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ABSTRACT
The World Wide Web (WWW) is rapidly becoming impor-
tant for society as a medium for sharing data, information
and services, and there is a growing interest in tools for un-
derstanding collective behaviors and emerging phenomena in
the WWW. In this paper we focus on the problem of search-
ing and classifying communities in the web. Loosely speak-
ing a community is a group of pages related to a common
interest. More formally communities have been associated
in the computer science literature with the existence of a lo-
cally dense sub-graph of the web-graph (where web pages are
nodes and hyper-links are arcs of the web-graph). The core
of our contribution is a new scalable algorithm for finding
relatively dense subgraphs in massive graphs. We apply our
algorithm on web-graphs built on three publicly available
large crawls of the web (with raw sizes up to 120M nodes
and 1G arcs). The effectiveness of our algorithm in finding
dense subgraphs is demonstrated experimentally by embed-
ding artificial communities in the web-graph and counting
how many of these are blindly found. Effectiveness increases
with the size and density of the communities: it is close to
100% for communities of a thirty nodes or more (even at
low density). It is still about 80% even for communities of
twenty nodes with density over 50% of the arcs present. At
the lower extremes the algorithm catches 35% of dense com-
munities made of ten nodes. We complete our Community
Watch system by clustering the communities found in the
web-graph into homogeneous groups by topic and labelling
each group by representative keywords.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]:
Computations on Discrete Structures; H.2.8 [Database
Applications]: Data Mining; H.3.3 [Information Search
and Retrieval]: Clustering
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∗Work partially supported by the EU Research and Training
Network COMBSTRU (HPRN-CT-2002-00278) and by the
Italian Registry of ccTLD“it”
†Works also for Dipartimento di Ingegneria
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1. INTRODUCTION
Why are cyber-communities important?. Searching

for social structures in the World Wide Web has emerged as
one of the foremost research problems related to the breath-
taking expansion of the World Wide Web. Thus there is
a keen academic as well as industrial interest in developing
efficient algorithms for collecting, storing and analyzing the
pattern of pages and hyper-links that form the World Wide
Web, since the pioneering work of Gibson, Kleinberg and
Raghavan [19]. Nowadays many communities of the real
world that want to have a major impact and recognition
are represented in the Web. Thus the detection of cyber-
communities, i.e. set of sites and pages sharing a common
interest, improves also our knowledge of the world in gen-
eral.

Cyber-communities as dense subgraphs of the
web graph. The most popular way of defining cyber-
communities is based on the interpretation of WWW hy-
perlinks as social links [10]. For example, the web page of a
conference contains an hyper-link to all of its sponsors, simi-
larly the home-page of a car lover contains links to all famous
car manufactures. In this way, the Web is modelled by the
web graph, a directed graph in which each vertex represents a
web-page and each arc represents an hyper-link between the
two corresponding pages. Intuitively, cyber-communities
correspond to dense subgraphs of the web graph.

An open problem. Monika Henzinger in a recent survey
on algorithmic challenges in web search engines [26] remarks
that the Trawling algorithm of Kumar et al. [31] is able
to enumerate dense bipartite graphs in the order of tens
of nodes and states this open problem: “In order to more
completely capture these cyber-communities, it would be
interesting to detect much larger bipartite subgraphs, in the
order of hundreds or thousands of nodes. They do not need
to be complete, but should be dense, i.e. they should contain
at least a constant fraction of the corresponding complete
bipartite subgraphs. Are there efficient algorithms to detect
them? And can these algorithms be implemented efficiently
if only a small part of the graph fits in main memory?”

Theoretical results. From a theoretical point of view,
the dense k-subgraph problem, i.e. finding the densest sub-
graph with k vertices in a given graph, is clearly NP-Hard
(it is easy to see by a reduction from the max-clique prob-
lem). Some approximation algorithms with a non constant
approximation factor can be found in the literature for ex-
ample in [24, 14, 13], none of which seem to be of practical
applicability. Studies about the inherent complexity of the
problem of obtaining a constant factor approximation algo-
rithm are reported in [25] and [12].
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Some heuristic methods. In the literature there are
a few heuristic methods to extract communities from the
web (or from large graphs in general). The most impor-
tant and ground breaking algorithm is due to Kumar et al.
in [31] where the authors aim at enumerating complete bi-
partite subgraphs with very few vertices, then extend them
to dense bipartite subgraphs by using local searches (based
on the HITS ranking algorithm). The technique in [31] is
aimed at detecting small complete bipartite communities,
of the order of ten vertices, while the subsequent commu-
nity expansion guided by the hub and authority scores of
the HITS algorithm (regardless of further density consid-
erations). In [16] Flake, Lawrence, Giles and Coetzee use
the notion of maximum flow to extract communities, but
they are also limited to communities for which an initial
seed node is available. In [20] Gibson, Kumar and Tomkins
use a new sampling method (shingling) based on the notion
of min-wise independent permutations, introduced in [7], to
evaluate the similarity of neighborhoods of vertices and then
extract very large and very dense subgraphs of the web-host
graph. This technique is specifically aimed to detecting very
large and dense subgraphs, in a graph, like the web-host-
graph of quite large average degree. The authors in [20,
Section 4.2] remark that (with a reasonable set of parame-
ters) the shingling method is effective for dense subgraphs of
over 50 nodes but breaks down below 24 nodes. Thus there
is room for improvements via alternative approaches.

Our contribution. In this paper we propose two new
simple characterization of dense subgraphs. From these
characterization we derive a new heuristic, which is based
on a two-step filtering approach. In the first filtering step
we estimate efficiently the average degree and the similar-
ity of neighbor sets of vertices of a candidate community.
This initial filtering is very efficient since it is based only
on degree-counting. The second filtering step is based on
an iterative refinement of the candidate community aimed
at removing small degree vertices (relative to the target av-
erage density), and thus increasing the average degree of
the remaining “core” community. We test our algorithm on
very large snapshots of the web graph (both for the global
web-graph and for some large national domains) and we give
experimental evidence the effectiveness of the method. We
have coupled the community extraction algorithm with a
clustering tool that groups the communities found into ho-
mogeneous groups by topic and provide a useful user in-
terface for exploring the community data. The user inter-
face of the Community Watch system is publicly available
at http://comwatch.iit.cnr.it. To the best of our knowl-
edge this is the first publicly available tool to visualize cyber-
communities.

Target size. In our method the user supplies a target
threshold t and the algorithm lists all the communities found
with average degree at least t. Naturally the lower the t-
value the more communities will be found and the slower
the method. In our experiments our method is still effective
for values of t quite close to the average degree of the web-
graphs (say within a factor 2), and communities of a few tens
of nodes. Our heuristic is particularly efficient for detecting
communities of large and medium size, while the method in
[31] is explicitly targeted towards communities with a small
complete bipartite core-set.

Final applications. The detection of dense subgraphs
of the web-graph might serve as a stepping stone towards
achieving several broader goals. One possible goal is to im-
prove the performance of critical tools in the WWW in-
frastructure such as crawlers, indexing and ranking compo-
nents of search engines. In this case often dense subgraphs
are associated with negative phenomena such as the Tightly
Knit Community (TKC) effect [34], link-farm spamming
[23], and data duplication (mirroring) [2]. In this paper,

following [33] we place instead the accent on the “positive”
aspect of cyber-communities: our intent at the moment is
to provide an exploratory tool capable of extracting a syn-
thetic description of the current status and current trends
in the social structure of the WWW.

Visualization of the Communities. Given a single
dense community it is easy by manual inspection to gain
some hint as to its general area of interest and purpose,
however gaining insight on hundreds (or thousands) of com-
munities can become a tiresome task, therefore we have cou-
pled our dense-subgraph extraction algorithm with a visu-
alization tool that helps in the exploratory approach. This
tool is based on the efficient clustering/labelling system de-
scribed in detail in [17][18]. In nutshell from each commu-
nity, using standard IR techniques, we extract a vector of
representative words with weights related to the words fre-
quencies (word-vector). A clustering algorithm is applied to
the word-vectors and we obtain groups of communities that
are homogeneous by topic, moreover a list of representative
keywords for each cluster is generated so to guide the user
to assess the intrinsic topic of each cluster of communities.

Mirrors and Link-farms. Information retrieval on the
WWW is complicated by the phenomenon of “data replica-
tion” (mirroring) and several forms of spamming (e.g. link-
farms). For mirrors, off-line detection of such structures us-
ing the techniques in [2] implies pairwise comparisons of all
(or most if some heuristic filtering is used) pairs of web-sites,
which is an expensive computations. Link-farm detection
implies technique borderline with those used for community
detection. In our context, however, efficiency and effective-
ness of the community detection algorithm are not really
impaired by such borderline phenomena. For this reason we
do not attempt to filter out these phenomena before apply-
ing our algorithms. Instead we envision these steps (mir-
ror detection and link-farm detection) as a post-processing
phase in our Community Watch system. In particular since
we perform efficiently both the community detection and
community clustering we can apply mirror and link-farm
detection separately and independently in each cluster thus
retaining the overall system scalability.

2. PREVIOUS WORK
Given the hypertext nature of the WWW one can ap-

proach the problem of finding cyber-communities by using
as main source the textual content of the web pages, the
hyperlinks structure, or both. Among the methods for find-
ing group of coherent pages based only on text content we
can mention [8]. Recommendation systems usually collect
information on social networks from a variety of sources (not
only link structure) (e.g. [29]). Problems of a similar na-
ture appears in the areas of social network analysis, citation
analysis and bibliometrics, where however, given the rela-
tively smaller data sets involved (relative to the WWW),
efficiency is often not a critical issue [35].

Since the pioneering work [19] the prevailing trend in the
Computer Science community is to use mainly the link-
structure as basis of the computation. Previous literature on
the problem of finding cyber-communities using link-based
analysis in the web-graph can be broadly split into two large
groups. In the first group are methods that need an initial
seed of a community to start the process of community iden-
tification. Assuming the availability of a seed for a possible
community naturally directs the computational effort in the
region of the web-graph closest to the seed and suggests the
use of sophisticated but computational intensive techniques,
usually based of max-flow/min-cut approaches. In this cat-
egory we can list the work of [19, 15, 16, 27, 28]. The second
group of algorithms does not assume any seed and aims at
finding all (or most) of the communities by exploring the
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whole web graph. In this category falls the work of [31, 30,
36, 32, 20].

Certain particular artifacts in the WWW called “link
farms” whose purpose is to bias search-engines pagerank-
type ranking algorithms are a very particular type of “arti-
ficial” cyber-community that is traced using techniques bor-
dering with those used to find dense subgraphs in general.
See for example [37, 3].

Abello et al. [1] propose a method based on local searches
with random restarts to escape local minima, which is quite
computational intensive. A graph representing point to
point telecommunications with 53 M nodes and 170M edges
is used as input. The equipment used is a multiprocessor
machine of 10 200MHz processors and total 6GB RAM mem-
ory. A timing result of roughly 36 hours is reported in [1]
for an experiment handling a graph obtained by removing all
nodes of degree larger than 30, thus, in effect, operating on a
reduced graph of 9K nodes and 320K edges. Even discount-
ing for the difference in equipment we feel that the method
in [1] would not scale well to searching for medium-density
and medium-size communities in graphs as large as those we
are able to handle (up to 20M nodes and 180M edges after
cleaning). Girvan and Newman [21] define a notion of local
density based on counting the number of shortest paths in
a graph sharing a given edge. This notion, though power-
ful, entails algorithm that do not scale well to the size of
the web-graph. Spectral methods described in [9] also lack
scalability (i.e. in [9] the method is applied to graphs from
psychological experiments with 10K nodes and 70K edges).

A system similar in spirit to that proposed in this paper
is Campfire described in [33] which is based on the Trawling
algorithm for finding the dense core, on HITS for commu-
nity expansion and on an indexing structure of community
keywords that can be queried by the user. Our system is
different from Campfire first of all in the algorithms used
to detect communities but also in the final user interface:
we provide a clustering/labelling interface that is suitable
to giving a global view of the available data.

3. PRELIMINARIES

3.1 Notions and notation
A directed graph G = (V, E) consists of a set V of vertices

and a set E of arcs, where an arc is an ordered pair of
vertices. The web graph is the directed graph representing
the Web: vertices are pages and arcs are hyperlinks.

Let u, v be any vertices of a directed graph G, if there
exists an arc a = (u, v), then a is an outlink of u, and an
inlink of v. Moreover, v is called a successor of u, and
u a predecessor of v. For every vertex u, N+(u) denotes
the set of its successors, and N−(u) the set of its prede-
cessors. Then, the outdegree and the indegree of u are re-
spectively d+(u) = |N+(u)| and d−(u) = |N−(u)|. Let X
by any subset of V , the successors and the predecessors of
X are respectively defined by: N+(X) =

S
u∈X

N+(u) and

N−(X) =
S

u∈X
N−(u). Observe that X ∩ N+(X) 6= ∅ is

possible. A graph G = (V, E) is called a complete bipar-
tite graph, if V can be partitioned into two disjoint subsets
X and Y , such that, for every vertex u of X, the set of
successors of u is exactly Y , i.e., ∀u ∈ X, N+(u) = Y .
Consequently for every node v ∈ Y its predecessor set is X.

Finally, let eN(u) be the set of vertices that share at least one

successor with u: eN(u) =
˘
w ∈ V | N+(u) ∩N+(w) 6= ∅

¯
.

Two more useful definitions. Define for sets A and B the
relation A ≃γ B when |A ∩ B| > γ|B|, for a constant γ.
Define for positive numbers a, b the relation a ≈ b when
|a − b| 6 ǫ|a|, for a constant ǫ. When the constant can be
inferred from the context the subscript is omitted.

3.2 Definitions of Web Community
The basic argument linking the (informal) notion of web

communities and the (formal) notion of dense subgraphs is
developed and justified in [31]. It is summarized in [31] as
follows: “Web communities are characterized by dense di-
rected bipartite subgraph”. Without entering in a formal de-
finition of density in [31] it is stated the hypothesis that:“A
random large enough and dense enough bipartite subgraph
of the Web almost surely has a core”, (i.e. a complete bi-
partite sub-graph of size (i, j) for some small integer values,
i and j). A standard definition of γ-density, as used for
example in [20], is as follows: a γ-dense bipartite subgraph
of a graph G = (V, E) is a disjoint pair of sets of vertices,
X, Y ⊆ V such that |{(x, y) ∈ E|x ∈ X∧y ∈ Y }| > γ|X||Y |,
for a real parameter γ ∈ [0..1]. Note that γ|Y | is also a
lower bound to the average out-degree of a node in X. Sim-
ilarly a dense quasi-clique is a subset X ⊂ V such that
|{(x, y) ∈ E|x ∈ X ∧ y ∈ X}| >

`
|X|
2

´
, for a real para-

meter γ ∈ [0..1], as in [1, 14]. This notion of a core of
a dense subgraph in [31] is consistent with the notion of
γ-density for values of γ large enough, where the notion of
“almost surely”, (i, j)-core, “large enough”, “dense enough”,
must be interpreted as a function of γ. Our formulation
unifies the notion of a γ-dense bipartite subgraph and a γ-
clique as a pair of not necessarily disjoint sets of vertices,
X, Y ⊆ V such that ∀x ∈ X, |N+(x) ∩ Y | > γ|Y | and
∀y ∈ Y, |N−(y) ∩ X| > γ′|X|. For two constants γ and
γ′. Our definition implies that in [20], and conversely, any
γ-dense subgraph following [20] contains a γ-dense subgraph
in our definition1.

Thus a community in the web is defined by two sets of
pages, the set of the Y centers of the community, i.e. pages
sharing a common topic, and the set X of the fans, i.e.,
pages that are interested in the topic. Typically, every fan
contains a link to most of the centers, at the same time, there
are few links among centers (often for commercial reasons)
and among fans (fans may not know each other).

4. HEURISTIC FOR LARGE DENSE
SUBGRAPHS EXTRACTION

4.1 Description
The definition of γ-dense subgraph can be used to test if a

pair of sets X, Y ⊆ V is a γ-dense subgraph (both bipartite
and clique). However it cannot be used to find efficiently a
γ-dense subgraph (X, Y ) embedded in G. In the following
of this section we discuss a sequence of properties and then
we will proceed by relaxing them up to the point of hav-
ing properties that can be computed directly on the input
graph G. These properties will hold exactly (with equality)
for an isolated complete bipartite graph (and clique), will
hold approximately for an isolated γ-dense graph, where the
measure of approximation will be related to the parameter
γ. However at the end we need a the final relaxation step in
which we will consider the subgraphs as embedded in G.

4.1.1 Initial intuitive outline
First of all, let us give an initial intuition of the reason

why our heuristic might work. Let G = (V, E) be a sparse
directed graph, and let (X, Y ) be a γ-dense subgraph within
G. Then, let u be any vertex of X. Since (X, Y ) is a γ-
dense subgraph by definition we have ∀u ∈ X, N+(u) ≃γ Y ,
and symmetrically ∀v ∈ Y,N−(v) ≃γ′ X. For values γ >
0.5 the pigeon hole principle ensures that any two nodes u

and v of X always share a successor in Y , thus X ⊆ eN(u),

1It is sufficient to eliminate nodes of X of outdegree smaller
than γ|Y |, and from Y those of indegree smaller than γ′|X|.
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and, if every vertex of Y has at least a predecessor in X,

also Y ⊆ N+(eN(u)). The main idea now is to estimate
quickly, for every vertex u of G, the degree of similarity of

N+(u) and N+(eN(u)). In the case of an isolated complete

bipartite graph N+(u) = Y , and N+(eN(u)) = Y . For an
isolated γ-dense bipartite graph, we have N+(u) ≃γ Y and

N+(eN(u)) = Y . The conjecture is that when the γ-dense
bipartite graph is a subgraph of G, and thus we have the

weaker relationship Y ⊆ N+(eN(u)), the excess N+(eN(u))\Y
is small compared to Y so to make the comparison of the
two sets still significant for detecting the presence of a dense
subgraph.

4.1.2 The isolated complete case
To gain in efficiency, instead of evaluating the similarity of

successor set, we will estimate the similarity of out-degrees
by counting. In a complete bipartite graph (X, Y ), we have
that ∀u ∈ X, N+(u) = Y , therefore, ∀u, v ∈ X, N+(u) =
N+(v). The set of vertices sharing a successor with u is
eN(u) = X, and moreover N+(eN(u)) = Y . Passing from
relations among sets to relations among cardinalities we have
that: ∀u, v ∈ X, d+(u) = d+(v), and the degree of any node
coincide with the average out-degree:

d+(u) =
1

|eN(u)|

X

v∈eN(u)

d+(v).

4.1.3 The isolatedγ-dense case
In a γ-dense bipartite graph, we still have eN(u) = X but

now, |Y | > d+(v) > γ|Y | for every v ∈ X. Thus we can
conclude that

|d+(u)−
1

|eN(u)|

X

v∈eN(u)

d+(v)| 6 (1− γ)|Y | 6
1− γ

γ
d+(u).

For γ → 1 the difference tends to zero. Finally assuming

that for a γ-dense bipartite subgraph of G the excesses eN(u)\

X and N+(eN(u)) \ Y give a small contribution, we can still
use the above test as evidence of the presence of a dense sub-
graph. At this point we pause, we state our first criterion
and we subject it to criticism in order to improve it.

Criterion 1. If d+(u) and |eN(u)| are big enough and

d+(u) ≈
1

|eN(u)|

X

v∈eN(u)

d+(v),

then
“

eN(u), N+(eN(u))
”

might contain a community.

4.1.4 A critique of Criterion 1
Unfortunately, this criterion 1 cannot be used yet in this

form. One reason is that computing eN(u) for every vertex u
of big enough outdegree in the web graph G is not scalable.
Moreover, the criterion is not robust enough w.r.t. noise
from the graph. Assume that the situation depicted in fig-
ure 1 occurs: u ∈ X, (X, Y ) induces a complete bipartite
graph with |Z| = |X| = |Y | = x, and each vertex of Y has

one more predecessor of degree 1 in Z. Then, eN(u) = X∪Z,
so 1

|eN(u)|

P
v∈eN(u) d+(v) = x+1

2
that is far from d+(u) = x,

so (X, Y ) will not be detected.

4.1.5 Overcoming the drawbacks of Criterion 1
Because of the shortcomings of Criterion 1 we describe a

second criterion that is more complex to derive but com-
putationally more effective and robust. As before we will

ZX Y

u

Figure 1: A complete bipartite subgraph with |X| =
|Y | = x, and some “noise”.

start with the case of the isolated complete bipartite graph.
Consider a node u ∈ X, clearly N+(u) = Y , and ∀y ∈
N+(u), N−(y) = X, thus ∀w ∈ N−(y), N+(w) = Y . Turn-
ing to the cardinalities: for a node u ∈ X, ∀y ∈ N+(u), ∀w ∈
N−(y) d+(w) = |Y |. Thus also the average value of all out-
degrees for nodes in N−(y) is |Y |. In formulae: given u ∈ X,
∀y ∈ N+(u),

1

d−(y)

X

w∈N−(y)

d+(w) = |Y |.

Next we average over all y ∈ N+(u) by obtaining the follow-
ing equation: given u ∈ X,

1P
y∈N+(u) d−(y)

X

y∈N+(u)

X

w∈N−(y)

d+(w) = |Y |.

Finally since d+(u) = |Y | we have the equality:

1P
y∈N+(u) d−(y)

X

y∈N+(u)

X

w∈N−(y)

d+(w) = d+(u).

Next we see how to transform the above equality for isolated
γ-dense graphs. Consider a node u ∈ X, now N+(u) ≃γ Y ,
and for a node v ∈ Y , N−(v) ≃γ′ X. Thus we get the
bounds:

|X||Y | >
X

y∈N+(u)

d−(y) > γ|Y |γ′|X|,

|Y |2|X| >
X

y∈N+(u)

X

w∈N−(y)

d+(w) > γ2|Y |2γ′|X|.

Thus the ratio of the two quantities is in the range

[ |Y |
γγ′ , |Y |γ

2γ′]. On the other hand |Y | > d+(u) > γ|Y |.

Therefore the difference of the two terms is bounded by

|Y | 1−γ2γ′

γγ′ , which is bounded by d+(u) 1−γ2γ′

γ2γ′ . Again for

γ → 1 and γ′ → 1 the difference tends to zero.
Thus in an approximate sense the relationship is preserved

for isolated γ-dense bipartite graphs. Clearly now we will
make a further relaxation by considering the sets N+(.) and
N−(.) as referred to the overall graph G, instead of just the
isolated pair (X, Y ).

Criterion 2. If d+(u) and |eN(u)| are big enough and

d+(u) ≈
1P

y∈N+(u) d−(y)

X

y∈N+(u)

X

w∈N−(y)

d+(w),

then
“

eN(u), N+(eN(u))
”

might contain a community.
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4.1.6 Advantages of Criterion 2
There are several advantages in using Criterion 2. The

first advantage is that the relevant summations are defined
over sets N+(.) and N−(.) that are encoded directly in the

graphs G and GT . We will compute eN(u) in the second
phase only for vertices that are likely to belong to a commu-
nity. The second advantage is that the result of the inner
summation can be pre-computed stored and reused. We just
need to store two tables of size n (n = |V |), one containing
the values of

P
v∈N−(w) d+(v), the other containing the in-

degrees. Thirdly, the criterion 2 is much more robust than
criterion 1 to noise, since the outdegree of every vertex of
X is counted many times. For example, in the situation
depicted in figure 1, we obtain the following result:
∀u ∈ X and w ∈ N+(u),

P
v∈N−(w) d+(v) = x2 + 1.

Thus, ∀u ∈ X,
1P

w∈N+(u)
d−(w)

P
w∈N+(u)

P
v∈N−(w) d+(v) = x(x2+1)

x(x+1)
≃ x.

4.1.7 Final refinement step
Finally, let u be a vertex that satisfies the criterion 2,

we construct explicitly the two sets eN(u) and N+(eN(u)).
Then, we extract the community (X, Y ) contained in“

eN(u), N+(eN(u))
”

thanks to an iterative loop in which we

remove from eN(u) all vertices v for which N+(v)∩N+(eN(u))

is small, and we remove from N+(eN(u)) all vertices w for

which N−(w) ∩ eN(u) is small.

4.2 Algorithms
In figures 2 and 3 we give the pseudo-code for our heuris-

tic. Algorithm RobustDensityEstimation detects vertices
that satisfy the filtering formula of criterion 2, then func-

tion ExtractCommunity computes eN(u) and N+(eN(u)) and
extracts the community of which u is a fan. This two algo-
rithms are a straightforward application of the formula in
the criterion 2.

4.3 Handling of overlapping communities
Our algorithm can capture also partially overlapping com-

munities. This case may happen when we have older com-
munities that are in the process of splitting or newly formed
communities in the process of merging. However overlapping
centers and overlapping fans are treated differently, since the
algorithm is not fully symmetric in handling fans and cen-
ters.

Communities sharing fans. The case depicted in Fig-
ure 4(a) is that of overlapping fans. If the overlap X ∩X ′

is large with respect to X ∪X ′ then our algorithm will just
return the union of the two communities (X ∪X ′, Y ∪ Y ′).
Otherwise when the overlap X∩X ′ is not large the algorithm
will return two communities: either the pairs (X, Y ) and
(X ′ \X, Y ′), or the pairs (X ′, Y ′) and (X \X ′, Y ). So we
will report both the communities having their fan-sets over-
lapping, but the representative fan sets will be split. The
notion of large/small overlap is a complex function of the
degree threshold and other parameters of the algorithm. In
either case we do not miss any important structure of our
data.

Communities sharing centers. Note that the behavior
is different in the case of overlapping centers. A vertex can
be a center of several communities. Thus, in the case de-
picted in Figure 4(b), if the overlap Y ∩Y ′ is big with respect
to Y ∪ Y ′, then we will return the union of the two commu-
nities (X∪X ′, Y ∪Y ′), otherwise we will return exactly the
two overlapping communities (X, Y ) and (X ′, Y ′). In either

Algorithm RobustDensityEstimation
Input: A directed graph G = (V, E), a threshold for degrees
Result: A set S of dense subgraphs detected by vertices of
outdegrees > threshold
begin

Init:
forall u of G do

forall v ∈ N−(u) do
TabSum[u]← TabSum[u] + d+(v)

end
end

Search:
forall u that is not already a fan of a community and
s.t. d+(u) > threshold do

sum← 0;
nb← 0;
forall v ∈ N+(u) do

sum← sum + TabSum[v];
nb← nb + d−(v);

end
if sum/nb ≃ d+(u) and nb > d+(u) ×
threshold then

S ← S ∪ ExtractCommunity(u);
end

end
Return S;

end

Figure 2: RobustDensityEstimation performs the main
filtering step.

case we do not miss any important structure of our data.
Observe that the last loop of function ExtractCommunity
removes logically from the graph all arcs of the current com-
munity, but not the vertices. Moreover, a vertex can be fan
of a community and center of several communities. In par-
ticular it can be fan and center for the same community, so
we are able to detect dense quasi bipartite subgraphs as well
as quasi cliques.

4.4 Complexity analysis
We perform now a semi-empirical complexity analysis in

the standard RAM model. The graph G and its transpose
GT are assumed to be stored in main memory in such a way
as to be able to access a node in time O(1) and links incident
to it in time O(1) per link. We need O(1) extra storage per
node to store in-degree, out-degree, a counter TabSum, and
a tag bit. Algorithm RobustDensityEstimation visits each
edge at most once and performs O(1) operations for each
edge, thus has a cost O(|V | + |E|), except for the cost of
invocations of the ExtractCommunity function. Potentially
the total time cost of the invocations of ExtractCommunity
is large, however experimentally the time cost grows only
linearly with the number of communities found. This be-
havior can be explained as follows. We measured that less
than 30% of the invocations do not result in the construction
of a community (see Table 5), and that the inner refinement
loop converges on average in less than 3 iterations (see Table
4). If the number of nodes and edges of a community found
by ExtractCommunity for u is proportional by a constant to

the size of the bipartite sub-graph
“

eN(u), N+(eN(u))
”

then

we are allowed to charge all operations within invocations of
ExtractCommunity to the size of the output. Under these
conditions each edge is charged on average a constant num-
ber of operations, thus explaining the observed overall be-
havior O(|V |+ |E|+ |Output|)).
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Function ExtractCommunity
Input: A vertex u of a directed graph G = (V, E). Slackness
parameter ǫ
Result: A community of which u is a fan
begin

Initialization:
forall v ∈ N+(u) do

forall w ∈ N−(v) that is not already a fan of a
community do

if d+(w) > (1− ǫ)d+(u) then mark w as poten-
tial fan

end
end
forall potential fan v do

forall w ∈ N+(v) do
mark w as potential center;

end
end

Iterative refinement:
repeat

Unmark potential fans of small local outdegree;
Unmark potential centers of small local indegree;

until Number of potential fans and centers have not
changed significatively

Update global data structures:
forall potential fan v do

forall w ∈ N+(v) that is also a potential center do
TabSum[w]← TabSum[w]− d+(v);
d−(w)← d−(w)− 1;

end
end

Return (potential fans, potential centers);
end

Figure 3: ExtractCommunity extracts the dense sub-
graph.

4.5 Scalability
The algorithm we described, including the initial clean-

ing steps, can be easily converted to work in the streaming
model, except for procedure ExtractCommunity that seems
to require the use of random access of data in core memory.
Here we want to estimate with a “back of the envelope”
calculation the limits of this approach using core memory.
Andrei Broder et al. [6] in the year 2000 estimated the size
of the indexable web graph at 200M pages and 1.5G edges
(thus an average degree about 7.5 links per page, which is
consistent with the average degree 8.4 of the WebBase data
of 2001). A more recent estimate by Gulli and Signorini
[22] in 2005 gives a count of 11.5G pages. The latest index-
size war ended with Google claiming an index of 25G pages.
The average degree of the webgraph has been increasing re-
cently due to the dynamic generation of pages with high
degree, and some measurements give a count of 40.2 The
initial cleaning phase reduces the WebBase graph by a fac-
tor 0.17 in node count and 0.059 in the Edge count. Thus
using these coefficients the cleaned web graph might have
4.25G nodes and 59G arcs. The compression techniques in
[5] for the WebBase dataset achieves an overall performance
of 3.08 bits/edge. These coefficient applied to our cleaned
web graph give a total of 22.5Gbytes to store the graph.
Storing the graph G and its transpose we need to double
the storage (although here some saving might be achieved),
thus achieving an estimate of about 45Gbytes. With cur-
rent technology this amount of core memory can certainly
be provided by state of the art multiprocessors mainframes

2S. Vigna and P. Boldi, personal communication.
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(a) Communities sharing fans
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(b) Communities sharing centers

Figure 4: Two cases of community intersection

(e.g IBM System Z9 sells in configurations ranging from 8
to 64 GB of RAM core memory).

5. TESTING EFFECTIVENESS
By construction algorithms RobustDensityEstimation

and ExtractCommunity return a list of dense subgraph
(where size and density are controlled by the parameters t
and ǫ). Using standard terminology in Information Retrieval
we can say that full precision is guaranteed by default. In
this section we estimate the recall properties of the proposed
method. This task is complex since we have no efficient al-
ternative method for obtaining a guaranteed ground truth.
Therefore we proceed as follows. We add some arcs in the
graph representing the Italian domain of the year 2004, so
to create new dense subgraphs. Afterwards, we observe how
many of these new “communities” are detected by the al-
gorithm that is run blindly with respect to the artificially
embedded community. The number of edges added is of the
order of only 50,000 and it is likely that the nature of a
graph with 100M edges is not affected.

In the first experiment, about detecting bipartite com-
munities, we introduce 480 dense bipartite subgraphs. More
precisely we introduce 10 bipartite subgraphs for each of the
48 categories representing all possible combinations of num-
ber of fans, number of centers, and density over a number of
fans is chosen in {10, 20, 40, 80}; number of centers chosen in
{10, 20, 40, 80}; and density randomly chosen in the ranges
[0.25, 0.5] (low), [0.5, 0.75] (medium), and [0.75, 1] (high).

Moreover, the fans and centers of every new community
are chosen so that they don’t intersect any community found
in the original graph nor any other new community. The fol-
lowing table (Table 1) shows how many added communities
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are found in average over 53 experiments. For every one of
the 48 types, the maximum recall number is 10.

#
C

en
te

rs 80 0 5.2 9.6 10 1.2 8.4 9.7 10 5.7 8.6 9.5 9.8

40 0 5.4 9.5 9.9 0.7 8 9.7 9.9 5.4 8.6 9.7 9.8

20 0 2.7 5.4 6 0.9 7.9 9.6 9.9 4.6 8.4 9.6 9.9

10 0 0 0 0 0.1 0.8 1.9 3.2 3.3 6.5 9 9.7

10 20 40 80 10 20 40 80 10 20 40 80

# of Fans # of Fans # of Fans

Low density Med. density High density

Table 1: Number of added bipartite communities
found with threshold=8 depending on number of
fans, centers, and density.

In the second experiment, about detecting cliques , we
introduce ten cliques for each of 12 classes represent-
ing all possible combinations over: number of pages in
{10, 20, 30, 40}, and density randomly chosen in the ranges
[0.25, 0.5], [0.5, 0.75], and [0.75, 1]. The following table (Ta-
ble 2) shows how many such cliques are found in average
over 70 experiments. Again the maximum recall number
per entry is 10.

#
P
a
g
es 40 9.6 9.8 9.7

30 8.5 9.4 9.3

20 3.6 7.6 8.3

10 0 0.1 3.5

Low Med High

Density

Table 2: Number of added clique communities found
with threshold=8 depending on number of pages and
density.

The cleaned .it 2004 graph used for the test has an average
degree roughly 6 (see Section 6). A small bipartite graph of
10-by-10 nodes or a small clique of 10 nodes at 50% density
has an average degree of 5. The breakdown of the degree-
counting heuristic for these low thresholds is easily explained
with the fact that these small and sparse communities are
effectively hard to distinguish from the background graph
by simple degree counting.

6. LARGE COMMUNITIES IN THE WEB
In this section we apply our algorithm to the task of ex-

tracting and classifying real large communities in the web.

6.1 Data set
For our experiments we have used data from The

Stanford WebBase project [11] and data from the Web-
Graph project [5, 4]. Raw data is publicly available at
http://law.dsi.unimi.it/. More precisely we apply our
algorithm on three graphs: the graph that represents a snap-
shot of the Web of the year 2001 (118M pages and 1G links);
the graph that represents a snapshot of the Italian domain
of the year 2004 (41M pages and 1.15G arcs); the graph that
represents a snapshot of the United Kingdom domain of the
year 2005 (39M pages and 0.9G links).

Since we are searching communities by the study of social
links, we first remove all nepotistic links, i.e., links between
two pages that belong to the same domain (this is a stan-
dard cleaning step used also in [31]). Once these links are
removed, we remove also all isolated pages, i.e., pages with
both outdegree and indegree equal to zero. Observe that we
don’t remove anything else from the graph, for example we

don’t need to remove small outdegree pages and large inde-
gree pages, as it is usually done for efficiency reasons, since
our algorithm handles these cases efficiently and correctly.
We obtain the reduced data sets shows in Table 3.

Web 2001 20.1M pages 59.4M links av deg 3

.it 2004 17.3M pages 104.5M links av deg 6

.uk 2005 16.3M pages 183.3M links av deg 11

Table 3: The reduced data sets. Number of nodes,
edges and average degree.

6.2 Communities extraction
Figure 5 presents the results obtained with the three

graphs presented before. The y axe shows how many com-
munities are found, and the x axe represents the value of the
parameter threshold. Moreover communities are partitioned
by density into four categories (shown in grey-scale) corre-
sponding to density intervals: [1,0.75], ]0.75, 0.5], ]0.5, 0.25],
]0.25, 0.00].

Table 4 reports the time needed for the experiments with
an Intel Pentium IV 3.2 Ghz single processor computer us-
ing 3.5 GB RAM memory. The data sets, although large,
were in a cleverly compressed format and could be stored
in main memory. The column “# loops” shows the average
number of iterative refinement done for each community in
Algorithm ExtractCommunity. Depending on the fan out
degree threshold, time ranges from a few minutes to just
above two hours for the most intensive computation. Ta-
ble 5 shows the effectiveness of the degree-based filter since
in the large tests just only 6% to 8% of the invocations to
ExtractCommunity do not return a community. Note that
this false-positive rate of the first stage does not impact
much on the algorithm’s efficiency nor on the effectiveness.
The false positives of the first stage are caught anyhow by
the second stage.

Interestingly in Table 7 it is shown the coverage of the
communities with respect to the nodes of sufficiently high
degree. In two national domains the percentage of nodes
covered by a community is above 90% for national domains,
and just below 60% for the web graph (of 2001). Table 6
shows the distribution of size and density of communities
found. The web 2001 data set seems richer in communities
with few fans (range [10-25]) and poorer in communities
with many fans (range > 100) and this might explain the
lower coverage.

Web 2001 Italy 2004 Uk 2005

Thresh. Num. perc. Num. perc. Num. perc.

10 364 6% 34 3% 377 8%

15 135 5% 24 5% 331 14%

20 246 18% 24 9% 526 30%

25 148 19% 4 3% 323 30%

Table 5: Number and percentage of useless calls to
ExtractCommunity.

Table 6 shows how many communities are found with the
threshold equal to 10, in the three data sets in function of
number of fans, centers, and density. Low, medium and high
densities are respectively the ranges [0.25, 0.5], [0.5, 0.75],
and [0.75, 1].
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(a) Web 2001 (b) Italy 2004 (c) United Kingdom 2005

Figure 5: Number of communities found by Algorithm RobustDensityEstimation as a function of the degree
threshold. The gray scale denotes a partition of the communities by density.

Web 2001 Italy 2004 Uk 2005

Thresh. # com. # loops Time # com. # loops Time # com. # loops Time

10 5686 2.7 2h12min 1099 2.7 30min 4220 2.5 1h10min

15 2412 2.8 1h03min 452 2.8 17min 2024 2.6 38min

20 1103 2.8 31min 248 2.8 10min 1204 2.7 27min

25 616 2.6 19min 153 2.8 7min 767 2.7 20 min

Table 4: Measurements of performance. Number of communities found, total computing time and average
number of cleaning loops per community.

7. VISUALIZATION OF COMMUNITIES
The compressed data structure in [5] storing the web

graph does not hold any information about the textual con-
tent of the pages. Therefore, once the list of url’s of fans
and centers for each community has been created, a non-
recursive crawl of the WWW focussed on this list of url’s
has been performed in order to recover textual data from
communities.

What we want is to obtain an approximate description
of the community topics. The intuition is that the topic
of a community is well described by its centers. As good
summary of the content of a center page we extract the text
contained in the title tag of the page. We treat fan pages in
a different way. The full content of the page is probably not
interesting because a fan page can contain different topics,
or might even be part of different communities. We extract
only the anchor text of the link to a center page because
it is a good textual description of the edge from the fan to
a center in the community graph. For each community we
build a weighted set of words getting all extracted words
from centers and fans. The weight of each word takes into
account if a word cames from a center and/or a fan and if it is
repeated. All the words in a stop word list are removed. We
build a flat clustering of the communities. For clustering we
use the k-center algorithm described in [18, 17]. As a metric
we adopt the Generalized Jaccard distance (a weighted form
of the standard Jaccard distance).

This paper focusses on the algorithmic principles and test-
ing of a fast and effective heuristic for detecting large-to-
medium size dense subgraphs in the web graph. The exam-
ples of clusters reported in this section are to be considered
as anecdotical evidence of the capabilities of the Community
Watch System. We plan on using the Community Watch
tool for a full-scale analysis of portions of the Web Graph

as future research. In Table 8 we show some high quality
clusters of community found by the Community Watch tool
in the data-set UK2005 among those communities detected
with threshold t = 25 (767 communities). Further filtering
of communities with too few centers reduces the number of
items (communities) to 636. The full listing can be inspected
by using the Community Watch web interface publicly avail-
able at http://comwatch.iit.cnr.it.

8. CONCLUSIONS AND FUTURE WORK
In this paper we tackle the problem of finding dense sub-

graphs of the web-graph. We propose an efficient heuristic
method that is shown experimentally to be able to discover
about 80% of communities having about 20 fans/centers,
even at medium density (above 50%). The effectiveness in-
creases and approaches 100% for larger and denser commu-
nities. For communities of less than 20 fans/centers (say
10 fans and 10 centers) our algorithm is still able to de-
tect a sizable fraction of the communities present (about
35%) whenever these are at least 75% dense. Our method
is effective for a medium range of community size/density
which is not well detected by the current technology. One
can cover the whole spectrum of communities by applying
first our method to detect large and medium size commu-
nities, then, on the residual graph, the Trawling algorithm
to find the smaller communities left. The efficiency of the
Trawling algorithm is likely to be boosted by its application
to a residual graph purified of larger communities that tend
to be re-discovered several times. We plan the coupling of
our heuristic with the Trawling algorithm as future work.
One open problem is that of devising an efficient version
the ExtractCommunity in the data stream model in order
to cope with instances of the web-graph stored in secondary
memory.
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Web 2001 - 5686 communities found at t=10

#
C

en
te

rs > 100 92 21 49 24 5 8 7 2 8 6 1 11

[50, 100[ 185 35 48 38 11 26 9 7 16 11 9 22

[25, 50[ 247 54 136 52 28 89 17 6 52 13 14 100

[10, 25[ 167 68 437 13 29 217 1 20 163 17 23 347

low med high low med high low med high low med high

Density Density Density Density

[10, 25[ [25, 50[ [50, 100[ > 100

# of Fans

Italy 2004 - 1099 communities found at t=10

#
C

en
te

rs > 100 17 3 11 3 1 5 2 2 0 2 1 12

[50, 100[ 32 2 14 14 2 4 5 1 2 3 4 15

[25, 50[ 28 15 33 10 2 18 5 7 16 19 11 69

[10, 25[ 14 5 42 1 3 26 1 2 34 5 11 247

low med high low med high low med high low med high

Density Density Density Density

[10, 25[ [25, 50[ [50, 100[ > 100

# of Fans

United Kingdom 2005 - 4220 communities found at t=10

#
C

en
te

rs > 100 24 5 18 17 4 15 10 3 14 11 5 51

[50, 100[ 63 23 55 14 21 34 19 11 42 24 22 81

[25, 50[ 76 23 151 28 18 159 16 7 68 51 22 273

[10, 25[ 43 30 299 7 8 266 8 11 159 34 44 705

low med high low med high low med high low med high

Density Density Density Density

[10, 25[ [25, 50[ [50, 100[ > 100

# of Fans

Table 6: Distribution of the detected communities depending on number of fans, centers, and density, for
t = 10.

Web 2001 Italy 2004 Uk 2005

Thresh. # Total # in Com. Perc. # Total # in Com. Perc. # Total # in Com. Perc.

10 984 290 581 828 59% 3 331 358 3 031 723 91% 4 085 309 3 744 159 92%

15 550 206 286 629 52% 2 225 414 2 009 107 90% 3 476 321 3 172 338 91%

20 354 971 164 501 46% 1 761 160 642 960 37% 2 923 794 2 752 726 94%

25 244 751 105 500 43% 487 866 284 218 58% 2 652 204 2 503 226 94%

Table 7: Coverage of communities found in the web graphs. The leftmost column shows the threshold value.
For each data set, the first column is the number of pages with d+ > t, and the second and third columns are
the number and percentage of pages that have been found to be a fan of some community.
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