of SPL techniques. Broadly speak-
ing, the registration of a singularized portlet goes along a three-step
process: (1) instantiation of the Consumer Model which outputs a
Consumer Profile; (2) synthesis of the singularized portlet as an
output of the SPL along the lines of the Consumer Profile, and (3)
registration of the singularized portlet with the Consumer.

Current practices assume portlets to be already deployed at the
provider. This implies the previous process to be split as follows.
First, steps (1) and (2) where the singularized portlet is obtained,
and deployed at the provider. And second, step (3) that goes along

the traditional registration process. However, this split makes the
consumer organization (i.e. the travel agencies for our sample case)
aware of the use of SPLs.

By contrast, we strive to make the portlet-generation process
transparent. Regardless of whether an SPL approach or a single-
product approach is used, portlet consumers go always along the
same protocol. To this end, we are forced to use a generative ap-
proach to portlet product lines [18]. The architecture of this ap-
proach is presented in the following paragraphs.

According to the SPL paradigm, we distinguish between the plat-
form (i.e. the core assets) and the application (see figure 10). The
platform is realized as a portlet producer (the domainProducer) that
holds the scope of the family (i.e. the feature model), and the com-
mon platform from where the application portlet is generated. As
for the application, it includes a “traditional” producer (the appli-
cationProducer) that holds organization-aware portlets (the appli-
cationPortlet). The applicationProducer is just a container for the
portlets generated by the domainProducer.

The challenge is how to make this architecture transparent to the
consumer. Along with the WSRP protocol, we distinguish between
portlet registration and portlet enactment (see section 2).

Portlet registration. A “family portlet” registration is achieved
through the domainProducer (see figure 10). The only difference
with “traditional” registration is that now the response of getSer-
viceDescription() is extended to include an XML specification of
the feature model of the domain at hand (e.g. booking of flights) as
described in the previous subsection.

On reception, the portalIDE renders the feature model to the por-
tal administrator who selects the feature variants that better fit its
Consumer Profile, and the Consumer Profile is returned back to the
domainProducer through the register() operation.

Next, the domainProducer commands the PLFactory to generate
an applicationPortlet along the lines of the Consumer Profile (see

WWW 2007 / Track: Web Engineering Session: Web Modeling

920



figure 11). This applicationPortlet is generated and deployed on
the applicationProducer container. As a result, an applicationPort-
let handle is returned. On reception, the domainProducer clones
the domainPortlet (see figure 10), which is a proxy portlet, and
updates one of its preferences with the returned applicationPort-
let handle. The outcome of creating this proxy portlet is in turn a
proxyPortletHandle that is delivered to the portalIDE the next time
getServiceDescription() is invoked.

Portlet enactment. At this time, each organization (e.g. each
travel agency) has registered its own portlet which has been cus-
tomized to fit its Consumer Profile. The travel agency portal (i.e.
the portlet consumer) interacts with the applicationPortlet through
the domainPortlet. Such domainPortlet is a proxy portlet that just
forwards all the requests to the customized applicationPortlet. From
then on, applicationPortlets do not differentiated from “traditional“
portlets.

The indirection that this solution implies can rise some concerns
about efficiency at enactment time. Notice however, that both the
domainProducer and the applicationProducer are kept on the same
machine. Hence, this additional request is local and can be ne-
glected in comparison with the remote call made by the portlet
consumer.

7. CONCLUSIONS
This work promotes a SOA approach to portal construction that

relies upon portlets as truly reusable services. However, reusabil-
ity can be jeopardized by the coarse-grained nature of portlets. To
overcome this drawback, the notion of Consumer Profile is intro-
duced as a way to capture the distinct organization scenarios where
a portlet can be deployed. This in turn leads to the use of an SPL
approach to portlet development, and the introduction of an archi-
tecture that permits to handle SPL portlets in the same way that tra-
ditional portlets. The solution has been supported in WSRP4Java,
and the additions on the protocol are WSRP compliant.

8. ACKNOWLEDGMENTS
We thank Iñaki Paz for his helpful comments on earlier drafts

of this paper. This work was co-supported by the Spanish Min-
istry of Science & Education, and the European Social Fund under
contract TIC2005-05610. Trujillo has a doctoral grant from the
Spanish Ministry of Science & Education. Perez enjoys a doctoral
grant from the Basque Government under the “Researchers Train-
ing Program”.

9. REFERENCES
[1] L. Balzerani, D. di Ruscio, A. Pierantonio, and

G. de Angelis. A Product Line Architecture for Web
Applications. In ACM Symposium on Applied Computing
(SAC), 2005.

[2] D. Batory. Feature Models, Grammars, and Propositional
Formulas. In Sofware Product Line Conference (SPLC),
2005.

[3] D. Benavides, S. Trujillo, and P. Trinidad. On the
Modularization of Feature Models. In European Workshop
on Model Transformation, 2005.

[4] J. Blattman, N. Krishnan, D. Polla, and M. Sum.
Open-Source Portal Initiative at Sun, Part 2: Portlet
Repository, 2006.

[5] R. Capilla and J. C. Dueñas. Light-weight product-lines for
evolution and maintenance of Web sites. In European
Conference on Software Maintenance and Reengineering
(CSMR), 2003.

[6] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison Wesley, 2001.

[7] O. Díaz and J.J. Rodríguez. Portlet Syndication: Raising
variability concerns. ACM Transactions On Internet
Technology (TOIT), 5(4):627–659, 2005.

[8] O. Díaz, S. Trujillo, and F. I. Anfurrutia. Supporting
Production Strategies as Refinements of the Production
Process. In Software Product Lines Conference (SPLC),
2005.

[9] eXo Platform. eXo Portal. http://www.exoplatform.com.
[10] Apache Software Foundation. WSRP4Java.

http://portals.apache.org/wsrp4j/.
[11] P. Grünbacher, A. Egyed, and N. Medvidovic. Reconciling

software requirements and architectures with intermediate
models. Software and System Modeling (SoSyM),
3(3):235–253, 2004.

[12] S. Jarzabek, P. Bassett, H. Zhang, and W. Zhang. XVCL:
XML-based variant configuration language. In International
Conference on Software Engineering (ICSE), 2003.

[13] S. Jarzabek and R. Seviora. Engineering components for ease
of customisation and evolution. IEE Proceedings-Software,
147(6):237–248, 2000.

[14] Java Community Process (JCP). JSR 168: Portlet
Specification Version 1.0, 2003.
http://www.jcp.org/en/jsr/detail?id=168.

[15] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson.
Feature-Oriented Domain Analysis (FODA) Feasability
Study. Technical Report CMU/SEI-90-TR-021, Software
Engineering Institute, November 1990.

[16] G. Kappel, B. Pröll, W. Retschitzegger, and W. Schwinger.
Customisation for Ubiquitous Web Applications: A
Comparison of Approaches. International Journal of Web
Engineering and Technology, 1(1):79–111, 2003.

[17] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. Loingtier, and J. Irwin. Aspect-oriented
programming. In European Conference on Object-Oriented
Programming (ECOOP), 1997.

[18] C. W. Krueger. New Methods in Software Product Line
Development. In Software Product Line Conference (SPLC),
2006.

[19] M. H. Meyer and A. P. Lehnerd. The Power of Product
Platforms. The Free Press, 1997.

[20] OASIS. Web Services for Remote Portlets (WSRP) Version
1.0, 2003. http://www.oasis-open.org/commitees/wsrp/.

[21] K. Pohl, G. Böckle, and F. van der Linden. Software Product
Line Engineering: Foundations, Principles and Techniques.
Springer, 2006.

[22] D. C. Rajapakse and S. Jarzabek. An Investigation of
Cloning in Web Applications. In International Conference
on Web Engineering (ICWE), 2005.

[23] M. Svahnberg, J. van Gurp, and J. Bosch. A taxonomy of
variability realization techniques. Software-Practice &
Experience, 35(8):705–754, 2005.

[24] S. Trujillo, D. Batory, and O. Díaz. Feature Oriented Model
Driven Development: A Case Study for Portlets. In
International Conference on Software Engineering (ICSE),
2007.

WWW 2007 / Track: Web Engineering Session: Web Modeling

921


