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ABSTRACT
We consider the problem of online keyword advertising auc-
tions among multiple bidders with limited budgets, and study
a natural bidding heuristic in which advertisers attempt to
optimize their utility by equalizing their return-on-investment
across all keywords. We show that existing auction mech-
anisms combined with this heuristic can experience cycling
(as has been observed in many current systems), and there-
fore propose a modified class of mechanisms with small ran-
dom perturbations. This perturbation is reminiscent of the
small time-dependent perturbations employed in the dynam-
ical systems literature to convert many types of chaos into
attracting motions. We show that the perturbed mechanism
provably converges in the case of first-price auctions and ex-
perimentally converges in the case of second-price auctions.
Moreover, the point of convergence has a natural economic
interpretation as the unique market equilibrium in the case
of first-price mechanisms. In the case of second-price auc-
tions, we conjecture that it converges to the “supply-aware”
market equilibrium. Thus, our results can be alternatively
described as a tâtonnement process for convergence to mar-
ket equilibrium in which prices are adjusted on the side of
the buyers rather than the sellers. We also observe that per-
turbation in mechanism design is useful in a broader context:
In general, it can allow bidders to “share” a particular item,
leading to stable allocations and pricing for the bidders, and
improved revenue for the auctioneer.
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1. INTRODUCTION
Online search engine advertising is become an increasingly

important and costly component of the marketing and sales
strategies of many businesses. The corresponding auctions
are the main source of revenue for many search engines and
other Internet-related businesses. It is therefore of tremen-
dous interest to understand and analyze the behavior of
these auction systems, and to try and ensure that the sys-
tem functions smoothly. In this paper, we consider the ad-
vertisement auction system as a whole and from a dynamic
perspective. We first define a simple and natural bidding
heuristic for budget-limited advertisers based on equaliz-
ing the “return-on-investment” (ROI) across keywords. We
then observe that, when used by a set of advertisers, multiple
copies of this heuristic may induce cycling behavior into the
system. We propose circumventing this undesirable effect by
introducing random perturbations, and see that this mod-
ified system converges to the market equilibrium (provably
for first-price auctions and experimentally for second-price
auctions). Thus our results may alternatively be interpreted
as providing a tâtonnement process for convergence to mar-
ket equilibrium in which prices are adjusted on the side of
the buyers rather than the sellers.

Online search engine advertising is typically sold via key-
word auctions (see, for example, Google’s AdWords, Yahoo’s
Search Marketing, and MSN’s AdCenter). Each prospective
advertiser chooses a set of keywords relevant to his products,
and for each keyword submits a bid representing an estimate
of his utility for a click when that word is displayed. He also
submits a maximum budget which must be respected for
the chosen time period. When each keyword appears, it is
auctioned among all interested advertisers with remaining
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budget, typically using a first-price or second-price auction
mechanism (see [5, 1, 11, 16] for a comparison of these ap-
proaches).

As bidders have limited budgets, the bid optimization
problem they face is essentially a discrete separable resource
allocation problem [7]. One of the most popular metrics
to assess the efficiency of various investment strategies is
marginal “return-on-investment,” which in this context can
be taken as the derivative of the utility with respect to the
price. (See Section 3 for precise definitions.) Here we use an
easily computable approximation to this quantity, namely
the ratio rather than the derivative. For a particular adver-
tiser, we define the ROI of a keyword at a given bid to be the
ratio of the utility of this word to the price of the word, both
at the given bid. In the bidding heuristic we consider, each
budget-constrained advertiser bids an amount such that his
ROI is equal across all keywords. Such heuristics are com-
mon in practice and have been proposed in other theoretical
contexts as well [15].

Assume that the above bidding heuristic is employed by
a set of advertisers. Two questions immediately arise. First,
does there exist an underlying mechanism which causes these
algorithms to converge? Second, if a convergent mechanism
does exist, to what does it converge? In particular, how does
this system impact revenue for the search engine provider?
It is important to note that we consider these questions in
light of the bidding dynamics defined by the specified heuris-
tics, assuming all bidders adhere to these heuristics and use
them truthfully regardless of the optimality of such a strat-
egy. In particular, we do not study the properties of these
systems in a strategic equilibrium.1

The first question, namely the existence of a convergent
mechanism, is more than just a theoretical question. Indeed,
what appears to be chaotic cycling behavior has been ob-
served in actual search engine auctions [11].2 Moreover, for
straightforward mechanisms used in conjunction with the
ROI bidding heuristic, we can easily construct two-bidder
examples which exhibit cycling, with the allocation oscillat-
ing between the bidders. These observations and examples
are not surprising in light of the general phenomenon of het-
eroclinic cycles that can occur in both continuous [6] and
discrete [14] dynamic systems with symmetry, sometimes
leading to cycling chaos [3, 13].

In order to overcome this, we introduce an online random
bid perturbation into our algorithm. In some sense, this per-
turbation is reminiscent of the small time-dependent per-
turbations employed in the dynamical systems literature to
convert many types of chaos into attracting motions [12].
In mechanism design, perturbation has been proposed pre-
viously as a solution to spiteful bidding (bidding strategies
which attempt to drive out competition by exhausting their
budgets) [10]. Our results further motivate the introduc-
tion of perturbations to mechanism design as a technique

1A major difficulty in studying this setting as a strategic
game is the repeated nature of the game. Folklore theorems
show that repeated games (such as this one) have a plethora
of equilibria, thereby making equilibrium analysis (without
any restriction on the set of available strategies) unsuitable
for predicting the behavior of the system. In this work,
we are taking a different route: we fix a particular bidding
strategy (whose variants are used in practice) and analyze
the equilibrium of this strategy.
2For an alternative justification of observed cycling patterns
see [17].

for smoothing the dynamics of the system and permitting
bidders to “share” items in arbitrary ratios.

Indeed, in the case of a first-price auction, we prove that
the introduction of random perturbations causes the mech-
anism to converge. This is by far the most technically com-
plex part of the paper. We conjecture that the random
perturbations will also eliminate cycling behavior and lead
to convergence of an analogous second-price auction, a con-
jecture which is supported by simulations in Section 5. Fur-
thermore, we can prove that, in the case of the perturbed
first-price auction, the prices (and hence revenue) of our sys-
tem converges to the unique market equilibrium. As a side
note, this also gives an algorithm for computing the mar-
ket equilibrium in our setting (incidentally, the algorithm
is quite similar to that of Devanur et al. [4] for computing
market equilibria), as well as a tâtonnement process for con-
vergence to market equilibrium in which prices are adjusted
on the side of the buyers rather than the sellers.

All of our results are supported by simulations, which we
discuss in Section 5.

2. MODEL
When a user performs a search, the search engine often

displays advertisements alongside search results. These ad-
vertisements appear in a dedicated area of the search results
page, each one in a particular fixed subarea, or slot. An on-
line advertisement auction is a mechanism for selling these
slots based on the keyword which the user provided to the
search engine.

We consider a setting in which m advertisers bid for the
advertising slots of n keywords. Each keyword j has l slots
and appears qj(t) times on day t (by “day” we mean some
fixed unit of time; it does not necessarily have to be 24
hours). Advertiser i has a value vij for each click received
when his advertisement is displayed on keyword j. Note
that while advertisers value clicks, our auction is actually
selling impressions, or the chance to appear in a keyword
slot. We can convert the values per click to an expected
value per impression uijk by taking the product of vij with
the probability cijk that advertiser i receives a click when
displayed in slot k of keyword j. This probability is called
the click-through-rate. We assume these click-through-rates
factor, that is, there exist βij for each bidder i and keyword
j, and αk for each slot k (independent of the advertiser and
keyword)3 such that cijk = βijαk. Thus the per impression
bid uijk for the k’th slot can be written as αkuij for some
uij . We number slots in order of decreasing click-through-
rate so α1 ≥ α2 ≥ . . . ≥ αl and without loss of generality
assume α1 = 1.

Each advertiser submits a bid bij for each keyword repre-
senting the amount he is willing to pay for one impression
in slot 1 of keyword j (i.e., uij above). By extension, we
assume he is willing to pay αkbij for an impression in slot
k of keyword j.4 Advertisers additionally submit a daily
budget Bi indicating the maximum amount they are willing

3The assumption that the click-through-rate can be decom-
posed in this way is a reasonable assumption and is used in
practice.
4Note we could just have easily described our results for a
setting where advertisers submit a bid per click if we assume
the click-through-rates of advertisers and slots are known or
estimated.
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to spend in a given day. Although in general these param-
eters may be adjusted at arbitrary times, for simplicity we
assume they are updated at most daily and in the beginning
of the day.

Upon a search for a particular keyword j, the advertise-
ment auction then selects up to l advertisers i1, . . . , il and
assigns them to slots 1, . . . , l, respectively. It then com-
putes a price pjk for each advertiser ik ∈ {i1, . . . , il}. The
auction guarantees no bidder is charged more than his bid
nor exceeds his budget. Furthermore, no bidder is awarded
more than one slot per search query. We focus our atten-
tion on two particular auction mechanisms quite common in
practice. The first is a first-price mechanism in which ad-
vertisers are awarded slots in a priority order determined by
their bids. Advertisers are then charged a price equal to the
minimum of their bid and remaining budget. The second
mechanism is a generalization of the second-price mecha-
nism. The allocation rule of this mechanism is identical to
that of the first-price mechanism, but the pricing scheme is
different. Each advertiser is now charged a price equal to
the minimum of his remaining budget and the bid of the
advertiser in the next slot. The pseudocode of these two
mechanisms appears in Figure 1.

For our theoretical results, we simplify the model in the
following ways. First, we study a setting in which there is
only one slot per keyword. The single-slot setting is rich
enough to capture the chaotic behavior our results circum-
vent and thus suffices to illustrate our main points.5 Second,
we consider a continuous-time version of the auction: for
each keyword j, there are a constant number qj of searches
each day, and these searches are evenly spaced throughout
the day. We assume qj ’s are large and therefore we can
model this process as one in which all keywords arrive con-
tinuously at a uniform rate throughout the day. The daily
budget of advertiser i is Bi, and the total utility of adver-
tiser i for showing his ad on keyword j throughout the entire
day is uij (thus, his utility for being shown during an α frac-
tion of the day is αuij). Without loss of generality we will
assume Bi ≤

∑
j uij .

3. BID OPTIMIZATION HEURISTICS
In this section we describe a natural bidding heuristic for

optimizing the utility of the advertisers. We consider the
following abstraction of the bid optimization problem for
advertiser i. We want to specify a bid bij on each keyword
j. We assume that if advertiser i bids bij on keyword j
then his day-long charge and net utility (i.e., total value mi-
nus total charge) on that keyword is given by Pj(bij) and
Uj(bij) respectively.6 The optimization problem is now to
choose {bij} such that

∑
j Uj(bij) is maximized subject to∑

j Pj(bij) ≤ Bi. Through the use of Lagrangian relaxation,
we see that a necessary condition for the optimality of bids

5In fact, it is straightforward to generalize our convergence
result (Theorem 1) to the multi-slot setting (essentially the
only thing that needs to be changed is Equation 1). How-
ever, the point to which the system converges can no longer
be characterized as a market equilibrium.
6Note that we assume the charge and net utility of adver-
tiser i for keyword j is a function of his bid for keyword j
alone and does not depend on the bids of i for other key-
words. Although this is not strictly true, it is a reasonable
approximation and serves to develop our intuition for our
heuristic.

b∗ij is the existence of a constant λ (the Lagrangian multi-
plier) such that for all j with Uj(b

∗
ij) > 0,

d Uj/d Pj |bij=b∗ij
= λ

if such derivatives exist. This derivative is known as the
marginal return-on-investment (marginal ROI) and measures
how the net utility of an advertiser changes as he modifies
his investment. Thus, for an optimal set of bids {b∗ij}, we
know advertiser i has the same marginal ROI at b∗ij across
all keywords. This marginal ROI is exactly the Lagrangian
multiplier λ above.

The marginal ROI is usually difficult to estimate, and is
even undefined when Pj or Uj are discontinuous. Thus, it is
useful to approximate the marginal ROI of keyword j at bid
b by the ROI of keyword j at that bid, where ROI is defined
as ROIj(b) = Uj(b)/Pi(b). This suggests one method for
optimizing the bids of the advertiser: set the bids bij such
that ROIj(bij) approximately equals some constant ROI for
all j.

If the prices were fixed and known to the advertiser, de-
termining an optimal bidding vector would be a simple cal-
culation. Suppose the price of the kth slot for keyword j is
pjk. We further introduce an artificial slot l + 1 with price
zero and utility zero indicating that the advertiser does not
appear in any slot on that keyword. A bidding strategy is
now a selection of affordable slots sj ∈ {1, . . . , l + 1} for
each keyword j, where a selection is affordable if the sum of
prices is at most the budget of the advertiser. This prob-
lem is a natural extension of the knapsack problem [8] and
has a similar FPTAS. In fact, the idea of the ROI heuristic
is similar to the well-known 2-approximation algorithm for
knapsack that is based on sorting items by the ratio of their
value to their size (which, in our setting, corresponds to the
ROI).

One way to implement the ROI heuristic is through a
tâtonnement-like process, where the advertiser iteratively
incrementing bids on keywords with relatively large ROI and
decrementing bids on keywords with relatively small ROI by
small increments. The advantage of this method is that it
requires the minimal amount of information. In particular,
it does not even need to know the price of the slots above
and below the current slot. It is easy for an advertiser to
calculate the ROI for each keyword in hindsight at the end
of the day. Based on this idea, we consider the following
ROI-based heuristic bidding algorithm for advertiser i.

Algorithm 1. On each day t, all bids of advertiser i are
determined by a single parameter Ri(t) ∈ (0, 1].7 The pa-
rameter Ri(t) is adjusted based on the performance of adver-
tiser i’s bids on the previous day. Starting from an arbitrary
Ri(0) ∈ (0, 1] for day t = 0, advertiser i sets

Ri(t + 1) =





Ri(t)e
−ε if i runs out of money

before the end of day t
min(Ri(t)e

ε, 1) otherwise

where ε > 0 is a small constant. Finally, he sets the bid
bij(t) of keyword j to

bij(t) = Ri(t)uij .

Note since Ri(t) ∈ (0, 1], bij(t) ≤ uij.

7This parameter is related to the target return-on-
investment by Ri(t) = 1/(ROI + 1) where ROI is the target
return on investment of advertiser i.
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First-Price Mechanism
Let S be the set of bidders {i : si < Bi}.
For k = 1 to l do

Let i = argmaxi∈S(bij),
Set S = S − {i},
Assign i to slot k,
Charge i price min(αkbij , Bi − si).

Second-Price Mechanism
Let S be the set of bidders {i : si < Bi}.
For k = 1 to l do

Let i = argmaxi∈S(bij),
Set S = S − {i},
Assign i to slot k,
Charge i price min(αk max

i′∈S
bi′j , Bi − si).

Figure 1: Pseudocode for the first and second-price auctions, respectively. The parameter si is the current
total daily charge of advertiser i.

Before discussing the dynamics of this algorithm, let us
note that an added advantage of the above bidding heuris-
tic is that it can be adapted to cases where an advertiser
only knows her budget and the relative utility of various
keywords (i.e., the ratio of uij ’s), and not the exact value of
the utilities. In this case, the bidding algorithm for adver-
tiser i can initially set her largest utility to Bi and the other
utilities according to the specified ratios, and then adjust
these values by changing Ri(t). This is useful in practice
since for an advertiser estimating the ratio of the values of
various keywords is a considerably simpler task than esti-
mating the exact utilities.

4. DYNAMICS OF THE SYSTEM
In Section 3 we defined a heuristic for bidding in an adver-

tisement auction. In order to better understand the prop-
erties of a system where bidders are using such a heuristic,
we need to analyze the interplay of bidding algorithms of
various bidders. One might wonder if such a system could
ever stabilize, and whether the resulting prices would be log-
ical in some sense (i.e., be simultaneously “reasonable” for
the advertisers and generate sufficient revenue for the search
engine). In fact, the following example shows that the com-
bination of the first-price auction with the ROI heuristic
may result in an unstable situation with low prices.

Example 1. Suppose there is just one keyword with one
slot and 1000 impressions. There are two advertisers a and
b, each advertiser with a budget of $500 and a utility of $1
for each impression of the keyword. Consider the first-price
auction mechanism. Assume a bids $0.5eε, and b bids $0.5.
Bidder a is going to win all the impressions until he runs
out of the budget around the end of the day, but he is going
to decrease his bid for tomorrow to $0.5, since he ran out
of budget today. On the other hand, b is going to bid $0.5eε

on the following day. Thus, a and b will interchange roles.
This way the allocation of the impressions alternates between
a and b daily.

It is easy to see that the above example works for the
second price mechanism as well. The results of Section 5
confirm that such examples arise in a variety of plausible
scenarios, resulting in oscillating allocations and dampened
revenue. We avoid such situations by applying a random
perturbation to the bids of the advertisers in determining
the allocation, as defined below. In this section we study
variants of the first and second-price auctions with pertur-
bations. We prove that the perturbed first-price auction,

coupled with multiple copies of the bid optimization algo-
rithm presented in Section 3, converges to a fixed allocation
and set of prices corresponding to the market equilibrium.
We conjecture a similar result for the perturbed second-price
auction, supporting our conjecture with simulation results
in Section 5.

4.1 Perturbations
In order to get rid of situations like the one explained in

Example 1, we modify the auction mechanism to slightly
perturb the bids before running the auction, thereby giving
the bidder with a smaller bid some chance of winning if his
bid is close to the largest bid. The perturbations are defined
as follows. On each day t, advertiser i bids a value bij(t) for
the day-long possession of keyword j. When a search on
keyword j occurs, we perturb the bids as follows:

b′ij = bij(t)e
−ηi ,

where ηi is a uniformly random number in [0, δ]8, indepen-
dently generated for each bidder/query pair, and δ > 0 is
a constant. The auction mechanisms are run exactly as de-
scribed in Section 2, but the allocation is determined ac-
cording to the perturbed bids b′ij(t).

Perturbations essentially allow advertisers to bid such that
they share the keyword in any portion they please. That is,
fixing the bids of other advertisers on a particular keyword,
a given advertiser can choose to receive in expectation any
fraction α of the day-long procession of the keyword by ad-
justing his bid appropriately. Note that such a sharing prop-
erty can not be achieved by introducing a randomized tie-
breaking rule; applying the perturbation to the bids them-
selves is significantly more powerful. Notice how this affects
the advertisers in Example 1.

Example 2. Again, consider the scenario from the pre-
vious example. However, now suppose the bids are perturbed
as described above and notice the instability we observed be-
fore won’t happen. Indeed a and b share the impressions
almost equally in expectation, and so neither bidder runs
out of budget. Therefore, they will increase their bids until
their bids get close to $1 at which time both the price and
allocations remain stable. In this case the perturbation both
removed the cycling and improved auctioneer’s revenue by a
factor of two.

8The choice of the distribution for perturbation is essen-
tially arbitrary, and our results hold for other reasonable
perturbation models (e.g., Gaussian perturbations) as well.
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4.2 Convergence to Equilibria
We now discuss our main theoretical results, namely the

convergence properties of our perturbed mechanisms with
multiple bid optimization algorithms. Throughout the re-
mainder of this section, we assume there is just one slot per
keyword.9

We consider both perturbed first-price and perturbed second-
price auctions. In each of these auctions, the allocation rule
awards the keyword slot to the bidder with the highest per-
turbed bid b′ij . The winning advertiser is then charged a
price equal to the minimum of his remaining budget and
unperturbed bid bij in the case of the first-price auction10,
or the minimum of his remaining budget and the perturbed
bid of the closest competitor in the case of the second-price
auction. Once the spending of an advertiser during a day
reaches his daily budget, he is withdrawn from all further
auctions during that day.

We now state our principal result. Namely, we prove that
in a perturbed first-price auction where bidders bid accord-
ing to the ROI heuristic, Algorithm 1 of Section 3, both the
prices and the daily utilities of the advertisers, and hence
the revenue of the auctioneer, converge to that of the mar-
ket equilibrium in the sense of Arrow and Debreu [2] when
goods correspond to the ad spaces and the money (see Ap-
pendix A).

More formally, let si(t) ∈ [0, Bi] denote the spending of
advertiser i on day t. Let τi(t) ∈ [0, 1] denote the moment
during day t when advertiser i spends all his budget (or 1 if
he does not spend all his budget). Finally let ri(t) denote
the spending rate of advertiser i in the beginning of the day
before anyone runs out of budget. In other words,

ri(t) =

n∑
j=1

bij(t)

δ

∫ δ

0

∏

i′ 6=i

Pr
ηi′

[bij(t)e
−x > bi′j(t)e

−ηi′ ]dx (1)

Note that the rate of spending only increases as other ad-
vertisers run out of budget, and therefore we have si(t) ≥
ri(t)τi(t). We first show these parameters converge, namely,
that after some time no advertiser runs out of budget early
and each advertiser either spends most of his budget or is
bidding nearly his utility on all keywords. The proof of the
following theorem appears at the end of this section.

Theorem 1. Given utilities uij, budgets Bi, and con-
stants δ > 0 and γ > 0, there exist constants ε > 0 and
t0 < ∞, such that for all t ≥ t0 and all i, we have

1. τi(t) ≥ 1− γ, and

2. si(t) ≥ (1− γ)Bi or Ri(t) ≥ 1− γ.

Here ε and t0 can be chosen as ε = Θ(γ min{1, δ
C2 }) and

t0 = 2
ε
log C − log(mini Ri(0)) with C = maxi(

∑
j

uij

Bi
).

The above theorem allows us to characterize the equilib-
rium of our system. Let Li(t) = Bi − si(t) be the unused
portion of advertiser i’s budget at the end of day t. Then
the following theorem holds.

9It is not hard to see that Theorem 1 holds for the multi-slot
case with essentially the same proof.

10Note that our results hold if the pricing rule charges the
winning bidder his perturbed bid b′ij as well.

Theorem 2. Given δ > 0 and γ > 0, let t = t(δ, γ) ≥ t0,
where t0 is defined as in Theorem 1. Let pj(t) be the maxi-
mum price at which keyword j is sold in day t, and let xij(t)
be the fractional daily allocation of word j to advertiser i on
day t. As δ, γ go to zero, the price vector pj(t) converges to
that of the market equilibrium, and the total utilities of the
advertisers including their unused budgets, Li+

∑
j uijxij(t),

converge to the utilities of an equilibrium allocation.

Notice that convergence of the price vector implies also
convergence of the total revenue

∑
i pi for the auctioneer.

The proof of Theorem 2, which makes substantial use of the
stability results in Theorem 1, is deferred to Appendix A.

Proof of Theorem 1. We first show Statement 1, i.e.
that after some finite time nobody runs out of budget early.
More precisely, we will show that for every 0 < λ < 1, ε
small enough and t ≥ Tλ (where Tλ is a constant depending
on λ), we have τi(t) ≥ 1 − λ for all 1 ≤ i ≤ n. Let k(t) be
the first advertiser who finishes his budget on day t. The
proof of Statement 1 follows from the following two claims.

Claim 1. If τk(t)(t− 1) < 1, then

τk(t)(t) ≥ min(eετk(t)(t− 1), 1).

Claim 2. If τk(t)(t−1) = 1, then τk(t)(t) ≥ 1−λ, provided
ε is chosen in such a way that 2Cεeε ≤ λδ.

To see that these two claims imply Statement 1 of the
theorem, set τmin(t) = mini τi(t). Claims 1 and 2 together
imply τmin(t) ≥ min(1 − λ, eετmin(t − 1)). We know that
τmin(1) ≥ mini Bi/(

∑
j uij) = 1/C. Therefore for t ≥ Tλ =

ε−1 log(C(1− λ)), we have τmin(t) ≥ 1− λ, as required.

Proof of Claim 1. Throughout this proof, let k = k(t).
If τk(t) = 1, then the claim is true. Assume τk(t) < 1. Note
that since τk(t−1) < 1, Rk(t) = Rk(t−1)e−ε and for i 6= k,
Ri(t) ≥ Ri(t − 1)e−ε. Consider an imaginary scenario in

which on day t, R̂i(t) = Ri(t − 1)e−ε for all bidders i. By
(1), the spending rate r̂k(t) of bidder k in the imaginary
scenario is at least that of the real scenario (r̂k(t) ≥ rk(t)).
Furthermore, r̂k(t) = rk(t − 1)e−ε since advertisements in
the imaginary scenario are sold to advertisers with the same
probabilities as day t− 1 and at a price e−ε times the price
of day t− 1. Therefore, we have

rk(t− 1)τk(t− 1) ≤ Bk = τk(t)rk(t) ≤ τk(t)rk(t− 1)e−ε

which implies Claim 1.

In order to prove Claim 2, we first prove the following
lemma.

Lemma 1. For all t and all i, we have |ri(t)−ri(t−1)| ≤
(2Cεeε/δ)Bi.

Proof. Note that Ri(t) ≤ Ri(t−1)eε and Ri′(t) ≥ Ri′(t−
1)e−ε for i′ 6= i. Consider an imaginary scenario in which

on day t, R̂i(t) = Ri(t − 1)e2ε and R̂i′(t) = Ri′(t − 1)

for i′ 6= i. Then, R̂i(t) ≥ eεRi(t) and for every i′ 6= i,

R̂i(t)/R̂i′(t) ≥ Ri(t)/Ri′(t), which implies that now r̂i(t) ≥
ri(t)e

ε. We couple the perturbed bids b̂′i′j(t) of the imag-

inary scenario with the perturbed bids b′i′j(t − 1) of day
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t − 1 in such a way that b̂′i′j(t) = b′i′j(t − 1) if i′ 6= i and

Pr[b̂′ij(t) 6= b′ij(t− 1)] = 2ε/δ. Namely, we set

b̂′ij(t) =

{
b′ij(t− 1) if b′ij(t− 1) ≥ b̂ij(t)e

−δ

b′ij(t− 1)eδ otherwise

As the ratio of b̂ij(t) to bij(t−1) is e2ε, it is easy to see that
this coupling results in the desired probability. Thus, even
if advertiser i wins all auctions in which b̂′ij(t) 6= b′ij(t − 1)
(which happens at most a 2ε/δ fraction of the times), we
have

r̂i(t) ≤ ri(t− 1) +
2ε

δ

∑
j

uije
2ε ≤ ri(t− 1) +

2ε

δ
CBie

2ε

Using that r̂i(t) ≥ ri(t)e
ε, this implies ri(t) ≤ ri(t − 1) +

(2Cεeε/δ)Bi. The matching upper bound on ri(t − 1) in
terms of ri(t) is proved by exchanging the roles of t and
t− 1.

Proof of Claim 2. Let k = k(t). By the previous lemma
and our condition on ε, we have

rk(t) ≤ rk(t− 1) + λBk ≤ Bk(1 + λ) = rk(t)τk(t)(1 + λ)

where we used the assumption τk(t − 1) = 1 to conclude
that rk(t − 1) ≤ Bk. This gives τk(t) ≥ 1/(1 + λ) ≥ 1 − λ,
proving the claim.

Now we will prove Statement 2. Note that ri(t) ≥ Bi(1−
γ) implies si(t) ≥ Bi(1−γ) (this is because either si(t) = Bi

or τi(t) = 1 in which case si(t) ≥ ri(t)). Therefore, it is
enough to show that for all t ≥ 2Tλ − log(mini Ri(0)) and
all i, one of the following holds:

ri(t) ≥ (1− γ)Bi, (2)

Ri(t) ≥ e−ε (3)

so long as ε is less than γ. We first prove the following claim.

Claim 3. For 2Cλ ≤ γ, 4Cεeε ≤ γδ, and (t − 1) ≥ Tλ,
we have si(t− 1)− ri(t) ≤ γBi.

Proof. By Statement 1, τmin(t−1) ≥ (1−λ), and there-
fore si(t−1) ≤ ri(t−1)(1−λ)+λ

∑
j uij ≤ ri(t−1)+γBi/2

provided 2Cλ ≤ γ. Moreover, by Lemma 1 and our condi-
tion on ε, we have ri(t − 1) ≤ ri(t) + γBi/2. Therefore
si(t− 1) ≤ ri(t) + γBi.

The proof of Statement 2 now follows by backwards in-
duction. First suppose neither (2) nor (3) holds on day t and
t − 1 ≥ Tλ. We will show neither inequalities holds on day
t−1. Indeed, by the above claim, si(t−1) ≤ ri(t)+γBi < Bi

and hence Ri(t) = min(Ri(t − 1)eε, 1) ≥ Ri(t − 1). There-
fore (3) did not hold on day t − 1 as well, which implies
that Ri(t) = Ri(t − 1)eε. Now using an argument similar
to Claim 1, we can show that ri(t) ≥ ri(t− 1)eε. It follows
that (2) did not hold on day t− 1 either.

For the base case, notice that as long as neither (2) nor (3)
holds, we saw in the above paragraph that Ri(t) = Ri(t −
1)eε and so for t ≥ 2Tλ− log(mini Ri(0)), inequality (3) will
hold.

The above result shows that the prices in a perturbed first-
price mechanism converge. We believe that a similar result
holds for a perturbed second price auction (see next section
for evidence of this in simulation results). However, our
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Figure 2: Change in bids, Examples 1 and 2

proof technique fails for the second price auction. Given the
convergence result, in Theorem 2 (whose proof is presented
in Appendix A) we show that for the first price auction, the
prices converge to the market equilibrium prices. For the
second-price auction, assuming our conjecture on the con-
vergence of the system, we can similarly show that the prices
tend to approximate equilibria for a new notion of market
equilibrium, called the self-competition-free or supply-aware
market equilibrium (see [9]). A supply-aware equilibrium for
a market with additive utilities is a regular market equilib-
rium for a modified setting in which the utility of each buyer
for each item is capped to the utility they derive by buying
the entire supply of the item. The simulations in Section 5
support our intuitions.

5. SIMULATIONS
In this section, we present the results of simulating the

bid optimization algorithm of Section 3 for various auction
mechanisms. In particular, we compare the behavior of the
bid optimization algorithm in the equilibrium for the first
and second-price auctions with and without perturbation.

Parameters of the simulation: We have implemented
the simulation program in Matlab. In all our simulations, we
assume that αk = 1/k (i.e., click-through rates of different
slots follow a power law with exponent −1). We assume
that throughout the day, each keyword is searched for 1000
times, and these searches occur in a random order. At the
end of each day, the bid optimization algorithm is run to
update the bids of each advertiser. For most simulations,
the parameters ε (determining the aggressiveness of the bid
optimization algorithm in changing bids) and δ (determining
the extent of the perturbations for perturbed mechanisms)
are set to 0.01 and 0.1, respectively.

A small example: We start by showing the outcome
of the simulation for the instance explained in Examples 1
and 2 for 500 days. In this instance, there are two advertis-
ers and one keyword with one ad slot. Each advertiser has
a utility of $1 and a daily budget of $500. Both advertisers
start by bidding $0.20 on each keyword. The graph of the
bid of the first advertiser as a function of time for each of the
four mechanisms is shown in Figure 2 (the second advertiser
has similar bids). As we see in this figure, in unperturbed
mechanisms, the bids of the advertisers grow only to $0.50,
and after that remain constant, whereas in perturbed mech-
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Figure 3: Change in revenue, Examples 1 and 2
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Figure 4: Change in efficiency, random instance

anisms, the bids grow to $1. The revenue of the mechanisms
are compared in Figure 3.11 Since the utilities in this exam-
ple are equal, the efficiency of all mechanisms are constant
over time.

A larger example: We have simulated the bid optimiza-
tion algorithm with different mechanisms on larger instances
generated at random. Figures 4 and 5 show the changes
in the efficiency and the revenue of the auctions (per day)
as a function of the day for an instance with n = 20 bid-
ders, m = 10 keywords, and one slot per keyword. In this
instance, each advertiser bids on each keyword with prob-
ability 1/3, and the value of the bids are drawn uniformly
at random from [0, 1]. The daily budgets of the advertisers
are 3000, 3000/2, 3000/3, . . . , 3000/20.12 Figure 6 shows the
changes in the bids on one of the keywords as a function of
time. As this figure shows, the mechanisms with perturba-
tion avoid having bids that are almost equal and frequently
change order, whereas in mechanisms without perturbation,

11The decrease in the revenue of the perturbed second-price
auction (compared to the first-price) is due to the fact that
after a short while, the randomness in the system could
cause the bid of one of the advertisers to be slightly more
than the other, resulting in the advertiser running out of
budget earlier than the other advertiser, and the other ad-
vertiser getting the remaining ad spaces in that day for free.

12The choice of budgets as a power law distribution with
exponent −1 is motivated by the classical observation that
income distribution often follows such a power law.
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Figure 5: Change in revenue, random instance

such situations are common. This can be observed from the
diagram of efficiency in Figure 4, where it can be observed
that the efficiency of the allocation on odd-numbered days
are significantly lower than the efficiency of the mechanism
on even-numbered days.

Random instances: We have simulated the bid opti-
mization algorithm with each of the four auction mecha-
nisms on a set of 150 randomly generated instances to mea-
sure the average behavior of the algorithm in different auc-
tions. The instances are generated similar to the way de-
scribed in the previous example, with 10 bidders, 5 key-
words, and 3 slots per keyword. We have simulated the
auctions for 300 days, and measured the following parame-
ters: the convergence of system, and the efficiency and the
revenue of the auction.

Convergence. To measure the convergence, we check
the properties required in the statement of Theorem 1, and
compute the fraction of bidders for whom both of these prop-
erties are satisfied at the end of the simulation. We say we
have perfect convergence if these conditions (for γ = 0.1) are
satisfied for all bidders and good convergence if they are sat-
isfied for 90% (i.e., all but at most one) of the bidders after
1000 steps. Figure 7 shows the distribution of the number
of converged bidders, and Figure 8 compares the percentage
of the times perfect or good convergence is achieved on the
four mechanisms. In this figure, mechanisms 1, 2, 3, and
4 represent the first price, the second price, the perturbed
first price, and the perturbed second price mechanisms, re-
spectively. These figures confirm our result that perturbed
mechanisms are significantly more likely to converge to an
equilibrium.

Revenue and Efficiency. The comparison of the rev-
enue and the efficiency of the mechanisms reveals that in
this set of instances, the revenue and the efficiency of the
perturbed mechanisms are consistently (between 79% and
97% of the times) more than the unperturbed mechanisms.
However, the difference is small (between 1.5% and 5% on
average).
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APPENDIX
A. PROOF OF THEOREM 2

We start by recalling some standard definitions, as applied
to our setting. Given the prices pj for keywords, an optimal
allocation xij for advertiser i is any solution to the following
linear program:

maximize Li +
∑

j

uijxij

subject to Li +
∑

j

pjxij = Bi

∀j : xij ≥ 0

Li ≥ 0.

Here xij is the fractional amount of word j assigned to the
advertiser i, and Li is the amount of money unspent by i.
A price vector is called a market equilibrium price vector
if there exist allocations xij that satisfy the following two
conditions:

• At the given price vector, xij is an optimal allocation
for each advertiser i.

• For each keyword j, we have
∑

i xij = 1 (recall that
the supply of each keyword was assumed to be 1).

The next theorem follows from the classical results in the
economic literature (see, for example, Arrow and Debreu[2])
by considering the market with one commodity for each key-
word and an additional commodity termed “money”. The
proof of this theorem is deferred to the full version of the
paper.
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Theorem 3. There exists an equilibrium price vector in
the market defined above. Moreover, the market equilibrium
prices are unique, and can be characterized as the set speci-
fied by the following convex program.

∀i, j :
Li +

∑
j′ uij′xij′

Bi
≥ uij

pj
(4)

∀i :
Li +

∑
j′ uij′xij′

Bi
≥ 1 (5)

∀j :
∑

i

xij ≤ 1 (6)

∑
j

pj +
∑

i

Li ≤
∑

i

Bi (7)

∀i, j : xij ≥ 0 (8)

∀j : pj ≥ 0. (9)

Now let us return to the proof of Theorem 2. We show
that as δ and γ approach zero, the constraints in Theorem
3 becomes satisfied. In fact, constraints (5), (6), (8), and
(9) are always satisfied: constraint (5) is satisfied because

no advertiser buys any keyword at a higher price than his
utility, and the other three constraints are satisfied because
Algorithm 1 always computes a feasible allocation and non-
negative prices. Therefore, the only constraints that we need
to check are (4) and (7). But it is easy to use Theorem 1
to show that these constraints are satisfied approximately,
i.e., there is a value ρ(δ, γ) that approaches zero as δ and γ
approach zero so that:

∀i, j :
Li +

∑
j′ uij′xij′

Bi
≥ (1− ρ(δ, γ))

uij

pj

∑
j

pj +
∑

i

Li ≤ (1 + ρ(δ, γ))
∑

i

Bi.

The prices and allocation of our algorithm must satisfy these
constraints. Consider the convex region specified by these
relaxed constraints. As δ and γ go to zero, the constraints
approach those of Theorem 3, implying that the price and
utility vectors converge to the unique equilibrium price and
utility vectors, respectively. This completes the proof of
Theorem 2.
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